Developing Design Principles for Computational Thinking Learning
Environments: Pathways into Practice with Physical Computing

Oliver Kastner-Hauler! ©?2, Bernhard StandI?®P, Barbara Sabitzer>®¢ and Zsolt Lavicza>®4
VUniversity of Education Lower Austria, Department of Media Education, 2500 Baden, Austria
2Karlsruhe University of Education, Department of Informatics and Digital Education, 76133 Karlsruhe, Germany
3 Johannes Kepler University Linz, Department of STEM Education, 4040 Linz, Austria

Keywords: Computational ~ Thinking, = Learning Environment, Design Principles, Practical Handbook,
Physical Computing, Digital Education.
Abstract: To support K-8 educators in integrating computational thinking (CT) into basic digital education (BDE), as

introduced in Austria in 2018, we present design principles for a practical handbook. Teachers without a back-
ground in computer science (CS) may hesitate to teach CT and prioritize media and computer literacy aspects
of BDE, potentially neglecting CT in the revised 2022 curriculum. To overcome this, we iteratively devel-
oped design principles for a handbook with three practical learning environments (LEs) employing physical
computing with a single-board computer. The LEs embrace the constructionist approach and emphasize expe-
riential learning to support intrinsic learning of CS/CT concepts. Complementary, an Open Educational Re-
source (OER) textbook is available that is aligned with the SE instructional model and promotes self-directed,
inquiry-based learning. This makes CS/CT more accessible to both teachers and students, regardless of their
CS knowledge. Following these principles, they are systematically guided to gain confidence in applying CT
in the classroom. Further research will evaluate and refine the design principles on a larger scale, contributing
to the development of a comprehensive handbook. Ensuring accessibility to fundamental CT skills in K-8

education is crucial for the successful implementation of basic digital education (BDE).

1 INTRODUCTION

In recent years, integrating computational thinking
(CT) into education has become vital for prepar-
ing students for future careers (Fraillon et al., 2020;
WE Forum, 2023). CT involves using tools and
techniques of computer science (CS) to solve prob-
lems across various disciplines, extending beyond CS
(Wing, 2006). Basic digital education (BDE) com-
bines CT, media, and computer literacy in Austria.
It has evolved from an exercise in 2018 to a sub-
ject in 2022 mandatory for grades 5 to 8 (BMBWEF,
2022). Introducing a new subject can be challeng-
ing for teachers, even with in-service training options.
Teachers who do not feel prepared may focus on other
aspects of BDE, omitting CT and the foundations of
any digital education. This study aims to establish
guiding principles for content selection and develop-

a2 https://orcid.org/0000-0002-9958-3298
b@ https://orcid.org/0000-0002-8849-2980
€2 https://orcid.org/0000-0002-1304-6863
4@ nttps://orcid.org/0000-0002-3701-5068

Kastner-Hauler, O., Standl, B., Sabitzer, B. and Lavicza, Z.

ment towards a practice-oriented handbook, founded
on literature and curricula, through a design-based re-
search (DBR) project (McKenney and Reeves, 2013;
McKenney and Reeves, 2018). Three learning en-
vironments (LEs) that facilitate effective CT educa-
tion guide teachers and students through their ini-
tial steps without the need for prior CS knowledge
(Kastner-Hauler et al., 2022; Kastner-Hauler et al.,
2021; Brandhofer and Kastner-Hauler, 2020). Teach-
ers can apply the design principles developed from
the LEs to create new or enrich existing material for
BDE, regardless of their formal background in CS
(Hromkovi¢ and Lacher, 2017). By eliminating the
need for prior CS knowledge and encouraging joyful
and playful practice along the learning environments
(LEs), we have found a promising approach to over-
come entry barriers to learning and teaching CT. This
approach also serves as the missing bridge connect-
ing media education, computer literacy, and informat-
ics (CS, including CT), which is crucial to the suc-
cessful implementation of digital education in today’s
schools (Diethelm, 2022).

445

Developing Design Principles for Computational Thinking Learning Environments: Pathways into Practice with Physical Computing.

DOI: 10.5220/0012689600003693
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 16th International Conference on Computer Supported Education (CSEDU 2024) - Volume 1, pages 445-453

ISBN: 978-989-758-697-2; ISSN: 2184-5026

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

CSEDU 2024 - 16th International Conference on Computer Supported Education

2 BACKGROUND

Defining computational thinking (CT) is an ongoing
process (Selby and Woollard, 2013) that Palts and
Pedaste (2020) captured as a visual overview of the
many CT definitions over time. Tang et al. (2020)
and Weintrop et al. (2021) provide a comparable pic-
ture of CT assessments in the field. Li et al. (2020)
see CT as a mental model for thinking and problem-
solving, rather than as a sole computing skill. Tak-
ing this view, we designed our handbook principles
to be able to adapt to future advances in CT. The dy-
namic nature of computing can facilitate the incorpo-
ration of CT across STEAM disciplines (Pears et al.,
2019). The integration of computational thinking
(CT) skills with block-based programming, physical
computing, and inquiry-based learning under the um-
brella of constructivist learning (Papert, 1980) forms
the basis for the principles of the handbook. CT in
the educational context is strongly related to program-
ming skills (Brennan and Resnick, 2012) with block-
based environments such as Scratch (Scratch Founda-
tion, 2023). CT concepts applied through block-based
programming provide a foundation for students to
develop their problem-solving skills (Labusch et al.,
2019; Nouri et al., 2020). With physical com-
puting, the CT concepts become more understand-
able as tangible solutions to real-world problems are
created and computing is translated into the physi-
cal world (Genota, 2019). Physical computing also
enables hands-on experience and promotes student-
centered and self-directed learning, implemented with
the developed inquiry-based learning (IBL) materials
(Tkacova et al., 2019). The IBL materials, including
the OER textbook and the wiki, focus on active explo-
ration and learning participation, which are core to the
constructivist learning process (Serafin et al., 2015).
They emphasize the importance of hands-on learn-
ing and social interactions in the creation of the final
product (Holbert et al., 2020). Based on this pedagog-
ical background, three learning environments were
created, applying the 3D Framework of 4Ps (Bren-
nan and Resnick, 2012) merged with COOL Infor-
matics (Sabitzer et al., 2019). The derived principles
of the handbook combine these approaches to provide
students and teachers with meaningful and engaging
learning experiences that promote CT along with cre-
ativity, collaboration, and critical thinking skills. In
the following, the building blocks of this research are
presented in more detail.

446

2.1 Block-Based Programming

Text-based programming languages are frequently
used for upper school levels and favor those who un-
derstand English, while block-based languages are fa-
vored for lower school levels because of their lower
entry barrier (Weintrop and Wilensky, 2015; Wein-
trop and Wilensky, 2017). Step-by-step the instruc-
tions are put together to code a solution like building
a toy house with snap-together construction bricks.
The LEs presented in this paper use the official block-
based programming environment Makecode for mi-
cro:bit (Microbit Foundation, 2016). It has been
reported that block-based coding develops problem-
solving, planning, and thinking strategies and helps
to develop social, language, and cognitive skills, even
for early childhood ages (Papadakis, 2022). Papert
underlines the importance of programming as an es-
sential component of each individual’s intellectual de-
velopment (Kestenbaum, 2005).

2.2 Physical Computing

Physical computing connects a computing device to
the environment to sense and communicate, allowing
learners to design and create tangible real-world prod-
ucts (Capay and Klimova, 2019). The artifacts repro-
duced from memory manifest the mental concepts of
the thinking process during problem-solving (Papert
and Harel, 1991). The physical component, therefore,
enhances the understanding of programming concepts
and expands the imagination of what can be accom-
plished with code (Przybylla and Romeike, 2014).

2.3 Inquiry-Based Learning

Inquiry-based learning (IBL), anchored by the SE in-
structional model — engage, explore, explain, elab-
orate, and evaluate — guides the handbook’s LEs
(Pedaste et al., 2015). The model gives teachers the
flexibility to implement various questioning strate-
gies, from open-ended to direct, thus tailoring to
diverse student needs. The learning materials are
specifically designed to encourage playful exploration
and problem-solving, nurturing students’ curiosity for
deeper investigation (Ah-Nam and Osman, 2017).
Through interactive elements on the wiki, learners
start with a subset of the necessary information for
a sample exercise, with additional resources hidden
behind spoiler links. This blend of guided and self-
directed discovery promotes inquiry and active inves-
tigation (Guzdial, 2015).

The background presented is inspired by the 8 Big
Ideas of Papert’s Constructionist Learning Lab (Mar-

Developing Design Principles for Computational Thinking Learning Environments: Pathways into Practice with Physical Computing

tinez, 2017), which emphasizes learning-by-doing
and active student participation in knowledge con-
struction (Wagh et al., 2017). His ideas serve as a
guiding mantra for the subsequent methods employed
to answer the following research question.

RQ: What essential design principles should in-
form the development of a practical K-8 handbook for
computational thinking (CT) learning environments
(LEs), with ongoing refinement through design-based
research (DBR) to enhance teacher confidence and ef-
ficacy in integrating CT into basic digital education
(BDE), especially for non-specialists in computer sci-

ence (CS)?

3 METHODS: DEVELOPMENT
OF HANDBOOK PRINCIPLES

With this study, we present an important milestone
of a comprehensive design-based research (DBR)
project (McKenney and Reeves, 2013; McKenney
and Reeves, 2018) aimed at developing principles for
a practical handbook. Initiated in 2019, this project
introduced the micro:bit and computational think-
ing (CT) concepts to selected primary and secondary
schools, focusing on teachers and students aged 8
to 14. The milestone comprises three investigations:
adapting an OER for flipped learning (Kastner-Hauler
et al., 2021), examining combined effects of physi-
cal computing and block-based programming in pri-
mary school (Kastner-Hauler et al., 2022), and assess-
ing CT teaching efficacy in middle school with Be-
bras (2023) — the latter is currently under review. The
participating classroom teachers received specialized
training to implement the LEs and assessment tools
effectively.

To enhance the balance between digital media,
computer literacy, and informatics (CS/CT) for the
new subject BDE, we investigated programming in
the context of media use and creation. Early pro-
gramming education can be pursued with platforms
like Scratch from the MIT Media Lab (Resnick, 2014)
or Makecode (Microsoft, 2024). Resnick and Rusk
(2020) highlight 4 pillars of effective digital educa-
tion — projects, passion, peers, and play. The 4Ps ad-
vocate for engaging students in meaningful projects,
nurturing passion, fostering collaboration, and play-
ful experimentation. Similar aspects are described
with the COOL Informatics approach (Sabitzer et al.,
2019) and its 4 principles — discovery, cooperation,
individuality, and activity. COOL Informatics in-
corporates the neurodidactical learning perspective,
which we view as an extension of the 4Ps. Merging
these approaches, we developed three learning envi-

ronments (LEs) for CT, underpinning the principles
for a practical handbook dedicated to actionable class-
room strategies. Our analysis showed a synergy be-
tween 4Ps and COOL Informatics, particularly in the
categories "peers’ of 4Ps and ’cooperation’ of COOL
Informatics (see Appendix - Table 2). As this paper
focuses more on programming, we present the 4Ps in
their practical implementation in Table 1.

The principles derived encompass all aspects of
the 4Ps, progressing logically from theory to practical
application. This framework guides orientation, en-
hances understanding, and raises awareness of CT in
the classroom. By adhering to the principles outlined
in the following section, a comprehensive connection
is established across all aspects of basic digital ed-
ucation (BDE), including CT, media, and computer
literacy.

4 RESULTS: HANDBOOK
DESIGN PRINCIPLES

This outline presents principles from design research
for creating engaging and streamlined learning envi-
ronments (LEs) for coding and problem-solving. It
offers a guide for teachers, particularly those new
to computer science (CS), to integrate CT into BDE
lessons. The guide covers the essential aspects of 4Ps
and COOL Informatics, facilitating classroom imple-
mentation without unnecessary complexity. By ad-
hering to these principles, teachers without a CS back-
ground can effectively prepare for the new BDE sub-
ject, ensuring seamless lesson planning and teaching.

4.1 ’Hello World’

Asking why and what for builds programming under-
standing, but getting into action quickly is key. The
first task in learning a new programming language
usually involves outputting *Hello World’ on the dis-
play. Using the Makecode editor and the micro:bit,
learners can easily begin, focusing on Makecode first
and its integrated online simulator. Beginners start
making a heart appear on the 5 x 5 LED display in-
stead of 'Hello World’. The programming blocks,
organized into color-coded function groups, are easy
to find and use. Learners can create programs play-
fully by dragging and dropping blocks of code, ex-
perimenting until they achieve the desired outcome.

4.2 Input-Process-Output

The Input-Process-Output (IPO) principle illustrates
the computer’s mode of operation. After demonstrat-

447

CSEDU 2024 - 16th International Conference on Computer Supported Education

Table 1: Implementing 4Ps of Creative Learning, (Resnick, 2014) — A Roadmap for the Natural and Logical Progression of CT
Development to Identify Action Areas for the Design Principles of a Practical Handbook (short version).

concepts/ projects passion peers play

methods

block-based foster imagination, story evokes interest, pair programming self-directed,

programming sharing of final code immediate activity artifacts, textbook individual, experiental
1.2,7 wiki 347 learning ! 3-©

physical computing tangible products with foster open-ended physical artifacts self-directed,

sensors and actuators
2,5,6

making possibilities

45,6 individual, hands-on

5,6,8

ready to share
learning

inquiry-based promotes a cycle of
learning using

5E cycle

permanent

improvement -3 ©

strengthens individual
desire to improve

lively exchange self-directed,

stimulates new
4,6,8

individual,

knowledge incremental learning

5,6,7

Handbook Design Principles: ! "Hello World’, 2 Input-Process-Output, > Evaluation & Debugging, * Pair Programming, > Open-Ended Learning &
Makerspaces, ® Physical Computing & AHA! Experience, ’ CT: Concepts, Practices & Perspectives, ® CS-Unplugged Activities. (See Section 4 Results)

ing the output with the heart, we introduce the input
with micro:bit’s A and B buttons. Pressing A to dis-
play the heart and B to clear mimics a flashing heart
when alternately pressed. Highlighting the impor-
tance of automated (data) processing, we use traffic
light’s 24/7 operation as an analogy. To automate the
switching and flashing, we employ automatic process-
ing of the buttons via a loop. Pressing A+B simul-
taneously starts the process on the micro:bit and the
display switches from heart to blank. The result is an
automated flashing heart, ready for subsequent evalu-
ation and testing.

4.3 [Evaluation and Debugging

Initial testing will likely show that the blinking works
once with A+B triggers, emphasizing the important
principle of evaluation in programming. If program-
ming outcomes do not meet intentions, debugging is
essential to identify and correct flaws in code (Kim
et al., 2018). Makecode’s step-by-step debugger and
verbalizing the program’s flow and actions can aid
the process (Heikkild and Mannila, 2018). Encour-
aging students to explain their code to peers (Tengler
et al., 2022), focusing on what exactly the code does
and its sequence, enhances understanding. Pair pro-
gramming principles should be applied to evaluation
and debugging, and broadly across the whole thinking
process during coding.

4.4 Pair Programming

Budget constraints can often make it impractical to
provide one device per child in new projects. Pair
programming offers a solution and educational ben-
efits, where two programmers create a joint solution

448

on a single device. One acts as the driver, typing the
code, while the other guides the process as the navi-
gator (Bryant et al., 2008). This setup, similar to the
metaphor of driving a car, ensures clear communica-
tion and understanding. Recommended regular role
reversal improves code quality and peer interaction
(GraBl and Fraser, 2023). To enrich the interaction,
it is recommended to apply peer learning and teach-
ing (Krohn and Sabitzer, 2020) with the open-ended
learning tasks provided in the textbook wiki. Addi-
tionally, animated tutorials from Makecode can also
be beneficial, serving as either peer substitute or third-
person perspective for code demonstration.

4.5 Open-Ended Learning &
Makerspaces

The OER textbook promotes open-ended learning,
encouraging students to tackle problems with vari-
ous solutions, and leveraging creativity, collaboration,
and critical thinking skills in the context of CT (Tsan
et al., 2022). The textbook suggests the use of sample
extensions for further exploration and development
of micro:bit projects. Practical experiences, through
makerspaces, games, or real-world challenges, can
deepen knowledge. Makerspace activities, suitable
for flipped classroom delivery, split into programming
(pre-class) and making (in-class) maximize hands-on
time (Kastner-Hauler et al., 2021). Open-ended learn-
ing fosters a growth mindset, a sense of ownership
of learning, and the discovery of new opportunities
through successes and challenges in activities involv-
ing physical computing.

Developing Design Principles for Computational Thinking Learning Environments: Pathways into Practice with Physical Computing

4.6 Physical Computing & AHA!
Experience

Connecting a micro:bit to a computer provides a hap-
tic experience of the code and algorithms created
(Kalelioglu and Sentance, 2020). Online tutorials
available on the textbook wiki or the Makecode web-
site offer guidance for initial physical steps. After
mastering code upload, a portable power supply be-
comes necessary. This marks the first AHA! moment
(Thagard and Stewart, 2011) as concepts materialize
in real life through the device’s haptic aspect (Spiri-
donov et al., 2019). Equipped with onboard sen-
sors and actuators, the micro:bit enables interaction
with the physical world, exemplified by a portable
step counter (Microbit Foundation, 2023). For more
AHA! moments and creative exploration with physical
computing, attach the micro:bit to a person’s leg and
count the steps using the accelerometer (O’Sullivan
and Igoe, 2004).

4.7 CT Dimensions: Concepts, Practices
and Perspectives

Full awareness of all dimensions of Brennan and
Resnick’s (2012) 3D framework equips educators to
design and evaluate CT learning experiences for di-
verse students. CT concepts, like sequences, loops,
conditionals, data, and operators, are foundational to
coding and can be assessed with the validated Be-
ginners Computational Thinking test (BCTt) (Zapata-
Caceres et al., 2021). Assessments of CT were inves-
tigated in previous research cycles (Kastner-Hauler
et al., 2022; Brandhofer and Kastner-Hauler, 2020)
and are not included in this paper, focusing on the
handbook principles. CT practices and perspec-
tives — how concepts are applied and the attitudes to-
wards computing — cannot be directly measured from
programming artifacts produced with the Makecode
environment for micro:bit. The tool Dr. Scratch
(Moreno-Leén et al., 2015), which assesses CT in
Scratch programs, suggests potential for a Makecode
equivalent. Research into creating a Dr. Microbit tool
for analyzing micro:bit projects could fill this gap.
Meanwhile, we sought to identify CT practices inter-
woven with the LEs’ material, such as evaluation and
debugging, and CT perspectives through feedback on
pair programming and CS-unplugged activities. By
evaluating the LEs as a whole, including feedback,
we indirectly cover CT practices and perspectives.

4.8 CS-Unplugged Activities

Utilize CS-Unplugged activities to teach computer
science (CS) fundamentals without the use of comput-
ers (Bell and Vahrenhold, 2018). This free resource
uses games and tasks with common items like cards
and crayons to demystify CS concepts, making them
accessible for learners of all ages. These activities
match efforts from similar projects by ADA (VCLA,
2023) and COOL Lab (JKU, 2023). For example, a
demonstration of the parity magic trick can be a fun
way to learn more about error detection and correc-
tion, a concept crucial for data transmission. CS-
unplugged presents a unique, hands-on approach to
grasp foundational CS and CT principles, vital for any
digital education (Curzon and McOwan, 2018; Rot-
tenhofer et al., 2022).

S DISCUSSION & CONCLUSION

Computational thinking (CT) is reflected in the
technological-medial aspect of the Frankfurt Triangle
(Brinda et al., 2019) on digitization in education out-
lined in the BDE curriculum (BMBWE, 2022), with-
out direct mention. The lack of explicitness can chal-
lenge teachers’ readiness to incorporate CT in BDE
lessons, despite optional in-service training. The ap-
proach presented here advocates for a gentle intro-
duction to computer science (CS) and computational
thinking (CT) by developing design principles for
a practical handbook, drawing from ongoing educa-
tional design research (EDR) (Bakker, 2018; McKen-
ney and Reeves, 2013; Plomp and Nieveen, 2013).
This approach makes CT more accessible and action-
able for teachers new to the BDE subject, enhancing
their confidence and facilitating learning and under-
standing of basic CS concepts and CT skills through
learning-by-doing.

The design principles that emerged emphasize
core programming concepts such as *Hello World’,
Input-Process-Output, and debugging with collabora-
tive techniques like pair programming. These founda-
tional practices encourage a problem-solving mind-
set and require reflective thinking and initial guid-
ance, supported by additional scaffolding material
(Tsan et al., 2022). Incorporating open-ended chal-
lenges (Emara et al., 2021) in combination with mak-
erspaces and physical computing into teaching ne-
cessitates precise guidelines for effective implemen-
tation. The holistic view of CT concepts, principles,
and perspectives brings all dimensions together and
makes them accessible. This concept is embedded in
all the material and can be highlighted through CS-

449

CSEDU 2024 - 16th International Conference on Computer Supported Education

unplugged activities without using computers. An ex-
ample in the Appendix demonstrates how these prin-
ciples can be applied in practice.

Drawing on Hsu’s (2018) comprehensive review,
our design principles for a handbook on computa-
tional thinking (CT) are based on effective learn-
ing and teaching strategies and best practice knowl-
edge. This offers a solid foundation for educators who
seek to integrate CT into their classrooms (Csizmadia
etal., 2019), regardless of a formal background in CS
(Hromkovi¢ and Lacher, 2017).

Further research is planned to evaluate these prin-
ciples through a teacher training course on basic dig-
ital education (BDE), focusing on the impact of the
principles on the acceptance of CT with BDE for fu-
ture incorporation into one’s teaching. Furthermore,
examining how teachers adapt and create learning ma-
terials based on these principles will lead to a solid
support handbook, refining the content and design
through iterative reflections.

The utilization of computational thinking (CT)
in classrooms is a crucial opportunity for its further
development, supported by gradual accumulation of
knowledge through experiential learning. By em-
bedding computational thinking (CT) constructs such
as algorithms, abstraction, and automation, students
and teachers can deepen their understanding of funda-
mental computer science (CS) principles and become
computational thinkers (Yadav et al., 2016). As stu-
dents and teachers engage with computational think-
ing (CT) and apply its problem-solving habits, they
naturally develop confidence and fluency, empower-
ing them to tackle the complex challenges of the un-
known future with ease.

REFERENCES

Ah-Nam, L. and Osman, K. (2017). Developing 21st
century skills through a constructivist-constructionist
learning environment. K-12 Stem Education,
3(2):205-216. https://www.learntechlib.org/p/
209542/, [Accessed:2023-03-15].

Bakker, A. (2018). Design research in education: A practi-
cal guide for early career researchers. Routledge.

Bebras (2023). What is Bebras International Challenge
on Informatics and Computational Thinking. https:
/Iwww.bebras.org/about.html, [Accesed:2023-05-12].

Bell, T. and Vahrenhold, J. (2018). CS Unplugged - How
Is It Used, and Does It Work? In Adventures Between
Lower Bounds and Higher Altitudes. Springer.

BMBWF (2022). Lehrplan Digitale Grundbildung.
Bundesministerium fiir Bildung Wissenschaft
und Forschung. https : // www.ris . bka. gv.at/
Dokumente / BgblAuth / BGBLA_2022_11.267 /

BGBLA_2022_11.267.pdfsig, [Accessed:2023-01-01].

450

Brandhofer, G. and Kastner-Hauler, O. (2020).
Der micro:bit und Computational Thinking.
Evaluierungsergebnisse zu einem informatischen
Projekt. =~ R&E-SOURCE. https://journal . ph-
noe . ac . at/index . php / resource / article / view / 914,
[Accessed:2023-09-15.

Brennan, K. and Resnick, M. (2012). New frameworks for
studying and assessing the development of computa-
tional thinking. In Proceedings of the 2012 annual
meeting of the American educational research associ-
ation (AERA), Vancouver, Canada, volume 1, page 25.

Brinda, T., Briiggen, N., Diethelm, 1., Knaus, T., Kommer,
S., Kopf, C., Missomelius, P., Leschke, R., Tilemann,
F., and Weich, A. (2019). Frankfurt-Dreieck zur Bil-
dung in der digital vernetzten Welt. Informatik fiir
alle, Gesellschaft fiir Informatik.

Bryant, S., Romero, P., and Du Boulay, B. (2008). Pair
programming and the mysterious role of the naviga-
tor. International Journal of Human-Computer Stud-
ies, 66(7):519-529.

Csizmadia, A., Standl, B., and Waite, J. (2019). Integrating
the Constructionist Learning Theory with Computa-
tional Thinking Classroom Activities. Informatics in
Education, 18(1):41-67.

Curzon, P. and McOwan, P. W. (2018). Computational
Thinking: Die Welt des algorithmischen Denkens —
in Spielen, Zaubertricks und Rdtseln. Springer Berlin
Heidelberg.

Céapay, M. and Klimovd, N. (2019). Engage Your Stu-
dents via Physical Computing! In 2019 IEEE Global
Engineering Education Conference EDUCON), pages
1216-1223.

Diethelm, I. (2022). Digital Education and Informatics —
You can’t have One without the Other. In Proceed-
ings of the 17th Workshop in Primary and Secondary
Computing Education, pages 1-2. ACM.

Emara, M., Hutchins, N., Grover, S., Snyder, C., and
Biswas, G. (2021). Examining Student Regulation of
Collaborative, Computational, Problem-Solving Pro-
cesses in Open-Ended Learning Environments. Jour-
nal of Learning Analytics, 8(1):49-74.

Fraillon, J., Ainley, J., Schulz, W., Friedman, T., and Duck-
worth, D. (2020). Preparing for Life in a Digital
World: IEA International Computer and Information
Literacy Study 2018 International Report. Springer
International Publishing.

Genota, L. (2019). ’Physical Computing’ Connects Com-
puter Science With Hands-On Learning. Educa-
tion Week. https://www.edweek.org/teaching -
learning / physical - computing - connects - computer -
science-with-hands-on-learning/2019/01, [Accessed
2023-05-27].

Grall, I. and Fraser, G. (2023). The ABC of Pair Pro-
gramming: Gender-dependent Attitude, Behavior and
Code of Young Learners. In ICSE 2023 Proceedings,
page 13.

Guzdial, M. (2015). Learner-Centered Design of Comput-
ing Education: Research on Computing for Everyone.
Synthesis Lectures on Human-Centered Informatics.
Springer.

Developing Design Principles for Computational Thinking Learning Environments: Pathways into Practice with Physical Computing

Heikkild, M. and Mannila, L. (2018). Debugging in Pro-
gramming as a Multimodal Practice in Early Child-
hood Education Settings. Multimodal Technologies
and Interaction, 2(3):42.

Holbert, N., Berland, M., and Kafai, Y. B., editors (2020).
Designing constructionist futures: the art, theory, and
practice of learning designs. The MIT Press.

Hromkovic, J. and Lacher, R. (2017). How to convince
teachers to teach computer science even if informat-
ics was never a part of their own studies. Bulletin of
the EATCS, 123:6.

Hsu, T.-C., Chang, S.-C., and Hung, Y.-T. (2018). How to
learn and how to teach computational thinking: Sug-
gestions based on a review of the literature. Comput-
ers & Education, 126:296-310.

JKU (2023). COOL Lab, Johannes Kepler Universitit
Linz. https://www.jku.at/en/schools/cool-lab/,
[Accessed:2023-06-04].

Kalelioglu, F. and Sentance, S. (2020). Teaching with
physical computing in school: the case of the mi-
cro:bit. Education and Information Technologies,
25(4):2577-2603.

Kastner-Hauler, O., Tengler, K., Demarle-Meusel, H., and
Sabitzer, B. (2021). Adapting an OER textbook for the
inverted classroom model - how to flip the classroom
with BBC micro:bit example tasks. In 202/ IEEE
Frontiers in Education Conference (FIE), pages 1-8.
IEEE.

Kastner-Hauler, O., Tengler, K., Sabitzer, B., and Lavicza,
Z.(2022). Combined effects of block-based program-
ming and physical computing on primary students’
computational thinking skills. Frontiers in Psychol-
ogy, 13:875382.

Kestenbaum, D. (2005). The challenges of IDC: what have
we learned from our past? Communications of the
ACM, 48(1):35-38.

Kim, C., Yuan, J., Vasconcelos, L., Shin, M., and Hill, R. B.
(2018). Debugging during block-based programming.
Instructional Science, 46(5):767-787.

Krohn, C. and Sabitzer, B. (2020). Peer-learning and
Talents Exchange in Programming: Experiences and
Challenges:. In Proceedings CSEDU 2020, pages
466-471. SCITEPRESS.

Labusch, A., Eickelmann, B., and Vennemann, M. (2019).
Computational Thinking Processes and Their Congru-
ence with Problem-Solving and Information Process-
ing. In Computational Thinking Education, pages 65—
78. Springer.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C.,
Benson, L. C., English, L. D., and Duschl, R. A.
(2020). Computational Thinking Is More about
Thinking than Computing. Journal for STEM Edu-
cation Research, 3(1):1-18.

Martinez, S. (2017). Around the World with the 8 Big
Ideas of the Constructionist Learning Lab. https:
//inventtolearn.com/around- the- world- with- the- 8-
big-ideas- of- the- constructionist-learning-lab/, [Ac-
cessed 2023-05-29].

McKenney, S. and Reeves, T. C. (2013). Educational De-
sign Research. In Handbook of Research on Educa-

tional Communications and Technology, pages 131—
140. Springer.

McKenney, S. and Reeves, T. C. (2018). Conducting edu-
cational design research. Routledge, 2nd edition.

Microbit Foundation (2016). The Micro:bit Educational
Foundation. https://microbit.org/about/, [Accessed
2024-12-20].

Microbit Foundation (2023). micro:bit step counter. https:
//microbit.org/projects/make-it-code-it/step-counter/,
[Accessed:2023-08-04].

Microsoft (2024). Microsoft MakeCode for micro:bit. https:
//makecode.microbit.org/, [Accessed 2024-11-11].

Moreno-Ledn, J., Robles, G., and Roman-Gonzalez, M.
(2015). Dr. Scratch: Automatic Analysis of Scratch
Projects to Assess and Foster Computational Think-
ing. RED. Revista de Educacion a Distancia, 46(1):1—
23.

Nouri, J., Zhang, L., Mannila, L., and Norén, E. (2020). De-
velopment of computational thinking, digital compe-
tence and 21 % century skills when learning program-
ming in K-9. Education Inquiry, 11(1):1-17.

O’Sullivan, D. and Igoe, T. (2004). Physical computing:
sensing and controlling the physical world with com-
puters. Thomson.

Palts, T. and Pedaste, M. (2020). A Model for Developing
Computational Thinking Skills. Informatics in Edu-
cation, 19(1):113-128.

Papadakis, Stamatios, P. (2022). Can Preschoolers Learn
Computational Thinking and Coding Skills with
ScratchJr? A Systematic Literature Review. Interna-
tional Journal of Educational Reform, pages 1-34.

Papert, S. (1980). Mindstorms; Children, Computers and
Powerful Ideas. Basic Books.

Papert, S. and Harel, 1. (1991). Situating constructionism.
Constructionism, 36(2):1-11.

Pears, A., Barendsen, E., Dagien¢, V., Dolgopolovas, V.,
and Jasute, E. (2019). Holistic STEAM Educa-
tion Through Computational Thinking: A Perspec-
tive on Training Future Teachers. In Informatics in
Schools. New Ideas in School Informatics, volume
11913, pages 41-52. Springer International Publish-
ing.

Pedaste, M., Mieots, M., Siiman, L. A., de Jong, T., van
Riesen, S. A., Kamp, E. T., Manoli, C. C., Zacharia,
Z. C., and Tsourlidaki, E. (2015). Phases of inquiry-
based learning: Definitions and the inquiry cycle. Ed-
ucational Research Review, 14:47-61.

Plomp, T. and Nieveen, N., editors (2013). Educational
design research., volume Part A: An introduction.
Netherlands Institute for Curriculum Development
(SLO).

Przybylla, M. and Romeike, R. (2014). Physical Comput-
ing and its Scope - Towards a Constructionist Com-
puter Science Curriculum with Physical Computing.
Informatics in Education, 13(2):225-240.

Resnick, M. (2014). Give P’s a chance: Projects, peers,
passion, play. In Constructionism and creativity: Pro-
ceedings of the third international constructionism
conference. Austrian computer society, Vienna, pages

451

CSEDU 2024 - 16th International Conference on Computer Supported Education

13-20. https://www.media.mit.edu/~mres/papers/
constructionism-2014.pdf, [Accessed:2024-01-22].

Resnick, M. and Rusk, N. (2020). Coding at a crossroads.
Communications of the ACM, 63(11):120-127.

Rottenhofer, M., Kuka, L., and Sabitzer, B. (2022). Clear
the Ring for Computer Science: A Creative Introduc-
tion for Primary Schools. In Informatics in Schools.
ISSEP 2022, volume 13488, pages 103—112. Springer
International Publishing.

Sabitzer, B., Demarle-Meusel, H., and Painer, C. (2019).
A COOL Lab for Teacher Education. In Rethink-
ing Teacher Education for the 21st Century: Trends,
Challenges and New Directions, pages 319-328. Ver-
lag Barbara Budrich.

Scratch Foundation (2023). Scratch - About. https://scratch.
mit.edu/about, [Accessed 2023-08-04].

Selby, C. and Woollard, J. (2013). Computational Thinking:
The Developing Definition. https://eprints.soton.ac.
uk/356481/1/Selby_Woollard_bg_soton_eprints . pdf,
[Accessed 2023-05-12].

Serafin, é., Dostidl, J., and Havelka, M. (2015). Inquiry-
Based Instruction in the Context of Constructivism.
Procedia - Social and Behavioral Sciences, 186:592—
599.

Spiridonov, V., Loginov, N., Ivanchei, I., and Kurgansky,
A. V. (2019). The Role of Motor Activity in Insight
Problem Solving (the Case of the Nine-Dot Problem).
Frontiers in Psychology, 10:1-17.

Tang, X., Yin, Y., Lin, Q., Hadad, R., and Zhai, X. (2020).
Assessing computational thinking: A systematic re-
view of empirical studies. Computers & Education,
148:103798.

Tengler, K., Kastner-Hauler, O., Sabitzer, B., and Lav-
icza, Z. (2022). The Effect of Robotics-Based Story-
telling Activities on Primary School Students’ Com-
putational Thinking. Education Sciences, 12(1):1-10.

Thagard, P. and Stewart, T. C. (2011). The AHA! Experi-
ence: Creativity Through Emergent Binding in Neural
Networks. Cognitive Science, 35(1):1-33.

Tkéacova, Z., §najder, L., and Guni$, J. (2019). Inquiry-
Based Learning in Computer Science Classroom. In
Pozdniakov, S. N. and Dagiené, V., editors, Informat-
ics in Schools. ISSEP 2019, volume 11913, pages 68—
79. Springer.

Tsan, J., Eatinger, D., Pugnali, A., Gonzalez-Maldonado,
D., Franklin, D., and Weintrop, D. (2022). Scaffolding
Young Learners’ Open-Ended Programming Projects
with Planning Sheets. In Proceedings of the 27th ACM
Conference on Innovation and Technology in Com-
puter Science Education Vol. 1, pages 372-378. ACM.

VCLA (2023). CS Unplugged — Materialiensammlung,
Vienna Center for Logic and Algorithms. https://
www.ada.wien/cs-unplugged-materialiensammlung/,
[Accessed:2023-06-04].

Wagh, A., Cook-Whitt, K., and Wilensky, U. (2017). Bridg-
ing inquiry-based science and constructionism: Ex-
ploring the alignment between students tinkering with
code of computational models and goals of inquiry.
Journal of Research in Science Teaching, 54(5):615—
641.

452

WE Forum (2023). The Future of Jobs Report 2023. World
Economic Forum. https://www.weforum.org/reports/
the-future-of- jobs-report-2023/, [Accessed 2023-05-
12].

Weintrop, D. and Wilensky, U. (2015). To block or not
to block, that is the question: students’ perceptions
of blocks-based programming. In Proceedings of the
14th International Conference on Interaction Design
and Children, pages 199-208. ACM.

Weintrop, D. and Wilensky, U. (2017). Comparing Block-
Based and Text-Based Programming in High School
Computer Science Classrooms. ACM Transactions on
Computing Education, 18(1):1-25.

Weintrop, D., Wise Rutstein, D., Bienkowski, M., and
McGee, S. (2021). Assessing computational thinking:
an overview of the field. Computer Science Educa-
tion, 31(2):113-116.

Wing, J. M. (2006). Computational Thinking. Communica-
tions of the ACM, 49(3):33-35.

Yadav, A., Hong, H., and Stephenson, C. (2016). Computa-
tional thinking for all: Pedagogical approaches to em-
bedding 21st century problem solving in K-12 class-
rooms. TechTrends, 60:565-568.

Zapata-Céceres, M., Martin-Barroso, E., and Romadn-
Gonzdlez, M. (2021). BCTt: Beginners Computa-
tional Thinking Test. In Understanding computing ed-
ucation, Proceedings of the Raspberry Pi Foundation
Research Seminar series, pages 46-56. Raspberry Pi
Foundation.

APPENDIX

Example of Applied Handbook Principles

Mrs. Jane Doe, a middle school teacher, wants to in-
tegrate computational thinking (CT) into her curricu-
lum. She doesn’t have a formal background in com-
puter science (CS), but she recognizes the significance
of CT skills for the future of her students. Mrs. Doe
decided to use the principles of the handbook as pre-
sented in this paper to create a new project for her stu-
dents to work on. The project involves the collection
and analysis of environmental data and responses us-
ing a single-board computing device such as the here
used micro:bit.

’Hello World’: Mrs. Doe begins by asking the
students to create a simple program that displays a
message or symbol, such as a smiley face, on the mi-
cro:bit’s LED screen. This gives her students a quick
win and familiarizes them with the programming
environment and features of the micro:bit. Input-
Process-Output: Next, Mrs. Doe explains the con-
cept of input-process-output using the micro:bit. Stu-
dents instruct the micro:bit to collect data from its
built-in temperature sensor (input), process the data
for conversion to Fahrenheit (process), and display

Developing Design Principles for Computational Thinking Learning Environments: Pathways into Practice with Physical Computing

the result on the LED screen (output). Debugging
& Pair Programming: Mrs. Doe assigns students to
work in pairs to create and test their programs. She
encourages the use of pair programming, where one
student writes the code, and the other student pro-
vides instructions and feedback. She explains that this
improves the quality of the program and helps them
learn from each other. Open-ended Learning, Mak-
erspaces & Inquiry-Based Learning: Mrs. Doe
then sets an open-ended challenge for the students.
She also emphasizes the use of the textbook wiki for
self-directed, inquiry-based learning. Students have
to design and build a device using the micro:bit that
can help solve an environmental problem e.g. water-
ing a plant. The students work in the school’s mak-
erspace, using various materials and tools to build
their devices. Physical Computing & AHA! Ex-
perience: Students experience AHA! moments that
come from seeing their code interact with the physi-
cal world as they work on their projects. For exam-
ple, students can program their device to alert them
when soil moisture drops below a certain level to help
water a plant. CT — Concepts, Practices, Perspec-
tives: Throughout the project, Mrs. Doe uses the 3D
framework for CT intertwined with COOL Informat-
ics to guide her teaching and assess the learning of
her students. She helps students understand funda-
mental concepts of CT, such as loops and conditionals
and encourages them to reflect on their learning pro-
cess. CS-unplugged: Mrs. Doe uses CS-unplugged
activities throughout the whole project where suitable
to illustrate CS concepts. For example, when pro-
gramming plant watering, certain conditions must be
checked. Conditionals can be demonstrated by play-
ing the Simon Says game if-then-else. In this way,
the CS fundamentals are learned in a fun and engag-
ing way.

In addition to helping Mrs. Doe integrate CT into
her curriculum, this project provides a hands-on, en-
gaging learning experience for her students. As they
apply their knowledge to solve real-world problems,
they learn important CT skills.

Combined 4Ps and COOL Informatics

Table 2: A Roadmap for the Natural and Logical Progres-
sion of CT Development to Identify Action Areas for the
Design Principles of a Practical Handbook (extended ver-
sion.

L
. P
oo 2] (d =) o
= * = S
Q o 0 8¢ < |3
2. . ¢ (5] 8 o™ |2
S 58 |&8w R TP
S8 T 2w |[ZE 5 >8 82 o™
=2 EZ= £ 5L 0% .5 8 g4
SIE82E [|2XE mST 3EF
NE“':'"‘ PR B 72y — = 29
.= [+ QL0 O o) S5
< R 2 L0
~ s
@ [
- A &)
839 B
- O o~ 3 © - —_n o
= Z=E8= . [B=gE< (B8~ |5
S SEg 5.8 95 g« © 5 5~ %
STEICTZ o DB 0 e (28T 2w |
OB T2 = HS B o =S E & 5
5 o092 |5 .28 e D .2 0= B .2 0= =
R .z |T B = TS &8 g8 = g >
SsEEme~c 8 | g s 5 8 |2
s 28= s < S &5 c oS & =
D = 0 = O § 0 =
= alg|3 Q 2 5} 3 - Q <
CIR=)G —_ - 2 5
=1
®" @ g
v []
= o >
£3|g & = s 25, £
E3S| Eg3 387 B e §
Emﬂh C'MI\ o = 08000 =
Ew|klg § .8 ‘R L 23825 3
Sglg|8ss 8|58 5 5§=2%S |3
g 5| & BHELST |8 <o = oY =
"‘Q.g o8z [ST =] = E E =
= g8 & & 58 g5~ °
Q o =7 = = 2B 9
o0 8
&) g
© © 4
73 Sy o)
T G us ; 2
(5] 2] o O = kgl) v =
ZE g 82224 |8 .Swe s
DE 20, (2R 8x 5= ©
>B 2.5 5 w&““.‘:z\%wga‘-]
Sle.z% o |8 5 » A Q|05 E O &
SlgeB<§ o T E S 2325 £
@ o A A~ m 2 o £
-‘E‘“EK u‘*'_—“.,_d)olnowo 5
<= 5] &9 55 32 = 2 3
23 - < -
= o o 3
E
= T k=) < =g = g
2587 |25g¢ |25 8¢ o .
2888w [822% B58% f
122 0 <
ESlzsc?® |28 |e2E2 |2 3
ZlReEZ08 BR2eg=E |B2o= [E 2
TS A E g 5 E eI == E =
S|k ok [SEE S E 3
S| BeExE By BHegk ER
1= Q= O g O -~ o Q= .= & =
o] — 2] — @ — 2 I
9 = §
x5 = 5
S o o SN
Q= éﬂ = %\D Dﬂ%@ N s
2| 4% mE7 1E%% 5
3 < ° = =
felelsES2 |22 5832 B
EZ|8[EEESY |3 2 X =2 =3 @ F
2 2| S5 =95 5 PRI 2 38
S Ela|TREST &S E ERN S =
T XES [T~ =2 g A3
= b e " = s ES % 3
) 3] 5 2 > g S
== & - < = = > = IS)
= = 5
£°8 g O
£ RS
s E ERS
38 %) © = g
&b [3) Qo 2 S 2 — 3 =
2 olgl¥ o 57 Swz |[§22% T
':'.E.cOSLEN ===) :—g;” E
S 7|2 2 > |2 0T FEs 5L & K
O B |l» D L5 @ T el NS .5 > 5 ~
= O < g% S = 27 S5 2 0 K
2|82 g z | 2|88 8 =2 |9 8
SZAFEEE BEZ |EESE |2z
s 2 8 o & |» g g =2 3
o =g 3
& 8 ol
< 9 Ev
£ = o o - ggu
5 == k=R T < =28 (ES
=@ S & . v =2 Sq w = = 2 - 2
SIS |= 58 oo —= <o H 0 2 EL 2@ 3
5|38 8 o~ 22ng |50505 |58
AT ZEwe (255 |EcE37E2
Sewmss |52 28 S E 2 |2, 5
2" 229 |[E853 |29gs |gEp
ES° £825 |& &g 2%
< . ﬁ — © £ S
<D
bR
MG
80 # o
) 2 =
= -§ £ 23S
S S " R
S| » & NS 28 2
Six§ 5 33 203
S8 S 8 3 8y 8
%2 S < 2 0 %
Z|8 § ~ Y W% 2 ¥
2 S S R 2 3
oL = Q SNs o =
Qs 2 S S g
IR 2 8§52 <
gL 2 < SR CRSe
oS] S, SR N

453

