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Abstract: Explainable Artificial Intelligence (XAI) seeks to render Artificial Intelligence (AI) models transparent and
comprehensible, potentially increasing trust and confidence in AI recommendations. This research explores
the realm of XAI within unsupervised educational machine learning, a relatively under-explored topic within
Learning Analytics (LA). It introduces an XAI framework designed to elucidate clustering-based personalized
recommendations for educators. Our approach involves a two-step validation: computational verification fol-
lowed by domain-specific evaluation concerning its impact on teachers’ AI acceptance. Through interviews
with K-12 educators, we identified key themes in teachers’ attitudes toward the explanations. The main con-
tribution of this paper is a new XAI scheme for unsupervised educational machine-learning decision-support
systems. The second is shedding light on the subjective nature of educators’ interpretation of XAI schemes
and visualizations.

1 INTRODUCTION

In recent years, the rapid growth of AI has led to its
widespread application in various fields, including ed-
ucation. Personalized learning systems, in particular,
have gained widespread interest, and mounting evi-
dence suggests that they are highly effective in en-
hancing learning outcomes (Khosravi et al., 2022).
Although AI applications are increasingly used in ed-
ucation, recent research indicates that human factors
like trust can negatively influence educators’ readi-
ness to embrace AI tools (Cukurova et al., 2020;
Nazaretsky et al., 2022a). One reason for this re-
luctance is that AI is often experienced as a ‘black
box,’ with users not understanding how and why the
algorithm reaches specific results (Rudin, 2019). XAI
addresses the problem of ‘black boxes’ by propos-
ing algorithmic approaches aimed at increasing trans-
parency of AI-powered systems by specifying the ex-
planations in terms of factors that influenced the sys-
tem’s decision-making process at varying degrees of
detail (e.g., for entire system behavior or for a par-
ticular prediction). These explanations are critical in
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guaranteeing algorithmic fairness, identifying poten-
tial issues or biases in the training data, and verifying
that the algorithms function as intended (Gilpin et al.,
2018). In particular, AI-powered educational tech-
nologies are a critical context where XAI is neces-
sary to assist educators and students in comprehend-
ing how AI works, determining how it may affect
them, assessing its trustworthiness, and ensuring that
ethical concerns are properly addressed. Indeed, the
XAI field in education has rapidly expanded in the
last ten years. However, most XAI methods currently
studied in education are designed for supervised ma-
chine learning (ML), mainly focusing on deep neu-
ral network architectures (Fiok et al., 2022; Swamy
et al., 2023). In fact, we are familiar with only one
educational XAI framework for unsupervised ML,
FUMA(Conati et al., 2021). FUMA can identify clus-
ters of user behaviors mapped into different learning
outcomes and predict when a new student is not learn-
ing well early during the interaction. However, this
framework has several shortcomings, including being
overly complex (Khosravi et al., 2022), calling for
more research on XAI for educational unsupervised
ML. We note that this is in line with recent voices out-
side the LA and AI in education space, which marked
XAI for unsupervised ML as a topic that should re-
ceive more attention from the AI research community
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(Morichetta et al., 2019; Kauffmann et al., 2022).
In contrast to the supervised approach, where the

models are trained using labeled data and can be eval-
uated based on their ability to predict a known out-
put, unsupervised methods aim to identify unknown
patterns in the data (Kauffmann et al., 2022). Thus,
not only is the model decision process difficult to ex-
plain but the semantic meaning of the revealed pat-
terns should also be interpreted, posing considerable
XAI challenges due to the sophisticated nature of the
statistical methods and the complex and abstract rela-
tions being revealed. One example is cluster analysis,
commonly used for grouping students based on their
learning behavior. Clustering algorithms can group
data points based on their similarity (Dasgupta et al.,
2020). However, the criteria for similarity are often
challenging to understand and explain. Cluster anal-
ysis is a frequent application of unsupervised ML in
education (Marras et al., 2021; Pereira et al., 2020),
stressing the need for targeted research on its XAI as-
pects.

In this research, we aim to take a step toward clos-
ing this gap. First, we present a novel XAI scheme to
explain the cluster analysis results of student assess-
ment data. Next, we exemplify how this scheme can
be applied to a common real-world teaching task. In
this task, the teacher’s goal is to adjust the instruc-
tion to the student’s state of conceptual understand-
ing, using an AI-powered tool that visualizes to the
teacher the knowledge profiles of the students in her
class and maps the students into these profiles. The
profiles and the mapping are based on cluster analysis
of student responses to multi-dimensional, interactive
assessment instruments. The algorithmic process is
done under the hood and remains a ‘black box’ for
the teachers, raising the need to explain its decision-
making logic in an understandable way for the end-
users. To this end, we ask the following research
questions (RQs):

RQ1. If and how ML and XAI methods can be
employed to create meaningful explanations
for automatically detected profiles of student
knowledge?

RQ2. Do teachers find the above-mentioned expla-
nations useful for understanding the detected
knowledge profiles?

In what follows, we start with a theoretical back-
ground. Then, we present the XAI scheme and val-
idate it computationally and qualitatively with teach-
ers.

2 BACKGROUND

XAI is studied in various application domains, each
with its own objectives and research traditions, posing
challenges for establishing common design and eval-
uation methodologies (Mohseni et al., 2021). In the
context of XAI in education, among the key factors
that define the research and design space are the var-
ious types of stakeholders (teachers, students, devel-
opers, etc.), machinery to be explained (supervised,
unsupervised, deep learning, NLP, etc.), XAI frame-
works (SHAP, LIME, etc.,), contexts (K12, higher ed-
ucation), and theoretical frameworks (Khosravi et al.,
2022; Cukurova et al., 2020; Swamy et al., 2022).

2.1 Explainable AI Terminology and
Methods

The ability to correctly interpret and explain an ML
model output is essential for both the model develop-
ers and its end-users (Mohseni et al., 2021). It en-
genders appropriate user trust, provides insight into
how a model may be improved, and supports under-
standing of its internal logic (Qin et al., 2020). In
general, the concept of explainability in ML covers
various aspects that contribute to the transparency and
comprehensibility of models. This includes explain-
ing details of the data being used and performance
metrics (Liao et al., 2020). One way to classify expla-
nations is as either local or global (Setzu et al., 2021).
Roughly, a global explanation is a type of explana-
tion that describes how the overall ML model works.
Model visualization and decision rules are examples
of explanations falling into this category (Mohseni
et al., 2021). In contrast, local explanations aim to
explain the relationship between specific input-output
pairs, the reasoning behind the results of an individ-
ual user query, or a particular input instance (Mohseni
et al., 2021). The local explanation is considered less
overwhelming for novices and can be suited for inves-
tigating edge cases for the model or debugging data
(Mohseni et al., 2021).

Two well-established local explanation frame-
works are LIME (Local Interpretable Model-Agnostic
Explanations) (Ribeiro et al., 2016) and SHAP (Lund-
berg et al., 2020). LIME explains the prediction of
a certain input by sampling its neighboring inputs
and learning a sparse linear model based on the pre-
dictions of these neighbors; features with significant
coefficients in the linear model are then considered
important for that input’s prediction (Ribeiro et al.,
2016). The original SHAP method and its varia-
tion, Kernel SHAP, are based on the game-theoretic
concept of Shapley values, which assigns a contribu-
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tion value to each feature in a prediction, consider-
ing all possible combinations. Kernel SHAP (Lund-
berg et al., 2020) is a model-agnostic method that ap-
proximates SHAP values by sampling a subset of the
possible combinations of features, and it is computa-
tionally faster than the original SHAP and can han-
dle larger datasets and more complex models. Apply-
ing this approach, (Lundberg et al., 2020). They sug-
gested SHAP TreeExplainer - an explanation method
for tree-based models that enables the tractable com-
putation of optimal local explanations. They pro-
posed to utilize SHAP interaction values as a richer
type of local explanation. Thus, TreeExplainer can
uncover significant patterns that might otherwise be
missed by considering interaction effects.

2.2 XAI for Cluster Analysis in
Education

Cluster analysis has been applied in numerous edu-
cational studies to forecast the probability of students
succeeding, failing, or dropping out of a course based
on their academic performance and online behavior
(Gabbay and Cohen, 2022; Käser et al., 2013; Klin-
gler et al., 2016; Mojarad et al., 2018), predicting the
specific skills and competencies that students have ac-
quired or are yet to develop, and classifying students
into groups based on their knowledge profile (Asif
et al., 2017; Nazaretsky et al., 2022a; Klingler et al.,
2016). However, many clustering algorithms lead to
cluster assignments that are difficult to explain. XAI
research has started to explore this space (Swamy
et al., 2023; Dasgupta et al., 2020). Moreover, as op-
posed to supervised ML, there are still no standard
methods. Since clustering is a common and standard
method in educational research, studying and devel-
oping XAI for clustering in education is of practical
importance and scientific interest.

2.3 Interactive AI-Powered Dashboards

Many institutions have started to adopt AI-powered
solutions that help educators make data-driven de-
cisions using LA dashboards (Ahn et al., 2019;
Michaeli et al., 2020). Such dashboards can assist
teachers in various tasks (Baker, 2016). However, the
provided analytics should be understandable and ac-
tionable to be effectively used. In the educational con-
text, the information should incorporate the pedagog-
ical logic behind the information presented. As such,
it should be properly adapted to the specific learning
and teaching goals, the needs of the different end-
users (e.g., instructional designers, instructors, and
students), and various learning contexts (e.g., individ-

ual students, student groups, or the entire class) (Dil-
lenbourg et al., 2011; Nazaretsky et al., 2022a).

In the case of AI-based LA dashboards, it is thus
essential to incorporate XAI features that enable the
users to understand the pedagogic rationale behind
the ML analysis. In order to address the gaps men-
tioned above, the proposed research aims to propose
an XAI scheme for cluster analysis in education, vali-
date it computationally, and experiment with its value
through a user study with teachers.

3 THE XAI SCHEME

Rationale. A common goal of cluster analysis in ed-
ucation is classifying the learners into groups with
similar knowledge profiles (Gabbay and Cohen, 2022;
Klingler et al., 2016) based on their responses to col-
lections of educational items. The results of such
clustering analysis are inherently difficult to inter-
pret, thus requiring explicit user-focused explana-
tions. However, there is a lack of effective XAI
schemes for cluster analysis (Bandyapadhyay et al.,
2023). Feature importance is a key approach for ex-
plaining classifiers’ output Section 2. In our XAI
scheme, we employ the feature importance approach
to explain cluster analysis , with the features be-
ing educational items. So, the important features in
our context are educational items that are most sig-
nificant in distinguishing between resulting clusters
(hereafter referred to as item importance). Such item
importance-based explanations have two main desired
properties: first, such item importance-based explana-
tions are interpretable by teachers – the typical end-
users of cluster-analysis applications. A working as-
sumption underlying our approach is that the teach-
ers are either familiar with the items or can analyze
them to extract the underlying skills. Second, item
importance can be computed for the output of a spe-
cific cluster analysis – a clustering instance – in an
automated fashion.
The Scheme. Our XAI schema consists of three steps.
Step 1 is the cluster analysis into knowledge profiles
and Step 2 and 3 provide the ‘explanation layer’ for
this analysis. Below, we explain each step in detail.

1. Cluster analysis of student response data into clus-
ters, each representing a knowledge profile.

2. Building the item importance-based explanations:

(a) Building a labeled dataset with the students
serving as samples, the items as features, and
the student-to-cluster mapping as the labels.
So, a sample in this dataset comprises a stu-
dent’s scored response vector (correct/incorrect
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score to all educational items) and the student’s
cluster as the label.

(b) Training an explainable classifier on the data
(e.g., Random Forest).

3. Analyzing the classifier’s feature importance to
identify the items discriminating between the
clusters.

This scheme results in a set of items and their rel-
ative importance to the classification. The proposed
scheme should be evaluated concerning two main as-
pects. First, such item importance-based analysis pro-
vides statistically meaningful results. Second, it is
useful for teachers. In the following sections, we first
apply the proposed XAI scheme to real student data
and validate its output quantitatively. Next, we eval-
uate its usability with teachers who are real users of
the learning platform PETEL.

4 RESULTS: APPLYING THE
SCHEME TO REAL STUDENT
RESPONSE DATA

4.1 Quantitative Evaluation

Below we describe the context, data, results of apply-
ing the scheme to these data, and the quantitative anal-
ysis of the method’s output. This analysis addresses
RQ1:
Context, Population and Data. The scheme pre-
sented in Section 3 was applied to four high-school-
level digital science learning activities in chemistry
and physics (two in each topic), each containing 13
to 23 auto-graded, multiple-skill assessment items
around a specific curricular topic. The four activ-
ities were administered to 216 to 1572 high-school
students majoring in physics/chemistry between 2020
and 2023 as part of the regular teaching of the rele-
vant subjects. Response matrices containing student-
scored responses to the activities were mined from the
learning platform PETEL.

Below we present in detail the results of applying
the scheme to one of the chemistry activities dealing
with Stoichiometry. This activity included 13 items
that appeared in matriculation exams in chemistry.
Step 1. Cluster Analysis of Student Response
Data. This stage followed the procedure and ideas
presented in (Asif et al., 2017; Nazaretsky et al.,
2022b). The proposed clustering method assumes
that students tend to perform similarly on items re-
quiring the same skills and competencies. Its aim is
to divide the students into clusters (knowledge pro-

files) based on their responses to an instrument con-
taining a set of 13 auto-graded interactive assessment
items (marked as correct/incorrect). When multiple
attempts were allowed, the score was computed as a
correct-on-first attempt to reduce the possible effect
of guessing or gaming the system (Baker et al., 2008;
Ruiperez-Valiente et al., 2017). The data was repre-
sented as a response matrix, with items as columns
and students as rows. The data was pre-processed ac-
cording to the guidelines recommended in (Feldman-
Maggor et al., 2021). Fully empty rows (students who
did not submit the activity) were removed from the
dataset. For partially incomplete rows, ‘Missing Not
at Random’ was assumed and treated as incorrect re-
sponse (Nazaretsky et al., 2019).

The clustering was done using a K-means cluster-
ing algorithm with Euclidean distance (Jain, 2010),
and the optimal number of clusters was determined
using the Weighted Gap Statistics method, which suit-
ability for educational data was validated in (Din
et al., 2023). Results from this stage were presented
on the platform PETEL through an interactive dash-
board called Grouper (Nazaretsky et al., 2022b) that
enables teachers to observe the clusters, the map-
ping of students into them (Fig.1) and1, and the sta-
tus of each item with respect to each cluster (Fig.2).
Demonstrated on the chemistry activity on Stoichiom-
etry, Step 1 identified four clusters. Fig.2 presents the
representative response pattern of each profile. For a
certain Item-Group cell, Green means that more than
70% of students assigned to the cluster were correct
on that item, Red means that less then 50% were cor-
rect, and Yellow denotes the between cases.

Figure 1: Dashboards for Clusters of Students with Similar
Profiles.

Step 2. Building the Item Importance-Based Ex-
planations. In Step 2, a supervised dataset was
created and randomly divided into training and test
sets (70% and 30%, respectively). At this stage,
we trained a Random Forest (RF) algorithm2 to cre-
ate predictive models. The decision to use RF was
based on the large body of research demonstrating its

1Grouper presentation
2RandomForest, sklearn python package
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Figure 2: Dashboards Displaying the Typical Response Ma-
trix for Each Cluster.

high accuracy and the usability of its feature impor-
tance analysis. 100 RF models were trained, yielding
µaccuracy = 0.922 and sdaccuracy = 0.012 on the test set,
indicating the stability of the fitted RF models. The
resulting clusters and student response vectors were
used to construct the labeled dataset. We recall that
XAI scheme treats the items as the features and the
student-to-cluster mapping as the labels.
Step 3. Using Feature Importance to Identify the
Profile Explanation. The resulting RF models were
used to generate two types of knowledge profile ex-
planations: global explanations and per-cluster expla-
nations.

First, we applied the Feature Importance algo-
rithm to the RF model to analyze the contribution of
each feature (item) to the classification of students
into clusters. Using the RF models and SHAP Tree-
Explainer algorithm, feature importance was com-
puted for the entire model as described in step 2 and
shown in Fig 3. In this step, we focused on the indi-
vidual explanation of each cluster (Fig.4).

In the original, unsupervised task, we interpret
this as the relative importance of each item in dis-
tinguishing between clusters. We refer to this as a
global explanation, as the values represent item im-
portance with respect to the entire clustering model.
As noted in Section 2, global explanations are more
geared toward understanding the model as a whole,
which in our case can be interpreted as “which are the
most important items in the activity.” However, we
anticipated that such explanations would be challeng-
ing for teachers to translate into actionable insights
that can be used to assign learning activities based on
the needs of the specific knowledge profile of students
who belong to the same cluster.

Thus, we focused on explanations that unpack the
knowledge profile of the students in each cluster (we
refer to this as a profile explanation). We used the

SHAP TreeExplainer algorithm to build such expla-
nations that analyze which items were most important
for the RF classifier (Lundberg et al., 2020) to assign
a specific student to a specific cluster. To assess the
agreement on the ordering of the features (in terms of
feature importance) between the data samples classi-
fied into the same clusters and the different clusters,
we followed the procedure proposed in (Swamy et al.,
2022; Swamy et al., 2023). We used Spearman’s
Rank-Order Correlation to identify the rank correla-
tion (statistical dependence between the rankings) be-
tween every two pairs of samples (students) (Spear-
man, 1987).

The results of Spearman’s Rank-Order correlation
tests are presented in Fig.5. The four dark squares on
the diagonal correspond to the four clusters and in-
dicate a high Spearman’s p-value inside the detected
profiles. Interestingly, additional dark rectangles in-
dicate a high correlation between two pairs of groups,
namely, Groups 1 and 3 and Groups 2 and 4. Indeed,
the most important items for Groups 1 and 3 are Items
9, 6, 8, and 5. However, in the case of Group 1, the
relevant cells are green (Fig.2), indicating that the stu-
dents of the group were correct on these items, while
for Group 3, the cells of Items 9, 8, and 5 are col-
ored red (Fig.2), indicating that the students of Group
3 were incorrect on these items.

Spearman’s Rank-Order correlation validates the
feature importance, ranks the item importance for
each data point (student), and examines the similar-
ity of the ranking between data points mapped to the
same cluster. We observed high consistency between
the item importance ranking for data points belonging
to the same cluster across all clusters, providing addi-
tional validation to the stability of the per-profile item
importance profile. This validation step was also ap-
plied to the three other instruments, yielding similar
proof.

Eventually, the resulting item importance scores
are interpreted as explaining the specific assignment
of a student into a certain knowledge profile, provid-
ing the items that are the most important for distin-
guishing between assigning the student to a certain
cluster vs. into the neighbor ones.

4.2 Qualitative Evaluation: User-Study
with Pilot Teachers

In the context of RQ2, we employed a qualitative ap-
proach to evaluate teachers’ attitudes toward the ex-
planations rendered by the proposed XAI scheme.
We were especially interested in evaluating teachers’
opinions about the effectiveness of the information to
assist them in designing follow-up activities that ad-
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Figure 3: Feature importance for the entire RF model.

Figure 4: Per-cluster feature importance.

Figure 5: Spearman’s Rank-Order correlation between all
the pairs of data points. The data points ordered by the cor-
responding groups and represented by colors as in Figure 4.

dress the needs of each knowledge profile. To this
end, we conducted semi-structured interviews with
twelve teachers. During the interviews, we first pre-
sented the following scenario/task as a context for the
interview:

1. Identify students’ difficulties based on their per-
formance in an interactive learning activity.

2. Divide students into groups of students having
similar knowledge profiles with respect to the
skills and competencies that underlie the activity.

3. Propose a learning sequence for each group based
on its knowledge profile.
Next, we presented to the participants the underly-

ing learning activity and the corresponding automated
division into knowledge profiles. We used the learn-
ing analytic dashboard (Fig.1, Fig.2) to visualize the
resulting knowledge profiles. Finally, we presented
to the participants the explanations for the knowledge
profiles. We presented the XAI results using two
mock-ups: one containing global explanations (item
importance for the entire model) and one presenting
profile explanations (item importance for each clus-
ter). For each mock-up, we asked the teachers to
share their perspectives on the potential advantages
and disadvantages of including the item importance
analytics in the interactive dashboard. Each inter-
view lasted 45-60 minutes and was recorded and tran-
scribed by the first author. The interview analysis pro-
ceeded in the following manner. In the first stage, the
first author identified and coded three primary themes
that emerged in the interviews. These themes were
formed inductively in a “bottom-up” manner (Braun
and Clarke, 2006). In the second stage, to validate
the themes, the second author analyzed the interviews
using the themes identified by the first author. After
reaching almost a full consensus regarding the inter-
view data, the two authors met to discuss and reach
a complete agreement. Due to space limitations, we
omit the full results of the qualitative analysis. In-
stead, we focus only on the examples of teachers’
opinions about incorporating the XAI analytics into
the cluster dashboard. We used the interviews to as-
sess the XAI scheme and examine whether and how
we should implement the feature importance for the
entire model and the knowledge profiles in the inter-
active dashboard. The twelve interviews resulted in
nineteen citations, as summarized below, according
to the following three themes:
1. Interviewees accepted the explanation and visual-

ization: Feature Importance Algorithm: For ex-
ample, “It adds information for me because the
questions are very goal-oriented, and then I know
exactly what I need to improve” (6 interviewees).
Profile explanations: For example, “To me, it’s
important because when developing an assign-
ment, you don’t know the important questions. It
gives more information. I can tell that question 5,
for example, is critical. The form of the presen-
tation in the table is good. For me, it’s good”.(5
interviewees).

2. Interviewees accepted the explanation but not its
visualization. Feature Importance Algorithm: For
example, “I would present the important general
questions elsewhere, next to the table with the
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differences between the groups”(2 interviewees).
Profile explanations: For example, “I would not
present it in this way, but provide a clarification;
this first question is a question that most of the
cluster students answered correctly, and the rest
of the clusters did not answer correctly. I would
prefer this explanation to be in text and not graph-
ical”. (3 interviewees).

3. Indecisive - Interviewees could not decide
whether they accepted the explanation and visu-
alization or not. Feature Importance Algorithm:
For example, “I have to try it myself to trust it”.(3
interviewees).
Profile explanations: No support for this was
found in the interviews.

As evident from the interviews, there was no clear
consensus among the teachers on this matter. As we
advance our research, we aim to investigate deeper
into teachers’ understanding to determine whether it
impacts their acceptance of feature importance. An-
other factor that we intend to further explore is the
impact of the task (e.g., developing learning materials
vs. formative assessment) on teacher acceptance and
use of item importance analytics.

5 DISCUSSION AND
CONCLUSION

In recent years, the importance of AI in educational
technologies has grown substantially. One of the pri-
mary barriers to its acceptance is the perception of
AI as a ‘black box’, as both end-users and develop-
ers often find the pathways to algorithmic outcomes
opaque and non-transparent. Previous studies have
highlighted stakeholders’ challenges due to their in-
ability to understand how AI algorithms reached par-
ticular results (Rudin, 2019). Explaining and under-
standing these AI decisions have thus become critical
for their acceptance in educational contexts (Khosravi
et al., 2022; Qin et al., 2020). While XAI aims to in-
crease the transparency of AI-driven systems by pro-
viding detailed insights into the decision-making pro-
cess, there is a notable gap in the literature concern-
ing its application in education, especially for cluster-
ing, which is a key unsupervised ML method. While
some research studied this area, it mainly focuses on
bioinformatics (Rider et al., 2010), leaving the educa-
tional sector without standardized XAI techniques for
clustering. This is despite the extensive use of clus-
ter analysis in various educational research scenarios
(Gabbay and Cohen, 2022; Klingler et al., 2016; Mo-
jarad et al., 2018).

With this in mind, the study first addressed the
following research question, RQ1: If and how ML
and XAI methods can be employed to create mean-
ingful explanations for automatically detected pro-
files of student knowledge? We developed an XAI
scheme tailored to unsupervised ML to address this.
This scheme introduces an ‘explainability layer’ for
the knowledge profiles automatically computed from
student responses to educational items. In short, the
crux of this scheme is treating the cluster analysis
output – assignment of students to clusters, as a su-
pervised learning task, with the assessment items as
features, student response vectors (true/false on each
item) as inputs, and the mapping of response vec-
tors (students) to clusters as labels. Applying fea-
ture importance techniques (SHAP TreeExplainer) to
this modeling computes the item importance, which
can be interpreted as the contribution of each item to
the overall clustering (global explanations) as well as
to specific student-cluster pair (profile explanation).
We first assessed this scheme computationally, on ac-
tual student response data received from four instru-
ments in Physics and Chemistry. For all instruments,
the application of the scheme was statistically robust
with respect to agreement on the ordering of the fea-
tures (in terms of feature importance) between the
data samples classified into the same clusters and the
different clusters. Delving into the results of one in-
strument, analysis of the scores conducted by a con-
tent expert indicated that they unpack the key factors
that determine the clustering and specific student-to-
cluster mappings.

After computationally assessing the scheme, we
conducted a user study with teachers to address RQ2:
Do teachers find the explanations useful for under-
standing the detected knowledge profiles? The pi-
lot’s goal was to understand the scheme’s compre-
hensibility and practical value for teachers. By inves-
tigating teachers’ acceptance of the item importance
scores, yielding both global and profile explanations,
and presented through two mock-up dashboards, we
identified three main attitudes among the teachers: 1)
accept the explanations, 2) accept the explanations
but do not accept their visualization, and 3) indeci-
sive. Most of our interviewees were assorted to the
first or second attitude. Surprisingly, only three out
of twelve teachers were indecisive regarding whether
they should accept the global explanations, and none
of them was indecisive regarding the profile explana-
tions. Concluding, the pilot provided a clear indica-
tion that the teachers found the explanations insight-
ful and largely comprehensible. Yet, there were a few
indications of confusion among the teachers. Inter-
preting these in the light of the results of (Swamy
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et al., 2023), who reported disagreement and possi-
ble confusion among educators (in Higher Education)
regarding applying LIME and SHAP to explain the
classification of student assessment data. Synthesiz-
ing the results, we hypothesize that the visualization
of the feature importance analytics plays an important
role in their comprehensibility. Thus, and since the
interpretation of explainability schemes may be sub-
jective and complex, it may be useful to allow users to
navigate and choose between alternative forms of vi-
sualization, as is common in some other algorithmic-
oriented used interfaces (Sadeh, 2008).

In summary, a pilot computational and user study
conducted on the XAI scheme for unsupervised ed-
ucational ML that was proposed in this research
yielded promising results. The main limitation of the
research is the small sample in terms of the amount
of teachers that participated, the amount of instru-
ments, and the domains from which they were taken.
Thus, applying this scheme to additional teacher pop-
ulations and to instruments from other domains will
help to understand its generalizability. In addition,
the present work devoted little attention to the visual
aspects of the analytics, but the way analytics are pre-
sented to teachers needs further exploration through
user-interface studies, including exploring the contri-
bution of making educational dashboards customiz-
able by their end users, an approach that rendered pos-
itive outcomes in other domains (Kuznetsova et al.,
2021). To conclude, the suggested XAI scheme pro-
vides a promising pathway for adding transparency
and explainability to LA applications that rely on un-
supervised learning algorithms. Research-wise, it un-
derlines the different nature of explanations that are
required for supervised and unsupervised educational
ML, the latter being mostly dominated by applica-
tions of cluster analysis – the algorithmic bedrock un-
derlying our learning analytic dashboard. This makes
the proposed scheme applicable to a wide range of LA
solutions.
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