
A Hybrid Framework for Resource-Efficient Query Processing by
Effective Utilization of Existing Resources

Mayank Patel1 a and Minal Bhise2 b

1Department of Information & Communication Technology, Adani University, Shantigram, Gujarat, India
2Distributed Databases Group, Dhirubhai Ambani Institute of Information and Communication Technology, India

Keywords: Big Data Partitioning, Optimize Resource Utilization, Raw Data Query Processing, Real-Time Dynamic
Resource Allocation, Task Scheduling.

Abstract: Scientific experiments and contemporary applications generate substantial volumes of data daily, posing a
challenge for traditional database management systems (DBMS) that expend considerable time and resources
on data loading. In-situ engines offer a distinct advantage by enabling immediate querying on raw data. Re-
searchers have observed that resources are often underutilized during data loading. In contrast, in-situ engines
spend ample time and resources in reparsing required data multiple times. Allocating query specific resources
is another challenging task that must be addressed to reduce overall workload execution time and resource uti-
lization. This research paper introduces a novel approach called the Resource Availability & Workload-aware
Hybrid Framework (RAW-HF), designed to enhance the efficiency of data querying by judiciously utilizing
optimal resources in systems comprising an in-situ engine and DBMS. RAW-HF incorporates modules that
facilitate the optimization of resources necessary for executing a given workload, striving to maximize the uti-
lization of available resources. The effectiveness of RAW-HF is demonstrated using the scientific dataset Sloan
Digital Sky Survey (SDSS) and Linked Observation data (LOD). Comparative analysis with the state-of-the-
art workload-aware partial loading technique (WA) reveals that RAW-HF excels in allocating query-specific
resources and implementing resource-aware task scheduling. Results from the study indicate that RAW-HF
outperforms WA, reducing workload execution time by 26%. It also reduces CPU and IO resource utilization
by 26% and 25% compared to WA at a cost of 33% additional RAM.

1 INTRODUCTION

The escalating pace of data generation from diverse
sources, including modern applications, scientific ex-
periments, and IoT applications, underscores the chal-
lenge of managing perishable resources effectively.
The volume of Astronomy datasets like the Sloan
Digital Sky Survey (SDSS) has increased by 233
times since DR-1 to DR-17(Ahumada et al., 2020).
NASA’s Earth Observing System (EOS) collects more
than 3.3TB of data every day(Guo et al., 2016).

Research indicates that the bottleneck in data pro-
cessing often lies in slow IO devices, particularly
magnetic disks, leading to under-utilization of exist-
ing CPU resources by most DBMS(Dziedzic et al.,
2017). Shockingly, data centers observe a mere 12%
CPU utilization, elevating operational costs in cloud
and distributed environments (Ailamaki, 2015; Max-

a https://orcid.org/0000-0002-7804-4017
b https://orcid.org/0000-0003-4364-3930

imilien et al., 2022). Parallelizing data loading proves
ineffective for systems with disk-based storage de-
vices (Dziedzic et al., 2017; Patel and Bhise, 2023b).

HTAP or hybrid systems utilize additional re-
sources in processing the same dataset twice. Widely
used DBMSs like Postgres, MySQL, Oracle, Au-
toSteer (Anneser et al., 2023) and other open-source
systems do not monitor the utilization of available re-
sources or consider them during query planning. The
existing systems or techniques proposed to address re-
source optimization or maximization issues have been
developed for specific DBMSs, which may not work
for most DBMSs, hybrid systems, or cloud vendor
(Pimpley et al., 2022; Kaviani et al., 2019).

This paper addresses the issues of under-utilized
resources and slow IO devices by focusing on the
availability of resources. By monitoring resource uti-
lization in real-time, the proposed approach aims to
mitigate the shortcomings of existing works (Li et al.,
2022; Pimpley et al., 2022; Viswanathan et al., 2018;
Patel and Bhise, 2023a). Specifically, it allocates

Patel, M. and Bhise, M.
A Hybrid Framework for Resource-Efficient Query Processing by Effective Utilization of Existing Resources.
DOI: 10.5220/0012691600003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 337-344
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

337

query-specific resources and optimizes task schedul-
ing, presenting a novel solution to enhance efficiency
in data querying. This shift in perspective, from the
under-utilization of resources to the effective manage-
ment of resources, marks a significant contribution in
the domain of database management and system opti-
mization.

1.1 Motivation

The majority of existing Database Management Sys-
tems (DBMSs) and contemporary cloud resource uti-
lization strategies encounter challenges in effectively
leveraging all available resources(Ailamaki, 2015;
Maximilien et al., 2022). The optimization of hard-
ware resource utilization has become a focal point,
given the significant demand for cloud or hardware
resources in querying large datasets to reduce oper-
ational costs. Notably, external Machine Learning
(ML)-based solutions demand substantial time and
resources for filtering, analyzing resource utilization
data, and training ML models (Ailamaki, 2015; Pim-
pley et al., 2022). However, the challenge lies in
the fact that most systems do not account for real-
time availability of existing resources when schedul-
ing tasks or dynamically allocating query-specific re-
sources in a dynamic operational environment.

1.2 Paper Contributions

• This study consolidates modules like Raw Data
Query Processing (RQP), Resource Monitoring
(RM), Optimizing Required Resources (ORR),
and Maximizing Utilization of Existing Resources
(MUER) to construct RAW-HF framework.

• ORR module integrated lightweight query com-
plexity, workload, & storage utilization aware par-
titioning algorithms designed for hybrid systems.
MUAR integrated resource utilization aware task
scheduling and resource allocation algorithms.

• RAW-HF results have been compared with state-
of-the-art in-situ engine(Alagiannis et al., 2012),
row store DBMS PostgreSQL(Pos, 2022), and
workload-aware Partial Loading technique(Zhao
et al., 2015) using real-world scientific datasets.

2 RELATED WORK

Traditional database management systems necessitate
loading the entire dataset before executing a query,
while in-situ engines expedite results by bypassing
data loading and processing only essential raw data

upon query arrival. However, in-situ engines ex-
hibit slower query execution time (QET) compared to
DBMSs due to reparsing of raw data. Notably, NoDB
(Alagiannis et al., 2012) & Slalom (Olma et al., 2020)
proposed caching and indexing processed raw data
in main memory to reduce QET. Despite these ad-
vancements, caching techniques encounter occasional
reparsing issues and high utilization for large datasets.

Invisible loading proposed loading processed data
into column store DBMS generated as a side ef-
fect of executing queries on raw datasets to elimi-
nate reparsing (Abouzied et al., 2013). SCANRAW,
one of the first hybrid systems, suggested monitoring
CPU and IO to speculatively load additional data into
DBMS to utilize idle resources, in parallel to query-
ing raw data using an in-situ engine (Cheng and Rusu,
2015). Regardless, both invisible loading and SCAN-
RAW are prone to processing and loading the entire
dataset when workload queries access database at-
tributes even once.

To address this, cost-aware techniques have been
introduced, calculating the cost of accessing raw data
files and loading only frequently accessed partitions
into DBMS (Patel et al., 2022; Zhao et al., 2015). The
Query Complexity Aware (QCA) technique reduces
loaded data by loading attributes required by complex
queries, maintaining attributes accessed by zero-join
simple queries in raw format (Patel and Bhise, 2022).
These techniques aim to reduce data loading time, re-
searchers have also partitioned datasets into smaller,
workload-aware partitions to reduce query execution
time (Padiya and Bhise, 2017; Tang et al., 2020).

As cloud usage rises, attention has shifted to-
wards optimizing hardware resource utilization to
reduce costs associated with each query. QROP
(Query and Resource Optimization) proposed con-
sidering the resources required by each query during
query planning to minimize costs (Viswanathan et al.,
2018). PCC (Performance Characteristic Curve), de-
rived from past resource utilization and query exe-
cution time data, is employed by QROP to allocate
optimal resources to each query individually, reduc-
ing costs through a trade-off in query response time
(Pimpley et al., 2022). An elastic resource manage-
ment technique traded off OLTP throughput to en-
hance OLAP query time by allocating more resources
to OLAP queries (Raza et al., 2020).

Despite advancements, techniques, and systems
featuring optimizations for resources used by data
loading and query execution tasks, task scheduling,
and query-specific resource allocation based on real-
time hardware resource availability remain scarce.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

338

3 RAW-HF: RESOURCE
AVAILABILITY & WORKLOAD
AWARE HYBRID
FRAMEWORK

This section discusses the proposed RAW-HF frame-
work integrated with lightweight partitioning, task
scheduling, and query-specific resource allocation al-
gorithms. The following subsections discuss the ar-
chitecture and modules of RAW-HF.

3.1 RAW-HF Architecture

The RAW-HF consists of four modules. Each module
serves a task dedicated to it. Figure 1 shows how all
the framework modules connect and communicate.

• Raw Data Query Processing (RQP) module:
RQP module processes the given dataset and
workload automatically for individual and hybrid
systems. It can handle raw data storage, data
loading, and query processing tasks for individual
in-situ engine, DBMS, HTAP, or hybrid systems.
The combination of an in-situ engine (NoDB) and
DBMS (PostgreSQL) is used to build a hybrid
system because in-situ engines eliminate DLT
while DBMS performs complex queries faster.

• Resource Monitoring (RM) module: Monitors
resources utilized by each workload task and fil-
ters essential information for each query obtained
from RM tools like top and iotop for faster online
or offline analysis. This real-time resource utiliza-
tion data is used by MUER module.This module
also records past query execution information for
ORR and MUER modules to make partitioning
and resource allocation decisions.

• Optimizing Required Resources (ORR) mod-
ule: Reduces unnecessary utilization of resources.
It optimizes data loading and query execution
time by combining query complexity, workload,
& storage utilization aware lightweight partition-
ing for a given dataset & workload.

• Maximizing Utilization of Existing Resources
(MUER) module: MUAR considers the real-time
availability of resources to utilize resources effi-
ciently and reduces total workload execution time
by allocating additional resources. It schedules
data loading tasks in parallel to querying raw data.
It identifies complex queries (CQs) and reduces
QET for CQs by increasing work memory.

RAW-HF core algorithms reside in ORR and
MUER modules. Therefore, both of them have been
explained in detail below.

Figure 1: RAW-HF Architecture.

3.1.1 Optimizing Required Resources (ORR)

The proposed workload and query complexity aware
algorithms of ORR use lightweight query identifica-
tion and partitioning steps to partition the dataset for
a hybrid system. The idea behind the query complex-
ity aware algorithm is to partition the dataset and dis-
tribute the workload in such a way that queries per-
forming faster on a given tool can be allocated to that
tool. The analysis has shown that zero-join queries
perform faster while multiple joins queries are slower
in in-situ engines than in traditional DBMS.

The Query Complexity Identification (QCI) algo-
rithm first identifies the simple queries (SQ) and com-
plex queries (CQ) type queries stored in the workload
list. It uses the simple logic of counting no. of tables
present in the query statement. The query is classi-
fied as complex; when two or more table instances
are found in the query statement. The single table in-
stance queries are classified as simple queries. The
GRA function groups attributes accessed by SQs and
CQs in two different lists. The SQ partition is QT P0,
and the CQ partition is QT P1 after the first round of
partitioning. SQ partition can be stored in raw for-
mat, while the CQ partition needs to be loaded in
DBMS. ORR further refines the partitions based on
different storage budget B in QC function. The par-
tially covered queries (PCQ) list is new input query
type QT. QC function can be called until all attributes
are covered for different storage budgets. Most fre-
quent queries and storage budget list can be sorted
in descending order to reduce iterations & cover fre-
quent queries first.

A Hybrid Framework for Resource-Efficient Query Processing by Effective Utilization of Existing Resources

339

Algorithm 1: ORR Module Partitioning.
Data: w l = Workload List; QT = Query Types Dic-
tionary; q l = Query List; B = Storage budget B in
MB; que d = Dictionary of Queries; s d = Schema
Dictionary; QT P = Query Type Partitions; QT P’=
Final Query Type Partitions for given budget B; q l =
Query List; PCQ = Partially Covered Queries List;
ca l = List of covered Attributes; rqa l = List of
Remaining Query Attributes; cq l = List of covered
Queries;
Result: SQ-Raw, CQ-DB & CAP Partitions;

Query Complexity Identification
1. def QCI(w l, que d, s d):
2. For each task T in w l do
3. If T.Statement has multiple tables
4. QT[T.Q ID] = 1
5. Else
6. QT[T.Q ID] = 0
7. End
8. Get QT P0, QT P1 = GRA(que d, QT)
9. Return final partitions QT P’;

#Grouping of Attributes
10. def GRA(que d, QT)
11. For each query i in que d:
12. For each attribute j in que d[i]:
13. If QT[i] == 0
14. Add j in QT P0
15. If budget B is limited
16. QT P’ = QC(i, ca l,
cq l, B)
17.Repeat above step until PCQ is empty for different
B
18. Else
19. Add j in QT P1
20. End
21. End
22. Return QT P0, QT P1,QT P’;

#Grouping Attributes based on Budget B
23. def QC(i, ca l, cq l, B)
24. If (SUM(size of all attributes of query
que d[i]))¡ B
25. For each attribute A in que d[i]
26. If A is not in ca l & size of
A¡remaining budget B
27. Add A in rqa l list
28. If size of rqa l ¡ remaining budget B
29. Move all attributes of rqa l in ca l
& update B
30. Add query q in cq l
31. Else
32. Add query q in PCQ
33. Return ca l, cq l, rqa l;

3.1.2 Maximizing Utilization of Existing
Resources (MUER)

This module implements Maximizing Utilization of
Available Resources (MUAR) technique to improve
the utilization of existing resources. MUAR considers
real-time resource monitoring values of CPU, RAM,
and IO resource utilization stored in the global struc-
ture RM AR. RM AR is continuously updated by the
resource monitoring module. MUAR adds a new task
for processing if all three values of RM AR are greater
than the minimum required CPU, RAM & IO re-
sources stored in Min RR. Before executing the query
in the new thread, the WM Query function is called
to set the work memory for each complex query to
increase RAM utilization.

The WM Query function first counts the num-
ber of joins used in the given query and stores the
count in J C. The WM Value in line 18 calculates the
work memory value for new queries based on avail-
able memory RM AR.RAM, process count (P C), to-
tal RAM (TR), and join count J C. The first part of
the equation divides the available RAM between the
maximum processes that the available CPU cores can
handle. The second part defines the maximum RAM
that can be assigned to a thread, while the third part
helps in allocating more RAM to complex queries
considering join count J C. MUAR also tries to es-
timate required work memory considering previous
work mem, disk writes, current & past record count
ratio for frequent queries to achieve the best QET.

4 EXPERIMENTAL SETUP

This section provides details of experimental setup.

4.1 Hardware & Software Setup

The experimental machine uses a quad-core Intel i5-
6500 CPU clocked at 3.20GHz. It has 16GB of RAM.
The operating system of the machine is running a 64-
bit Ubuntu 18.04 LTS. The machine has a 500GB
SATA hard disk drive to store raw datasets and DBMS
databases. The disk rotation speed is 7200RPM. The
RAW-HF framework is implemented by combining
and updating the raw data query processing, resource
monitoring, ORR, and MUER modules. The updated
framework uses Eclipse to run Java code connected
with state-of-the-art open-source DBMS PostgreSQL
and NoDB. NoDB has data caching capability and ex-
ecutes SQL queries on raw files. The top and iotop
tools provide real-time resource utilization data of
CPU, RAM & IO resources to the RM module.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

340

4.2 Dataset & Query Set

Data release 16 of Sloan Digital Sky Survey (SDSS)
(Ahumada et al., 2020) has been used to check the
ORR and MUER phases of RAW-HF. 19GB partition
having 4M records of PhotoPrimary view having 509
attributes has been used to represent SDSS dataset.
We have extracted the top 1000 unique queries exe-
cuted on PhotoPrimary view. The queries have been
grouped based on the similarity of the attributes and
query type, forming 12 query groups. One represen-
tative query has been chosen from each group.

The 8GB partition with 35M records containing
descriptions of blizzard and hurricane observations
has been extracted from Linked Observation Data
(LOD) (Patni et al., 2010; Padiya and Bhise, 2017)
(Ahumada et al., 2020). LOD is a benchmark RDF
triple store dataset. It has been used to investigate the
performance of the MUER module of RAW-HF. Nine
queries out of 16 queries of LOD workload have 5
joins. Queries with multiple self-joins have been con-
sidered because these queries need to process com-
plex join operations, requiring significant resources.

5 RAW-HF RESULTS

This section presents the results of RAW-HF after
combining all techniques proposed in ORR & MUER.

5.1 RAW-HF: Workload Execution
Time

Figure 2: WET: Comparison.

Figure 2 shows the comparison of all the techniques
with RAW-HF. First column shows the raw data query
processing time using NoDB, which has zero data
loading time. The 2nd column shows WET time
required by traditional DBMS PgSQL. The 3rd and
4th columns show the WET results for individual
ORR and MUER phases of RAW-HF. RAW-HF takes
only 22.6 sec to complete the execution compared
to 30.6sec required by workload aware partitioning

techniques like Partial Loading (WA)(Zhao et al.,
2015). It can be observed that the combination of all
techniques achieved total reduction of 96.32% using
RAW-HF compared to NoDB and 26.14% compared
to the WA. RAW-HF benefits from low DLT achieved
by only loading attributes used by complex queries in
the ORR phase for SDSS.

5.2 RAW-HF: Resource Utilization

Figure 3 shows the comparison of resources utilized
by ORR, MUAR, and RAW-HF (ORR+MUER) with
NoDB , PostgreSQL , and WA. Here, the 1M records
dataset used in experiment utilized 4.7GB of space on
IO device. MUAR results showed that CPU utiliza-
tion time is reduced by only 6.34% because most of
the time is spent in data loading process compared to
PgSQL. MUAR can only utilize other CPU cores to
execute read queries in parallel. Figure 3 confirms
that CPU utilization is reduced by 77% only during
query processing tasks due to parallel processing.

The QCA with WSAC technique in ORR reduced
the required DB partition size(IO) by 91.08%, re-
ducing WET, CPU, and RAM utilization by 85.9%,
85.1%, and 80.9%. WA (Partial loading) reduced the
CPU and RAM utilization by 81.3% and 86.4%. The
RAW-HF experiments combined ORR and MUAR
techniques, which showed a 32.8% increase in RAM
utilization compared to the Partial Loading tech-
nique due to parallel processing of queries. How-
ever, RAW-HF improved DLT, QET, WET, CPU, and
DB Size(IO) requirements by 29.5%, 12.9%, 26.14%,
26.14%, 24.92% compared to Partial Loading tech-
nique (Zhao et al., 2015) executing all read queries in
parallel after data loading is complete.

Figure 3: RAW-HF: Resource Utilization.

5.3 RAW-HF for Different Datasets

This section discusses the impact of RAW-HF on
WET for different types of datasets like LOD &
SDSS. Table 1 compares LOD and SDSS datasets
based on the Fraction of Attributes Accessed (FAA)

A Hybrid Framework for Resource-Efficient Query Processing by Effective Utilization of Existing Resources

341

by workload queries and the Fraction of Attributes
Loaded (FAL) by RAW-HF. It can be seen that SDSS
is a broad table dataset. All the SDSS workload
queries access only 10.6% of attributes. On the other
hand, LOD dataset is a narrow table dataset contain-
ing only three attributes. Due to fewer attributes, al-
most all queries use two or more attributes. The im-
pact of broad and narrow tables and queries accessing
only a small part or entire of the dataset can be seen
in the ORR results for SDSS in Figure 4. MUAR al-
located maximum available resources to CQs and re-
duced WET significantly for the LOD dataset because
87% of LOD workload queries consist of two or more
joins. In comparison, SDSS had only one query with
more than one join.

Figure 4: Impact of RAW-HF on WET for LOD & SDSS
datasets.

RAW-HF only loads attributes required by com-
plex queries to reduce DLT time. This helps datasets
like SDSS, which requires only a small fraction of
the dataset (10.6%) to answer queries by loading only
6.7% of attributes. The remaining 93.3% of attributes
are not loaded into DBMS, reducing WET by 85.9%
for the SDSS dataset. On the other hand, vertical
partitioning cannot help datasets like LOD that ac-
cess 100% of attributes. Therefore, the WET re-
duction achieved by applying ORR phase is 0% for
LOD. However, the MUAR in MUER phase achieves
84.8% reduction in WET by efficiently utilizing ex-
isting CPU and RAM resources for complex queries.

5.4 RAW-HF: Dynamic Resource
Allocation

Figure 5 illustrates the comparison between the dy-
namic task and resource allocation of RAW-HF and
static allocation in PostgreSQL. The results are ob-
tained through the execution of the LOD workload
on a single core (1 thread) and multiple cores (three
threads), varying the values of work memory. In con-
trast to RAW-HF’s query-specific memory allocation,
the static parallel execution method maintains a con-
stant value of work memory across different queries.

Figure 5: Impact of RAW-HF on WET compared to Static
task & resource allocation.

The comparison reveals that the static multi-
thread execution of the workload, with a default 4 MB
work memory allocation, takes more time than RAW-
HF’s single-thread dynamic memory allocation. In-
creasing the work memory allocation to 3500 MB
with the static approach resulted in a 22% increase
in workload execution time compared to a 1500 MB
allocation. This increase is attributed to the over-
allocation of memory for certain queries, leading to
reduced memory availability for complex queries run-
ning in parallel. RAW-HF reduces WET by 4-67%
compared to the static approach.

6 COMPARISON WITH
STATE-OF-THE-ART

This section presents a comparison of the RAW-
HF technique with other state-of-the-art techniques
and tools like NoDB (Alagiannis et al., 2012), Post-
greSQL (Pos, 2022), WA (Partial Loading) (Zhao
et al., 2015) , and PCC (Pimpley et al., 2022). NoDB
is an open-source in-situ processing engine with main
memory caching and indexing features (Alagiannis
et al., 2012). Partial Loading technique (Zhao et al.,
2015) loaded only 10.6% of original dataset into
DBMS, which reduced the WET time by 88.1% com-
pared to NoDB. In comparison, RAW-HF loads only
6.7% of dataset. Only RAW-HF can execute join
queries on data residing in DBMS and CSV files. Un-
like PCC, RAW-HF allocates appropriate resources to
ad-hoc queries.

Table 2 presents a comparison of state-of-the-art
raw data query processing techniques with RAW-HF.
Resource Utilization Aware (RUA) shows whether the
technique considered resource utilization information
or not. The Multi-Format Join column represents
whether the tool can execute join queries on data re-
siding in raw and database formats. PDC uses a static
partition of main memory (50%) to keep lookup ta-
bles. PCC needs historical data for allocating ap-

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

342

Table 1: ORR: Fraction of Attributes Accessed (FAA) and Loaded (FAL).

Total
Attributes

Accessed
Attributes

FAA
(%)

Loaded
Attributes

FAL
(%)

DLT
(%)

QET
(%)

WET
(%)

SDSS 509 54 10.6 34 6.7 90.9 87.9 85.9
LOD 3 3 100.0 3 100.0 0 0 0

Table 2: RAW-HF Technique Comparison with State-of-the-art.

Technique / Tool Partiti-
oning

DBMS
Data

%

Work-
load

Aware

Ad-
hoc

queries

RUA Multi-
format

Join

Remarks

1 NoDB (Alagiannis
et al., 2012)

None 0 No NA No No Required more memory.
High QET.

2 PostgreSQL (Pos,
2022)

None 100 No NA No No High DLT, Low QET &
memory.

3 WA (Zhao et al.,
2015)

VP 10.6 Yes No Yes No Technique Not
Lightweight

4 PCC (Pimpley
et al., 2022)

- 100 Yes No Yes No Resource Intensive, for
freq. queries

5 RAW-HF (Hybrid) VP 6.7 Yes Yes Yes Yes Lightweight, works for
ad-hoc & freq. queries

Table 3: RAW-HF Performance Parameters Comparison.

Technique/
Tool

Query Performance % Resource Utilization %

DLT (sec) QET (sec) WET (sec) CPU (sec) RAM (MB) IO (MB)

1 NoDB 0 613.59
(99.12%)

613.59
(96.32%)

613.59
(96.32%)

10956.8
(90.36%)

4710.4
(94.96%)

2 DBMS
(PostgreSQL)

188.63
(90.88%)

44.7
(87.92%)

233.33
(90.31%)

233.33
(89.78%)

2758.3
(61.70%)

2660.4
(91.08%)

3 WA (Partial
Loading)

24.4
(29.51%)

6.2
(12.90%)

30.6
(26.14%)

30.6
(26.14%)

709.2
(+32.87%)

316.0
(24.92%)

4 RAW-HF 17.2 5.4 22.6 22.6 1056.5 237.3

propriate resources to each query. However, it does
not work well for ad-hoc queries. In comparison, al-
though RAW-HF performs workload aware partition-
ing, resource allocation is done based on query com-
plexity. Therefore, RAW-HF is capable of allocating
appropriate resources to ad-hoc queries.

Figure 2 & 3 presented comparison of these tech-
niques with RAW-HF for SDSS dataset. Table 3
shows the RAW-HF performance parameters compar-
ison with state-of-the-art techniques.

7 CONCLUSION

This work presented a Resource Availability and
Workload aware Hybrid Framework (RAW-HF) to
process raw datasets efficiently. It optimized re-

quired resources using ORR module developed by in-
tegrating lightweight algorithms of Query Complex-
ity Aware (QCA) and Workload and Storage aware
Cost-based (WSAC) techniques. This work also ad-
dresses the issue of underutilized resources during
data loading and query processing using MUAR mod-
ule, considering the availability of hardware resources
in real-time. RAW-HF allows the execution of join
queries on data stored in DBMS and raw format.

RAW-HF never loads partitions used by simple
queries, reducing DBMS data loading requirements
by 93.3% for SDSS. ORR phase works better for
broad table datasets like SDSS, while MUAR is ca-
pable of improving WET for workloads with com-
plex multi-join queries like LOD. RAW-HF reduced
WET by 84.8% for SDSS and 90.3% for LOD com-
pared to the PostgreSQL. It reduced the WET by 26%,
96%, and 90% compared to the state-of-the-art Partial

A Hybrid Framework for Resource-Efficient Query Processing by Effective Utilization of Existing Resources

343

Loading techniques, NoDB, and PostgreSQL respec-
tively for SDSS.

REFERENCES

(2022). Postgresql: The world’s most advanced open source
database. https://www.postgresql.org/.

Abouzied, A., Abadi, D. J., and Silberschatz, A. (2013).
Invisible loading: Access-driven data transfer from
raw files into database systems. In Proceedings of the
16th International Conference on Extending Database
Technology - EDBT ’13, volume 20. ACM Press.

Ahumada, R., Prieto, C. A., and et al. (2020). The 16th Data
Release of the Sloan Digital Sky Surveys: First Re-
lease from the APOGEE-2 Southern Survey and Full
Release of eBOSS Spectra. The Astrophysical Journal
Supplement Series, 249(1).

Ailamaki, A. (2015). Databases and hardware: The begin-
ning and sequel of a beautiful friendship. Proceedings
of the VLDB Endowment, 8(12).

Alagiannis, I., Borovica, R., Branco, M., Idreos, S., and
Ailamaki, A. (2012). Nodb in action. Proceedings of
the VLDB Endowment, 5(12).

Anneser, C., Tatbul, N., Cohen, D., Xu, Z., Pandian,
P., Laptev, N., and Marcus, R. (2023). Autosteer:
Learned query optimization for any sql database.
PVLDB, 16:12.

Cheng, Y. and Rusu, F. (2015). Scanraw: A database meta-
operator for parallel in-situ processing and loading.
ACM Transactions on Database Systems, 40(3).

Dziedzic, A., Karpathiotakis, M., Alagiannis, I., Ap-
puswamy, R., and Ailamaki, A. (2017). DBMS Data
Loading: An Analysis on Modern Hardware. In Data
Management on New Hardware, volume 10195 LNCS,
page 95–117. Springer International Publishing.

Guo, H., Wang, L., and Liang, D. (2016). Big earth data
from space: a new engine for earth science. Science
Bulletin, 61(7).

Kaviani, N., Kalinin, D., and Maximilien, M. (2019). To-
wards serverless as commodity. In Proceedings of the
5th International Workshop on Serverless Computing
- WOSC ’19. ACM Press.

Li, Y., Wang, L., Wang, S., Sun, Y., and Peng, Z. (2022).
A resource-aware deep cost model for big data query
processing. Proceedings - International Conference
on Data Engineering.

Maximilien, M., Hadas, D., Danducci II, A., and Moser, S.
(2022). The future is serverless - ibm developer.

Olma, M., Karpathiotakis, M., Alagiannis, I., Athanas-
soulis, M., and Ailamaki, A. (2020). Adaptive parti-
tioning and indexing for in situ query processing. The
VLDB Journal, 29(1).

Padiya, T. and Bhise, M. (2017). DWAHP: Workload Aware
Hybrid Partitioning and Distribution of RDF Data.
In In Proceedings of the 21st International Database
Engineering and Applications Symposium (IDEAS).
ACM.

Patel, M. and Bhise, M. (2022). Query complexity based
optimal processing of raw data. In 2022 IEEE 10th Re-
gion 10 Humanitarian Technology Conference (R10-
HTC). IEEE.

Patel, M. and Bhise, M. (2023a). MUAR: Maximizing
Utilization of Available Resources for Query Process-
ing. In 2023 IEEE/ACM 23rd International Sympo-
sium on Cluster, Cloud and Internet Computing Work-
shops (CCGridW).

Patel, M. and Bhise, M. (2023b). Resource monitoring
framework for big raw data processing. International
Journal of Big Data Intelligence, Inderscience, 9(1).

Patel, M., Yadav, N., and Bhise, M. (2022). Workload
aware cost-based partial loading of raw data for lim-
ited storage resources. In Futuristic Trends in Net-
works and Computing Technologies FTNCT, Lecture
Notes in Electrical Engineering, vol 936. Singapore:
Springer Nature Singapore.

Patni, H., Henson, C., and Sheth, A. (2010). Linked sensor
data. In 2010 International Symposium on Collabora-
tive Technologies and Systems. IEEE.

Pimpley, A., Li, S., Sen, R., Srinivasan, S., and Jindal, A.
(2022). Towards optimal resource allocation for big
data analytics. In International Conference on Extend-
ing Database Technology, EDBT.

Raza, A., Chrysogelos, P., Anadiotis, A. C., and Ailamaki,
A. (2020). Adaptive htap through elastic resource
scheduling. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of
Data. ACM.

Tang, H., Byna, S., Dong, B., and Koziol, Q. (2020). Par-
allel query service for object-centric data manage-
ment systems. Proceedings - 2020 IEEE 34th Interna-
tional Parallel and Distributed Processing Symposium
Workshops, IPDPSW 2020.

Viswanathan, L., Jindal, A., and Karanasos, K. (2018).
Query and resource optimization: Bridging the gap.
In 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE.

Zhao, W., Cheng, Y., and Rusu, F. (2015). Vertical parti-
tioning for query processing over raw data. In Pro-
ceedings of the 27th International Conference on Sci-
entific and Statistical Database Management, volume
29-June-20. ACM.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

344

