
Balancing Performance and Aging in Cloud Environments

Thiago Gonçalves, Antonio Carlos S. Beck and Arthur F. Lorenzon
Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

{thiago.goncalves, caco, aflorenzon}@inf.ufrgs.br

Keywords: Process Variability, Aging, Cloud Computing.

Abstract: As the number of cores per chip increases, cloud servers become more capable of effectively handling multiple
requests simultaneously. However, they may present unexpected temperature-related challenges that accelerate
aging, causing errors or malfunctions. Moreover, because of process variability, temperature will vary even
for identical cores running at the same operating frequency in the processor. In this scenario, we propose
EquiLifeCM, a framework designed to maximize the lifespan of cloud machines. Given the system’s current
status and applications’ behavior, EquiLifeCM automatically allocates workloads across cores from different
cloud machines and applies frequency scaling considering core variability.

1 INTRODUCTION

The demand for cloud-based software services has
increased the need for solid warehouse infrastruc-
tures to support various services like machine learn-
ing, biomedical research, and multimedia process-
ing. However, these services have different CPU and
memory needs, making it challenging for the server
to properly exploit request-level parallelism (RLP),
which wisely uses the available resources to exe-
cute applications with minimal latency (Lorenzon and
Beck Filho, 2019; Navaux et al., 2023). Moreover,
transistor scaling and the end of Dennard’s Law re-
sulted in increased heat dissipation, directly acceler-
ating the hardware aging process (Shah and Girard,
2020) and impacting the mean time between failures
of cloud devices.

Hardware aging is primarily caused by negative
bias temperature instability (NBTI) and hot carrier in-
jection (HCI). NBTI generates positive oxide charge
and interface traps in MOS structures under high tem-
peratures and negative gate voltages (Stathis and Za-
far, 2006; Blat et al., 1991). This leads to increased
threshold voltage (Vth), which degrades device per-
formance and can cause undesired system behavior
(Schroder and Babcock, 2003). On the other hand,
HCI accelerates carriers to high kinetic energies un-
der electric solid fields, resulting in the degradation
of oxide quality. This negatively impacts the cur-
rent drive capability and increases propagation de-
lay. Over time, the accumulation of such damage can
cause severe reliability issues (e.g., electromigration,

dielectric breakdown, and stress migration (Corbetta
and Fornaciari, 2012)), leading to increased mainte-
nance costs and system downtime.

NBTI and HCI are highly influenced by tempera-
ture, supply voltage, and operating frequency (Cor-
betta and Fornaciari, 2012; Medeiros et al., 2020;
Medeiros et al., 2021). Therefore, controlling them
is essential to reduce aging effects without compro-
mising system performance. Besides the inherent
challenge of managing such factors altogether, the
within-die process variation makes it even harder:
even though off-the-shelf processors have a maximum
operating frequency limited by the slowest core’s fre-
quency, process variation will influence the tempera-
ture of each core, so two identical cores in the same
processor running at the same operating frequency
may dissipate a different amount of power.

To illustrate this scenario, Figure 1.a shows the
temperature distribution of each core in three iden-
tical 2x10-core work machines (WM1, WM2, and
WM3) that perform the same task under similar con-
ditions in a private cloud setup. The temperature
difference across the cores is significant, especially
when comparing different non-uniform memory ac-
cess (NUMA) nodes, represented by cores 0 to 9 and
cores 10 to 19. Since temperature impacts aging, this
variation will influence the lifespan of each core. Us-
ing the aging model described in Section 3, Figure
1.b shows the estimated lifespan of the cores with the
highest and lowest peak temperatures and the average
lifespan of all cores from Figure 1.a in a variability-
oblivious environment. The figure indicates that the

216
Gonçalves, T., Beck, A. and Lorenzon, A.
Balancing Performance and Aging in Cloud Environments.
DOI: 10.5220/0012687700003711
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Cloud Computing and Services Science (CLOSER 2024), pages 216-223
ISBN: 978-989-758-701-6; ISSN: 2184-5042
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

35

40

45

50

55

60

65

70

WM1 WM2T
em

p
er

a
tu

re
(º

C
)

WM3

0

50

100

150

200

250

300

W
or

st
 c
as

e

A
ve

ra
ge

B
es

t c
as

e

E
st

im
a
te

d
 l

if
e-

ti
m

e

(M
o
n

th
s)

a) Temperature Distribution b) Lifetime

Figure 1: (a) Distribution of temperature for each core on three identical worker machines when running the same task and
(b) Estimated lifetime of the worst, average, and best case of cores from (a).

worst-case core will last approximately 200 months
(16 years) less than the best-case core. Hence, one
core can execute 2.58×106 more tasks than the other
one before reaching its end-of-life.

Based on the previous discussion, we propose
EquiLifeCM. It is a new approach to address the ag-
ing issue in cloud environments. EquiLifeCM con-
siders the impact of process variability on the core
temperature and aims to optimize the number of tasks
a cloud environment can execute until the machines
reach their end. It achieves this by determining (i)
which worker machine should execute a given task;
(ii) the assignment of tasks to specific cores; and
(iii) the frequency and voltage levels for each core
and memory system. EquiLifeCM consists of two
main modules: Worker-Machines profiling and dy-
namic adaptation. The profiling module creates a
temperature variability map to estimate each core’s
lifetime in worker machines. It classifies the cores
accordingly, storing this data in a database for the dy-
namic adaptation module. Then, during the task exe-
cution, the dynamic adaptation module collects hard-
ware and software events to select the most suitable
core automatically and sets optimal core/uncore fre-
quencies to enhance performance and minimize ag-
ing.

When executing twenty tasks with different mem-
ory and CPU usage behaviors on a private cloud
with four identical Intel multicore processors with
varying degrees of RLP (25%-100%), we show that:
(i) EquiLifeCM can select the most suitable core to
execute a given task among all the available cores
in the infrastructure that reduces aging of the hard-
ware components while keeping performance levels
of the application as high as possible. (ii) Com-
pared to aging-oblivious strategies, EquiLifeCM ex-
tends server lifetime by four years while enabling the
execution of 3.6x107 additional tasks during the life-
cycle. (iii) EquiLifeCM outperforms HiMap (Rathore
et al., 2018), a state-of-the-art strategy that maxi-
mizes lifetime reliability while meeting performance,
power, and thermal constraints.

2 BACKGROUND AND RELATED
WORK

Cloud Computing is the go-to technology for appli-
cation deployment and resource allocation while en-
suring elasticity and high availability. However, early
cloud systems struggled with compute-intensive ap-
plications due to hypervisor overheads. Lightweight
container technologies like Docker were introduced to
address this. Docker packs applications in containers
with all the necessary data, such as libraries, but lacks
advanced management features like load balancing.
This led to the development of orchestration plat-
forms like Kubernetes, which have become standard
in cloud environments (Thurgood and Lennon, 2019).
However, Kubernetes does not offer fine-grained op-
timizations like thread allocation or core/uncore fre-
quency management, limiting its ability to address
performance and other specific needs, such as aging.

Multicore architectures can control the operating
frequency of the core and uncore subdomains using
dynamic voltage and frequency scaling (DVFS) and
uncore frequency scaling (UFS), respectively. DVFS
allows the software to adjust the clock frequency
of a processor’s core subdomain in real-time (e.g.,
processing units and private caches), which reduces
power consumption and operating temperature. To
make DVFS easier for developers, Operating Systems
(OS) provide governors such as powersave (reduc-
ing power consumption), performance (maximizing
performance), and ondemand (balancing frequency
based on CPU load). Similarly, UFS can optimize the
frequency of shared elements among cores like the
last-level cache, quick-path interconnect controller,
and memory controller.

In this scenario, different solutions have been pro-
posed to optimize the execution of applications in
cloud environments. Strategies to improve perfor-
mance and energy efficiency by tuning DVFS and
thread mapping include (Dighe et al., 2011; Raghu-
nathan et al., 2013; Stamoulis and Marculescu, 2016;

Balancing Performance and Aging in Cloud Environments

217

Schwarzrock et al., 2020; dos Santos Marques et al.,
2017). More complete solutions that include ag-
ing optimization while meeting performance require-
ments are discussed next. Hayat is a runtime system
that harnesses Dark Silicon to decelerate and/or bal-
ance temperature-dependent aging while considering
variability to improve the overall system performance
for a given lifetime. ADAMAN is an aging-aware
task-mapping algorithm that leverages performance,
power, and core-level aging predictive models to find
energy-efficient mappings that meet the task’s perfor-
mance requirements and reduce platform aging. Life-
guard is an aging enhancement approach based on
reinforcement learning that defines the task-to-core
mapping based on application performance require-
ments and the core’s safe operating frequency. HiMap
is a mapping approach that maximizes the lifetime re-
liability of multicore systems while satisfying perfor-
mance, power, and thermal constraints. It determines
the mapping of dark cores through a hierarchical ap-
proach that finds a cluster of cores to map an applica-
tion and ensures uniform aging within the cluster.
Our Contributions. Considering the works dis-
cussed above, this paper makes the following con-
tributions: (i) Compared to strategies that tune the
core frequency and thread mapping to optimize ap-
plications’ performance and energy efficiency, Equi-
LifeCM is a more complete solution as it also consid-
ers the uncore subdomain and optimizes aging while
not jeopardizing the performance. (ii) Compared to
strategies that optimize aging under performance re-
quirements, EquiLifeCM simultaneously apply task-
to-core mapping and core/uncore frequency scaling
in a distributed cloud environment to improve the
trade-off between performance and aging under pro-
cess variability. Also, our strategy considers the char-
acteristics of every task during execution to find the
most suitable core from all working machines in the
environment to execute it.

3 EquiLife CLOUD MANAGER

Our solution, EquiLife Cloud Manager (EquiLifeCM)
is designed to maximize the lifespan of cloud servers
while enhancing their performance. It achieves this
by uniformly managing the aging of hardware com-
ponents caused by HCI and NBTI in a cloud clus-
ter by considering the temperature variability between
the cores in each NUMA node. This allows EquiL-
ifeCM to map tasks to specific cores and control the
frequency of both core and uncore subdomains. We il-
lustrate in Figure 2, the workflow of EquiLifeCM and
discuss it in the following subsections.

3.1 Workflow of EquiLifeCM

3.1.1 Initialization

The cloud infrastructure has a set of tasks that need to
be executed, regardless of whether they are from the
same user (multitenant). These tasks contain datasets
that serve as inputs to EquiLifeCM. At this stage,
EquiLifeCM verifies if the variability map for all the
working machines is up-to-date and available. If not,
the static worker-machine profiling module generates
the variability map that contains information about
each core’s temperature and aging estimation in every
architecture from the cloud environment. The vari-
ability map must only be generated every few months
(configurable in EquiLifeCM), as aging is a slow pro-
cess (Gnad et al., 2015). On the other hand, if the
variability map is up-to-date, then EquiLifeCM pro-
ceeds to the dynamic optimization stage, skipping the
stage below.

3.1.2 Static Worker-Machine Profiling

In case there is no variability map (or if it needs to
be updated), this stage stresses every core from each
working machine to build a new variability map with
the core’s peak temperature and aging estimation (as
discussed next), as shown in Fig. 2. To ensure that
all cores are stressed under the same conditions, the
stress test only starts when the current core’s tem-
perature reaches the idle temperature. The test in-
volves two phases until the peak temperature stabi-
lizes: memory system stress (using the STREAM
benchmark) and CPU stress (using the Pi calculation).
Throughout the test, EquiLifeCM uses OS tools to
collect the hardware metrics, including duty cycle,
operating frequency and voltage, core temperature,
and activity factor. These metrics are used to assess
the aging of the corresponding core. After creating
the variability map, the cores are classified into two
categories based on their estimated aging – the health-
iest and the unhealthiest. These categories are then
sorted and used by the dynamic optimization phase to
find the best mapping of tasks to the cores. Once this
phase finishes, the variability map is sorted through
the Merge sort algorithm.

3.1.3 Transparent and Dynamic Optimization

Given the batch of tasks that must be executed in the
cloud infrastructure, at this stage, EquiLifeCM deter-
mines the best way to match tasks with a specific core,
as well as the frequency at which core and uncore sub-
domains should operate based on the task’s proper-
ties, such as whether it is CPU or memory-intensive).

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

218

StaticWorker-Machines Profiling

N0 N1

Stress Test

+ Aging

Estimation

Write

DB

Database

WM-0

N0 N1

WM-1

N0 N1

WM-n-1

...

Stress Test

+ Aging

Estimation

Stress Test

+ Aging

Estimation

......

CPU-

Intensive

MEM-

Intensive

MEM-

Intensive

CPU-

Intensive

CPU-

Intensive

MEM-

Intensive

CPU-Intensive

MEM-Intensive

…

…

Sort

Output

DynamicOptimization

End

Task

Profilling

Task

already

profiled?

Read

DB

Write

DB

Are there

tasks to

execute?

Yes

No

Yes

WM+Core Mapping

Task Set Core &

Uncore Freq

Execute Task

No
Execute Task

Initialization

Tasks

Data

Tasks

Data

Tasks

Data

Is the

variability

map expired?

Yes

No

Read DB

Figure 2: Workflow of EquiLifeCM.

For that, EquiLifeCM considers that the tasks are en-
capsulated into Docker containers with all the data
and libraries needed to execute them. Then, Equi-
LifeCM first reads the database to get the variabil-
ity map of each working node previously gathered.
From this point on, the task to be executed may pass
through dynamic profiling depending on whether it
has already been executed.

If it is the first time a task is executed, EquiLifeCM
performs task-specific dynamic profiling to get hard-
ware/software information from the task. The task is
executed during the profiling using the default sched-
uler configured in the cloud environment (e.g., Kube-
scheduler), with the core/uncore frequency scaling up
or down based on the task’s demands. EquiLifeCM
collects data on the number of instructions per cycle
(IPC) and memory usage (such as L2 and last-level
cache behavior) to classify the task as either CPU or
memory-intensive. We consider these metrics since
the IPC determines whether the task is CPU-intensive,
while the higher last-level cache access and a low
IPC indicate that the task is more memory-intensive.
Then, EquiLifeCM stores the IPC, L2, and last-level
cache behavior on the internal database for future use.
If it is not the first time the task is executed, the dy-
namic profiling is skipped since EquiLifeCM recovers
the task’s characteristics from its database of previous
executions.

EquiLifeCM considers that the healthiest NUMA
nodes for CPU-intensive tasks are the ones with the
lowest peak temperature. Since these tasks require
fewer memory operations, the uncore frequency can
be set to a minimum, reducing the power consump-
tion and operating temperature without affecting per-
formance. By doing this, the core frequency has more
room to be set to the maximum allowed within the
TDP limits. On the other hand, for MEM-intensive
tasks, the unhealthiest NUMA nodes with the high-
est peak temperature and aging estimation are bet-
ter. Since these tasks require more memory opera-
tions, the core frequency can scale according to the
workload. Reducing power consumption will leave
room to increase the uncore subdomain frequency

without impacting the core subdomain temperature.
This strategy can slow down the aging process of
such cores due to lower usage, decreased duty cycle,
and lower frequency, which reduces the correspond-
ing voltage and operating temperature.

3.2 Modeling Aging Phenomena

We use a microarchitecture level aging model that
considers the combined impact of NBTI and HCI
(Lee et al., 2018; Oboril and Tahoori, 2012). NBTI
is a phenomenon that negatively affects the electrical
properties of pMOS transistors, leading to an increase
in the threshold voltage (Vth) and decreased switching
speed over time. The |Vth| shift degree depends on
various factors such as supply voltage Vdd , duty cycle
δ, and usage. HCI primarily affects nMOS transistors
and causes |Vth| shifts based on the switching activity.
In the end, both NBTI and HCI contribute to a gradual
increase in MOSFET’s threshold voltage (Vth), result-
ing in slower performance.

3.3 Implementation of EquiLifeCM

We developed EquiLifeCM using the Python3 pro-
gramming language in such a way that it can receive a
batch of tasks and their datasets in a Docker container
without requiring any modifications or recompilation
of the task’s source code. Additionally, EquiLifeCM
does not require superuser privileges from the OS, as
all of its operations are carried out using tools avail-
able at the user level. EquiLifeCM uses the sensors
tool on every working node to read the core temper-
ature and operating voltage, the taskset command
line to set the task-to-core mapping. The LIKWID
performance tool1 to configure the core/uncore fre-
quency. In this scenario, EquiLifeCM can work with
any task running on cloud environments.

1Likwid performance tool available at:
https://hpc.fau.de/research/tools/likwid/

Balancing Performance and Aging in Cloud Environments

219

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v

er
a

g
e

IP
C

Figure 3: Behavior of each task considering the average
IPC.

4 METHODOLOGY

4.1 Applications

We evaluate twenty tasks/applications already imple-
mented in C/C++ from assorted benchmark suites:
Three from the Parboil (Stratton et al., 2012):
simulating histogram (histo); 3-D stencil operation
(stencil); and two-point angular correlation function
(tpacf).Eight from the Rodinia Suite (Che et al.,
2009): Back Propagation; Heart Wall; HotSpot;
Kmeans; LavaMD2;Particle Filter; PathFinder;and
Streamcluster. Nine from different domains: fast
Fourier transform; Gram-Schnmidt process; Jacobi
method; Monte-Carlo; n-body; Odd-even sort; Pi cal-
culation; Poisson Equation; and Stream.

We executed each task using the standard input set
defined on each suite. We chose these applications be-
cause they exhibit different behaviors concerning the
average IPC, which reflects whether they are CPU-
or memory-intensive, as shown in Figure 3. For in-
stance,Stencil has the lowest average IPC, meaning
that the application spends most of its time on mem-
ory operations. On the other hand, Poisson Equation
has the highest average IPC and is the most CPU-
bound application used in the experiments.

4.2 Execution Environment

The experiments were performed on a private cloud
with five multicore architectures: four identical
worker machines (W1, W2, W3, and W4) that exe-
cute the tasks; and one Server, responsible for deploy-
ing the client requests to the worker machines. Each
worker machine has the following configuration: 2x
10-core Intel Xeon E5-2650 v3, each core running at
a frequency from 1.2GHz to 2.3GHz (3.0GHz when
Turbo Boost is turned on). Moreover, the uncore fre-
quency can scale from 1.2GHz to 3.0GHz. Each task
can be scheduled to any of the 80 cores available in
the environment. All the worker machines used the
Linux Kernel v.4.19.0-21, kubernetes v.1.23.6., and
Docker v.20.10.17, build 100c701. We compiled each

application with GCC/G++ 12.3 using the −O3 opti-
mization flag.

We set up a cluster using the Kubernetes frame-
work, where the master node is responsible for man-
aging the Kubernetes environment and has all the
necessary components for governing the cluster, in-
cluding the Kubernetes control plane components.
The management layer in the master node comprises
five key components: the Kube-controller-manager,
which maintains the integrity of the nodes within the
cluster; the etcd database, which serves as the stor-
age mechanism for all the information related to the
cluster; the Cloud Control Manager, a component
that handles the integration between the cluster and
the underlying cloud provider’s services; the Kube-
apiserver, which acts as the front-end interface for
the management layer of Kubernetes; and the Kube-
scheduler, which is responsible for examining newly
created pods without assigned nodes and selecting a
suitable node for their execution.

The following strategy was used to execute each
application on a worker node: (i) The application bi-
nary is encapsulated within a Docker container to pro-
vide an isolated execution regardless of the working
node. (ii) Based on the decision of EquiLifeCM, a
Kubernetes Manifest file, referred to as pod, is cre-
ated to describe how the container should run. (iii)
Using the Kubernetes environment and the kubectl
command-line tool, the application is deployed for
execution through the command kubectl apply -f
file.yaml, where the last parameter represents the
pod configuration file. (iv) The Kubernetes control
plane creates a pod containing the Docker containers
that are responsible for running the application. (v)
The Kubernetes kube-scheduler recognizes the cre-
ated pod and assigns it to the worker node according
to the decision made by EquiLifeCM. (vi) Finally, the
pod executes on the allocated worker node.

5 EVALUATION

5.1 Set of Experiments

We compare EquiLifeCM with two state-of-the-art
strategies: Kube-Scheduler, where the Kubernetes
scheduler assigns tasks, and HiMap (Rathore et al.,
2018), an approach to maximize lifetime reliability
while meeting performance, power, and thermal con-
straints. We have faithfully implemented HiMap fol-
lowing the guidelines in the original paper and applied
it to the evaluated applications.

Because the workload of cloud servers can vary
depending on factors such as the number of users,

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

220

30

40

50

60

70

80

90

25%-RLP

T
em
p
er
a
tu
re
(º
C
)

50%-RLP 75%-RLP 100%-RLP

Figure 4: Temperature distribution.

task type, and service-level agreement, we evaluated
all strategies under four scenarios based on the RLP
used by the environment. 25%-RLP, where the batch
size matches one-quarter of the total cores (20, for
example). 50%-RLP, the batch size equals half the
available cores. 75%-RLP, the batch size matches
three-quarters of the cores. And 100%-RLP, where
the batch size considers all the tasks. Furthermore, to
ensure that all experiments were performed with the
working machines in the same state (e.g., temperature
value), we defined a threshold value of core temper-
ature, and the execution of each scenario only starts
when the temperature reaches this value.

5.2 Temperature Evaluation

We start by discussing the temperature behavior of
each strategy when executing all scenarios on the pri-
vate cloud. Figure 4 illustrates the temperature distri-
bution of all working machines in each scenario. Each
box includes the minimum and maximum values as
whiskers on either side. The three parts inside the box
are the first quartile (Q1), the median (Q2), and the
third quartile (Q3). Therefore, the higher the values,
the higher the operating temperature of the processor.
Furthermore, the distance between two quartiles rep-
resents 25% of the distribution.

Let us first discuss the behavior of the KS pol-
icy and HiMap. As depicted in Figure 4, the KS
policy is less effective at controlling temperature as
it does not consider core temperature fluctuations in
core while assigning tasks. Instead, it prioritizes re-
source sharing and balance over temperature manage-
ment. Moreover, the default KS task execution mode
operates both core and uncore frequency at maximum,
adversely affecting temperature behavior. Compared
to KS, HiMap prioritizes map tasks to healthy cores
and adjusts the core frequency to optimize the tem-
perature. However, it does not consider uncore fre-
quency management, making a more comprehensive
solution necessary.

EquiLifeCM fills this gap by smartly assigning
tasks to the most suitable core and adjusting the
core/uncore frequency scaling based on the inherent
characteristics of each task. EquiLifeCM achieves

0

0.001

0.002

0.003

0.004

0.005

0

50

100

150

200

250

300

25%-RLP 50%-RLP 75%-RLP 100%-RLP

Δ
V

th
(t

o
ta

l)

E
x

e
c
u

ti
o

n
 T

im
e
 (

s)

KS-Time HiMap-Time EquiLifeCM-Time

KS-Vth HiMap-Vth EquiLifeCM-Vth

Figure 5: Time and ∆Vth(Total). The lower the value, the
better the result.

this for two reasons: Firstly, for memory-intensive
tasks, it lowers the core frequency/voltage to reduce
power consumption without affecting the task’s per-
formance. Secondly, for CPU-intensive tasks, Equi-
LifeCM sets the uncore frequency to a minimum
allowed level, further decreasing power consump-
tion. These decisions do not impact performance, as
demonstrated in Figure 5. Consequently, EquiLifeCM
reduces peak temperature by up to 13% compared
to KS (25%-RLP scenario) and 12.3% compared to
HiMap (75%-RLP scenario), resulting in a reduction
in operating temperature of 9◦C and 10◦C, respec-
tively.

5.3 Aging and Estimated Lifetime
Analysis

In this subsection, we discuss the outcome of EquiL-
ifeCM being able to reduce the operating temperature
levels of the core while not jeopardizing the applica-
tion’s performance. For that, Figure 5 depicts the ex-
ecution time for each scenario, represented by bars
on the left, and the corresponding change in Vth(Total),
shown as circles on the right, for each strategy. Simi-
larly, Figure 6 illustrates the number of times a batch
of tasks can be executed before the core’s end-of-life,
represented by bars on the left and the core’s expected
lifespan, shown as circles on the right. We consider a
core at the end of its life when Vth increases by 15%.
As an example, if KS is used to execute the 25%-RLP
scenario, it can complete around 66M executions be-
fore reaching the end-of-life, which is expected to oc-
cur in 3.9 years, as represented by the circle on the
right.

Applying EquiLifeCM offers key advantages. One
of the most significant advantages is that it slows
down the process of hardware aging and extends the
lifespan of cloud worker machines without compro-
mising task performance. The system smartly as-
signs tasks to the most appropriate cores based on
process variability and intrinsic characteristics. This
ensures that tasks are completed efficiently and ef-
fectively without compromising performance. Equi-

Balancing Performance and Aging in Cloud Environments

221

0

2

4

6

8

0

20

40

60

80

100

25%-RLP 50%-RLP 75%-RLP 100%-RLP

Y
ea

rs
 u

n
ti

l
a
 f

a
il

u
re

T
im

es
 t

h
e

B
a
tc

h
 m

a
y

ex
ec

u
te

 (
x
1
0
6
)

KS-Runs HiMap-Runs EquiLifeCM-Runs

KS-Lifetime HiMap-Lifetime EquiLifeCM-Lifetime

Figure 6: Performance (primary y-axis) and lifetime results
for each scenario (secondary y-axis).

LifeCM also manages core and uncore frequency and
voltage levels, which helps to reduce temperature
without affecting performance.

With that, EquiLifeCM achieves a 10% lower
∆Vth(Total) compared to KS (25% RLP) and 9% lower
than HiMap (50% RLP), maintaining equivalent per-
formance. As RLP increases, so does ∆Vth(Total), af-
fecting temperature. With EquiLifeCM, the core’s
end-of-life is significantly higher, especially at 25%
and 50% RLP exploitation, where it can improve pro-
cessor lifetime by up to 4 and 2 years compared to KS
and HiMap, respectively.

5.4 Overhead of EquiLifeCM

EquiLifeCM incurs overhead in three scenarios: (i)
At the start of each aging epoch, the Static Worker-
Marchines Profiling module performs the stress test
to update the temperature variability map and esti-
mates core aging, taking about 2.7 minutes per core.
This process is required only once every few months
(e.g., 3 or 6 months) and has a minimal overhead
considering the benefits of EquiLifeCM. (ii) New
tasks are profiled upon execution, with characteris-
tics stored in the database, a step whose benefits out-
weigh the overhead. (iii) A minor overhead related
to database management, with EquiLifeCM occupy-
ing 8.7 Kb, each task characteristic hash adding 148
bytes, and database update and search times are mini-
mal at 0.0011s and 0.0023s, respectively.

6 CONCLUSION

In this paper, we have presented EquiLifeCM, an
approach that combines task-to-core mapping with
core/uncore frequency management to extend the
lifespan of cloud environments. Through evaluat-
ing various scenarios across four multicore platforms,
we have shown that EquiLifeCM can extend the esti-
mated lifetime of cloud machines by 4 and 2 years,
outperforming both standard task execution methods
and a state-of-the-art strategy. As future work, we aim

to develop EquiLifeCM further to consider the execu-
tion of parallel workloads and heterogeneous archi-
tectures.

ACKNOWLEDGEMENTS

This study was financed in part by the CAPES - Fi-
nance Code 001, FAPERGS, and CNPq.

REFERENCES

Blat, C., Nicollian, E., and Poindexter, E. (1991). Mecha-
nism of negative-bias-temperature instability. Journal
of Applied Physics, 69(3):1712–1720.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W.,
Lee, S.-H., and Skadron, K. (2009). Rodinia: A
benchmark suite for heterogeneous computing. In
IEEE ISWC, pages 44–54. Ieee.

Corbetta, S. and Fornaciari, W. (2012). Nbti mitigation in
microprocessor designs. In ACM GLSVLSI, pages 33–
38, NY, USA. ACM.

Dighe, S., Vangal, S. R., Aseron, P., Kumar, S., Jacob,
T., Bowman, K. A., Howard, J., Tschanz, J., Erra-
guntla, V., Borkar, N., De, V. K., and Borkar, S.
(2011). Within-die variation-aware dynamic-voltage-
frequency-scaling with optimal core allocation and
thread hopping for the 80-core teraflops processor.
IEEE JSSC, 46(1):184–193.

dos Santos Marques, W., de Souza, P. S. S., Lorenzon,
A. F., Beck, A. C. S., Rutzig, M. B., and Rossi, F. D.
(2017). Improving edp in multi-core embedded sys-
tems through multidimensional frequency scaling. In
IEEE ISCAS, pages 1–4. IEEE.

Gnad, D., Shafique, M., Kriebel, F., Rehman, S., Sun, D.,
and Henkel, J. (2015). Hayat: Harnessing dark silicon
and variability for aging deceleration and balancing.
In 52nd ACM/EDAC/IEEE DAC, pages 1–6. IEEE.

Lee, H., Shafique, M., and Al Faruque, M. A. (2018).
Aging-aware workload management on embedded
gpu under process variation. IEEE Transactions on
Computers, 67(7):920–933.

Lorenzon, A. F. and Beck Filho, A. C. S. (2019). Parallel
computing hits the power wall: principles, challenges,
and a survey of solutions. Springer Nature.

Medeiros, T. S., Berned, G. P., Navarro, A., Rossi, F. D.,
Luizelli, M. C., Brandalero, M., Hübner, M., Beck,
A. C. S., and Lorenzon, A. F. (2020). Aging-aware
parallel execution. IEEE Embedded Systems Letters,
13(3):122–125.

Medeiros, T. S., Pereira, L., Rossi, F. D., Luizelli, M. C.,
Beck, A. C. S., and Lorenzon, A. F. (2021). Mitigat-
ing the processor aging through dynamic concurrency
throttling. Journal of Parallel and Distributed Com-
puting, 156:86–100.

Navaux, P. O. A., Lorenzon, A. F., and da Silva Serpa, M.
(2023). Challenges in high-performance computing.

CLOSER 2024 - 14th International Conference on Cloud Computing and Services Science

222

Journal of the Brazilian Computer Society, 29(1):51–
62.

Oboril, F. and Tahoori, M. B. (2012). Extratime: Model-
ing and analysis of wearout due to transistor aging at
microarchitecture-level. In IEEE/IFIP Int. Conf. on
Dependable Systems and Networks, pages 1–12.

Raghunathan, B., Turakhia, Y., Garg, S., and Marculescu,
D. (2013). Cherry-picking: Exploiting process
variations in dark-silicon homogeneous chip multi-
processors. In DATE, pages 39–44.

Rathore, V., Chaturvedi, V., Singh, A. K., Srikanthan, T.,
Rohith, R., Lam, S.-K., and Shaflque, M. (2018).
Himap: A hierarchical mapping approach for enhanc-
ing lifetime reliability of dark silicon manycore sys-
tems. In DATE, pages 991–996.

Schroder, D. K. and Babcock, J. A. (2003). Negative bias
temperature instability: Road to cross in deep submi-
cron silicon semiconductor manufacturing. Journal of
applied Physics, 94(1):1–18.

Schwarzrock, J., de Oliveira, C. C., Ritt, M., Lorenzon,
A. F., and Beck, A. C. S. (2020). A runtime and non-
intrusive approach to optimize edp by tuning threads
and cpu frequency for openmp applications. IEEE
TPDS, 32(7):1713–1724.

Shah, A. P. and Girard, P. (2020). Impact of aging on soft
error susceptibility in cmos circuits. In 2020 IEEE
26th IOLTS, pages 1–4.

Stamoulis, D. and Marculescu, D. (2016). Can we guar-
antee performance requirements under workload and
process variations? In ISLPED, page 308–313, New
York, NY, USA. ACM.

Stathis, J. H. and Zafar, S. (2006). The negative bias tem-
perature instability in mos devices: A review. Micro-
electronics Reliability, 46(2-4):270–286.

Stratton, J. A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang,
L.-W., Anssari, N., Liu, G. D., and Hwu, W.-m. W.
(2012). Parboil: A revised benchmark suite for sci-
entific and commercial throughput computing. Center
for Reliable and HPC, 127.

Thurgood, B. and Lennon, R. G. (2019). Cloud computing
with kubernetes cluster elastic scaling. In ICFNDS,
NY, USA. ACM.

Balancing Performance and Aging in Cloud Environments

223

