My Database User Is a Large Language Model

Eduardo R. Nascimento!©?, Yenier T. Izquierdo' ©°, Grettel M. Garcia' ©°,

Gustavo M. C. Coelho! @4, Lucas Feijé'®¢, Melissa Lemos'®f, Luiz A. P. Paes Leme?®#2 and

Keywords:

Abstract:

1 INTRODUCTION

Marco A. Casanova'>®P

Unstituto Tecgraf, PUC-Rio, Rio de Janeiro, 22451-900, RJ, Brazil
2 Instituto de Computagdo, UFF, Niteroi, 24210-310, RJ, Brazil
3 Departamento de Informdtica, PUC-Rio, Rio de Janeiro, 22451-900, RJ, Brazil

Text-to-SQL, GPT, Large Language Models, Relational Databases.

The leaderboards of familiar benchmarks indicate that the best text-to-SQL tools are based on Large Language
Models (LLMs). However, when applied to real-world databases, the performance of LLM-based text-to-SQL
tools is significantly less than that reported for these benchmarks. A closer analysis reveals that one of the
problems lies in that the relational schema is an inappropriate specification of the database from the point
of view of the LLM. In other words, the target user of the database specification is the LLM rather than a
database programmer. This paper then argues that the text-to-SQL task can be significantly facilitated by
providing a database specification based on the use of LLM-friendly views that are close to the language
of the users’ questions and that eliminate frequently used joins, and LLM-friendly data descriptions of the
database values. The paper first introduces a proof-of-concept implementation of three sets of LLM-friendly
views over a relational database, whose design is inspired by a proprietary relational database, and a set of
100 Natural Language (NL) questions that mimic users’ questions. The paper then tests a text-to-SQL prompt
strategy implemented with LangChain, using GPT-3.5 and GPT-4, over the sets of LLM-friendly views and
data samples, as the LLM-friendly data descriptions. The results suggest that the specification of LLM-friendly
views and the use of data samples, albeit not too difficult to implement over a real-world relational database,
are sufficient to improve the accuracy of the prompt strategy considerably. The paper concludes by discussing
the results obtained and suggesting further approaches to simplify the text-to-SQL task.

an NL question S, and the tool translates S to an SQL
query Q in such a way that the execution of Q over
the database D returns an answer to S.

The Text-to-SQL task is defined as “given a rela-
tional database D and a natural language (NL) sen-
tence S that describes a question on D, generate an
SOL query Q over D that expresses S” (Katsogiannis-
Meimarakis and Koutrika, 2023)(Kim et al., 2020).
A text-to-SQL tool provides a straightforward way to
create an NL interface to a database. The user submits

(2 https://orcid.org/0009-0005-3391-7813
@ https://orcid.org/0000-0003-0971-8572
¢ https://orcid.org/0000-0001-9713-300X
4 nhttps://orcid.org/0000-0003-2951-4972
¢ https://orcid.org/0009-0006-4763-8564
f® https://orcid.org/0000-0003-1723-9897
g https://orcid.org/0000-0001-6014-7256
@ https://orcid.org/0000-0003-0765-9636
800

Numerous tools have addressed this task with
relative success (Affolter et al., 2019)(Katsogiannis-
Meimarakis and Koutrika, 2023)(Kim et al., 2020)
over well-known benchmarks, such as Spider — Yale
Semantic Parsing and Text-to-SQL Challenge (Yu
et al., 2018) and BIRD — BlIg Bench for LaRge-
scale Database Grounded Text-to-SQL Evaluation (Li
et al., 2023). The leaderboards of these benchmarks
point to a firm trend: the best text-to-SQL tools are all
based on Large Language Models (LLMs).

However, when run over real-world databases, the
performance of LLM-based text-to-SQL tools is sig-
nificantly less than that reported in the Spider and
BIRD Leaderboards (Nascimento et al., 2024). One
of the reasons is that real-world databases have large

Nascimento, E., Izquierdo, Y., Garcia, G., Coelho, G., Feij6, L., Lemos, M., Leme, L. and Casanova, M.

My Database User Is a Large Language Model.
DOI: 10.5220/0012697700003690
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 800-806

ISBN: 978-989-758-692-7; ISSN: 2184-4992

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

schemas, whereas these benchmarks have a large
number of databases whose schemas are quite small,
as detailed in Section 2.1. But there is a simpler rea-
son: the relational schema is often an inappropriate
specification of the database from the point of view
of an LLM. In other words, the target user of the
relational database specification should be the LLM,
rather than a database programmer.

From a broader perspective, the text-to-SQL task
involves translating an NL question S, which is ex-
pressed in the end user’s vocabulary and (hopefully)
follows the NL grammar, into an SQL query O,
which uses the database metadata and data vocabu-
lary. Thus, for the LLM to succeed in the text-to-SQL
task, it should, first of all, be able to match the user
and the database vocabularies. This matching task is
sometimes called schema linking and accounts for a
large percentage of the errors.

Consider, for example, the NL sentence S: “What
is the installation with the largest number of open
maintenance orders?”. Sentence S uses the end
user’s terms “‘installation”, “open”, and “mainte-
nance order” which, in the best scenario, would
match the database table names “Installation”
and “Maintenance_Order”, and the column name
“Situation”, which has “open” as a value. How-
ever, in a practical scenario, the relational schema
may induce a quite different vocabulary, such as the
table names “TB_IN” and “TB_MO”, and the column
name “MO_ST”, and the database may use “1” as a
value of “MO_ST” to indicate that the order is open.

An LLM trained for the text-to-SQL task would
translate the expression “the largest number” to the
correct SQL constructs, which is not a trivial feat
(compare it to the treatment of aggregations in ear-
lier approaches reported in (Affolter et al., 2019)). It
would then produce the correct SQL query under the
best scenario but it would fail in the practical scenario,
due to the use of database terms which are thoroughly
inappropriate to the LLM.

This paper then argues that the text-to-SQL task
can be greatly facilitated by a database specification
that provides:

* LLM-friendly views that map (fragments of) the
database schema to terms close to the terms users
frequently adopt and that try to pre-define fre-
quently used joins.

* LLM-friendly descriptions of the database values.

LLM-friendly views are nothing but the familiar
concept of views, designed to present (fragments of)
the relational schema (that is, database metadata) to
the LLM. As such, they can be implemented with the
usual DBMS mechanisms, within the database. LLM-
friendly descriptions refer to a set of constructs that

My Database User Is a Large Language Model

try to capture the data semantics. They may be de-
fined as a set of prompt completion pairs, such as (in
OpenAI GPT syntax'):

{"prompt": "the order is open",
"completion": "Situation='open'"},

used to fine-tune the LLM, or to expand the LLM
with database-specific knowledge using Retrieval-
Augmented Generation (Lewis et al., 2020). A third
strategy would be to include data samples in the LLM
prompt, as in Section 4.1.

To argue in favor of the proposed approach, the
paper first introduces a benchmark dataset consist-
ing of a database, three sets of LLM-friendly views,
and 100 NL questions and their translation to SQL.
The database was inspired by a real-world asset in-
tegrity management database, in production at an en-
ergy company, which features a relational schema
with 27 tables, 585 columns, and 30 foreign keys
(some of which are multi-column); the largest table
has 81 columns. Thus, it has nearly 640 objects. The
NL questions mimic those submitted by end users,
and their SQL translations were manually created by
experts. The set of NL questions contains 33 classi-
fied as simple, 33 as medium, and 34 as complex.

The paper then investigates the performance of
a text-to-SQL prompt strategy, implemented with
LangChain® using GPT-3.5 and GPT-4, over the test
dataset. The prompt strategy includes data samples to
help the LLM capture the data semantics. The results
suggest that specifying a set of LLM-friendly views
and data samples is sufficient for the prompt strategy
to achieve good performance on the text-to-SQL task,
which is significantly better than the performance ob-
tained over the original relational schema.

The paper concludes with a discussion of the re-
sults obtained and suggests further approaches to im-
prove the performance of the text-to-SQL task over
real-world databases, following the guidelines that the
target user of the database specification is the LLM.

The paper is organized as follows. Section 2 cov-
ers related work. Section 3 describes the benchmark
dataset. Section 4 details the experiments. Finally,
Section 5 contains the conclusions.

Uhttps://platform.openai.com/docs/guides/fine-tuning
Zhttps://python.langchain.com/docs/use_cases/qa_struc
tured/sql

801

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

2 RELATED WORK

2.1 Text-to-SQL Datasets

The Spider — Yale Semantic Parsing and Text-to-SQL
Challenge (Yu et al., 2018) defines 200 datasets, cov-
ering 138 different domains, for training and testing
text-to-SQL tools.

For each database, Spider lists 20—50 hand-written
NL questions and their SQL translations. An NL
question S, with an SQL translation Q, is classified
as easy, medium, hard, and extra-hard, where the dif-
ficulty is based on the number of SQL constructs of
Q — GROUP BY, ORDER BY, INTERSECT, nested sub-
queries, column selections, and aggregators — so that
an NL query whose translation Q contains more SQL
constructs is considered harder. The set of NL ques-
tions introduced in Section 3.3 follows this classifica-
tion, but does not consider extra-hard NL questions.

Spider proposes three evaluation metrics: compo-
nent matching checks whether the components of the
prediction and the ground truth SQL queries match
exactly; exact matching measures whether the pre-
dicted SQL query as a whole is equivalent to the
ground truth SQL query; execution accuracy requires
that the predicted SQL query select a list of gold val-
ues and fill them into the right slots. Section 4.2 de-
scribes the metric used in the experiments reported in
this paper, which is a variation of execution accuracy.

Most databases in Spider have very small
schemas: the largest five databases have between 16
and 25 tables, and about half of the databases have
schemas with five tables or fewer. Furthermore, all
Spider NL questions are phrased in terms used in
the database schemas. These two limitations consid-
erably reduce the difficulty of the text-to-SQL task.
Therefore, the results reported in the Spider leader-
board are biased toward databases with small schemas
and NL questions written in the schema vocabulary,
which is not what one finds in real-world databases.

Spider has two interesting variations. Spider-Syn
(Gan et al., 2021a) is used to test how well text-to-
SQL tools handle synonym substitution, and Spider-
DK (Gan et al., 2021b) addressed testing how well
text-to-SQL tools deal with domain knowledge.

BIRD - Blg Bench for LaRge-scale Database
Grounded Text-to-SQL Evaluation (Li et al., 2023)
is a large-scale cross-domain text-to-SQL benchmark
in English. The dataset contains 12,751 text-to-SQL
data pairs and 95 databases with a total size of 33.4
GB across 37 domains. However, BIRD still does not
have many databases with large schemas: of the 73
databases in the training dataset, only two have more
than 25 tables, and, of the 11 databases used for de-

802

velopment, the largest one has only 13 tables. Again,
all NL questions are phrased in the terms used in the
database schemas.

Finally, the sql-create-context?® dataset also
addresses the text-to-SQL task, and was built from
WikiSQL and Spider. It contains 78,577 examples
of NL queries, SQL CREATE TABLE statements, and
SQL Queries answering the questions. The CREATE
TABLE statement provides context for the LLMs, with-
out having to provide actual rows of data.

Despite the availability of these benchmark
datasets for the text-to-SQL, and inspired by them,
Section 3 describes a test dataset tuned to the prob-
lem addressed in this paper. The test dataset con-
sists of a relational database, whose design is based
on a real-world database, three sets of LLM-friendly
views, specified as proposed in this paper, and a set of
100 test NL questions, that mimic those posed by real
users, and their ground truth SQL translations.

2.2 Text-to-SQL Tools

The Spider Web site* publishes a leaderboard with
the best-performing text-to-SQL tools. At the time
of this writing, the top 5 tools achieved an accuracy
that ranged from an impressive 85.3% to 91.2% (two
of the tools are not openly documented). Four tools
use GPT-4, as their names imply. The three tools
that provide detailed documentation have an elabo-
rate first prompt that tries to select the tables and
columns that best match the NL question. This first
prompt is, therefore, prone to failure if the database
schema induces a vocabulary which is disconnected
from the NL question terms. This failure cannot
be fixed by even more elaborate prompts that try to
match the schema and the NL question vocabularies,
but it should be addressed as proposed in this paper.

The BIRD Web site’ also publishes a leaderboard
with the best-performing tools. At the time of this
writing, out of the top 5 tools, two use GPT-4, one
uses CodeS-15B, one CodeS-7B, and one is not doc-
umented. The sixth and seventh tools also use GPT-
4, appear in the Spider leaderboard, and are well-
documented.

The Awesome Text2SQL Web site® lists the best-
performing text-to-SQL tools on WikiSQL, Spider
(Exact Match and Exact Execution) and BIRD (Valid
Efficiency Score and Execution Accuracy).

3https://huggingface.co/datasets/b-mc2/sql-create-con
text

“https://yale-lily.github.io/spider

>https://bird-bench.github.io

Shttps://github.com/eosphoros-ai/ Awesome-Text2SQL

The DB-GPT-Hub’ is a project exploring how to
use LLMs for text-to-SQL. The project contains data
collection, data preprocessing, model selection and
building, and fine-tuning weights, including LLaMA-
2, and evaluating several LLMs fine-tuned for text-to-
SQL.

Finally, LangChain® is a generic framework that
offers several pre-defined strategies to build and run
SQL queries based on NL prompts. Section 4.1 uses
LangChain to create a text-to-SQL prompt strategy.

3 A TEST DATASET FOR THE
TEXT-TO-SQL TASK

This section describes a test dataset to help investigate
how LLM-friendly views affect the text-to-SQL task.
The dataset consists of a relational database, three
sets of LLM-friendly views, and a set of 100 test NL
questions, and their SQL ground truth translations. It
should be stressed that this dataset was designed ex-
clusively for testing text-to-SQL tools, in the context
of this paper; it was not meant for training such tools.

In general, a benchmark dataset to test text-to-
SQL tools is a pair B = (D,{(L;,G;)/i = 1,...,n}),
where D is a database and, fori=1,...,n, L; is an NL
question over D, and G; is an SQL query over D that
translates L;.

3.1 The Relational Database

The selected database is a real-world relational
database (in Oracle) that stores data related to the in-
tegrity management of an energy company’s indus-
trial assets. The relational schema of the adopted
database contains 27 relational tables with, in to-
tal, 585 columns and 30 foreign keys (some multi-
column), where the largest table has 81 columns.

Table and column names in the relational schema
do not follow a specific vocabulary. They are assigned
using mnemonic terms based on an internal company
specification for naming database objects, but this
rule is not always followed. This scenario implies that
users who do not know the relational schema have dif-
ficulty understanding the semantics of the stored data
and need to turn to database specialists when retriev-
ing data related to maintenance and integrity manage-
ment processes, even if there is a description for the
tables and their columns.

Also, some column values are not end-user-
friendly. For example, coding values and combina-

"https://github.com/eosphoros-ai/DB-GPT-Hub
8https://python.langchain.com

My Database User Is a Large Language Model

tions of different values hide semantic information
and terms relating to the business process that are not
explicitly stored in the database. To overcome this sit-
uation, database experts often create SQL Functions
that contain the logic to represent the semantics hid-
den in the hardcoded values.

In this context, it is hard for end-users, including
non-human users such as LLMs, to retrieve informa-
tion directly from the relational schema. Therefore,
creating views over the relational schema that reflect
users’ terms is a task frequently performed by the
company’s DBAs.

3.2 The Sets of Views

To verify how the proposed approach affects the text-
to-SQL task, the test dataset introduces three sets of
LLM-friendly views of increasing complexity:

* Conceptual Schema Views: define a one-to-one
mapping of the relational schema to end users’
terms; the views basically rename tables and
columns.

Partially Extended Views: extend the conceptual
schema views with new columns that pre-define
joins that follow foreign keys, as well as other se-
lected columns.

Fully Extended Views: combine several concep-
tual schema views into a single view; the set
may optionally include some conceptual schema
views.

This paper argues that adopting LLM-friendly
views for minimizing schema-linking problems is far
simpler than creating elaborate prompt strategies.

3.3 The Set of Test Questions and Their
Ground Truth SQL Translations

The test dataset contains a set of 100 NL questions,
L={Ly,...,Lip0}, that consider the terms and ques-
tions experts use when requesting information related
to the maintenance and integrity processes.

The ground truth SQL queries, G =
{G1,...,G100}, were manually defined over the
conceptual schema views so that the execution of G;
returns the expected answer to the NL question L;.
The use of the conceptual schema views facilitated
this manual task, since these views use a vocabulary
close to that of the NL questions.

An NL question L; is classified into simple,
medium, and complex, based on the complexity of its
ground truth SQL query G;, as in the Spider bench-
mark (extra-hard questions were not considered). The

803

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

set L contains 33 simple, 33 medium, and 34 complex
NL questions.

Note that the NL questions classification is an-
chored on the conceptual schema views. But, since
these views map one-to-one to the tables of the rela-
tional schema, a classification anchored on the rela-
tional schema would remain the same. The classifi-
cation is maintained for the other sets of views, even
knowing that the definition of these other sets of views
might simplify the translation of some NL questions
(which was one of the reasons for considering these
sets of views, in the first place).

4 EXPERIMENTS

4.1 Experimental Setup

The experiments used a text-to-SQL implementation
based on LangChain’s SQLQueryChain®, which auto-
matically extracts metadata from the database, creates
a prompt with the metadata and passes it to the LLM.
This chain greatly simplifies creating prompts to ac-
cess databases through views since it passes a view
specification as if it were a table specification.

Figure 1 illustrates the prompt implemented:
(A) contains instructions for the LLM; (B) defines
the output format; (C) partly illustrates how the
maintenance_order view is passed to the LLM as a
CREATE TABLE statement; (D) shows 3 data samples
from the maintenance_order view; and (E) passes
the NL question.

The experiments tested the LangChain-based
strategy with GPT-3.5-turbo-16k and GPT-4 against
the 100 questions introduced in Section 3.3, sepa-
rately for the database relational schema of Section
3.1 and each of the three sets of views outlined in Sec-
tion 3.2.

4.2 Evaluation Procedure

Let L; be an NL question, G; be the corresponding
SQL ground truth query, and P; be the SQL query pre-
dicted by the text-to-SQL strategy. Let PT; and GT; be
the tables that P; and G; return when executed over the
database, called the predicted and the ground truth ta-
bles, respectively.

The experiments first used an automated proce-
dure that tests if PT; and GT; are similar. The notion
of similarity adopted neither requires that P7; and GT;
have the same columns, nor that they have the same
rows. The procedure goes as follows.

“https://docs.langchain.com

804

For each column of GT;, the most similar column
of PT; is computed. The similarity of GT; and PT;
was computed as their Jaccard coefficient; since GT;
and PT; are sets of values, the similarity is, therefore,
based on sets of values, and not on the syntactical
similarity of the column names. This step induces a
partial matching M from columns of GT; to columns
of PT;. If the fraction of the number of columns of
GT; that match some column of P7; is below a given
threshold, the procedure signals that P; is incorrect.

The adjusted ground truth table AGT; is con-
structed by dropping all columns of G7; that do not
match any column of PT;, and the adjusted predicted
table APT; is constructed by dropping all columns of
PT; that are not matched and permuting the remaining
columns so that PCy is the k' column of APT; iff GCy,
the k" column of AGT;, is such that M(GCy) = PCy.

Then, AGT; and APT; are compared. If their simi-
larity is above a given threshold ¢¢, then the procedure
signals that P; is correct; otherwise, it signals that P;
is incorrect.

The similarity of AGT; and APT; was computed as
their Jaccard coefficient (recall that tables are sets of
tuples), and the threshold tq was set to 0.95. Thus,
AGT; and APT; need not have the same rows but, in-
tuitively, P; will be incorrect if APT; contains only a
small subset of the rows in AGT;, or APT; contains
many rows not in AGT;.

Finally, the results of the automated procedure
were manually checked to eliminate false positives
and false negatives.

The accuracy of a given text-to-SQL strategy over
the benchmark B is the number of correct predicted
SQL queries divided by the total number of SQL
queries, as usual.

This evaluation procedure is entirely based on col-
umn and table values, not column and table names.
Therefore, a text-to-SQL tool may generate SQL
queries over the relational schema or any set of views,
and the resulting SQL queries may be compared with
the ground truth SQL queries based on the data the
queries return from the underlying database.

4.3 Results

Table 1 shows the results of running the LangChain
prompt for GPT-4 and GPT-3.5-turbo-16k only once
over the relation schema and the three sets of LLM-
friendly views, all with data samples. Columns under
“#Questions correctly translated” show the number
of NL questions per type, correctly translated to SQL
(recall that there are 33 simple, 33 medium, and 34
complex NL questions, with a total of 100); columns
under “Accuracy” indicate the accuracy results per

My Database User Is a Large Language Model

You are an Oracle SQL expert. Given an input question, first create a
syntactically correct Oracle SQL query to run, then look at the results of the
query and return the answer to the input question. Unless the user specifies in
the question a specific number of examples to obtain, don't query for at 0 most
results or any using the FETCH FIRST n ROWS ONLY clause as per Oracle SQL.
You can order the results to return the most informative data in the database.
Never query for all columns from a table. You must query only the columns that
are needed to answer the question. Pay attention to use only the column names
you can see in the tables below. Be careful to not query for columns that do not
exist. Also, pay attention to which column is in which table.

Pay attention to use TRUNC(SYSDATE) function to get the current date, if the
question involves "today".

Generate only the sql query. Don't give the answer and don't explain.

Some hints:
- Don't use double quotes in column name (A)

Example:

“SELECT "column_name" FROM table" should be 'SELECT column_name FROM
table’

-Don't use LEFT JOIN, only JOIN

Only use the following tables:

CREATE TABLE maintenance_order (

description VARCHAR(40 CHAR),
code VARCHAR(30 CHAR),
status VARCHAR(7 CHAR), (C)

)

”
3 rows from the maintenance_order table:

description code status

FT-UC-123101B-04 818190 Active D
SYSTEM-5111.03 301063 Active ()
SYSTEM-5412.03 301063 Active

CRI

*

Use the following format:

Question: Question here (B)
SELECT

Question: {input}

Figure 1: Example of a prompt.

Table 1: Results for GPT-4 and GPT-3.5 over the relation schema and the sets of LLM-friendly views, with data samples.

#NL questions correctly translated Accuracy
Model Experimental setup
Simple | Medium |[Complex| Total | Simple | Medium |Complex| Overall
1 |Relacional schema 22 11 8 41 0,67 0,33 0,24 0,41
GPT4 2 |Conceptual schema views 32 18 15 65 0,97 0,55 0,44 0,65
3 |Partially extended views 30 25 19 74 0,91 0,76 0,56 0,74
4 |Fully extended views 28 20 18 66 0,85 0,61 0,53 0,66
1 |Relacional schema 24 8 4 36 0,73 0,24 0,12 0,36
GPT-3.5 2 |Conceptual schema views 27 16 5 48 0.78 0.18 0.18 0,48
3 |Partially extended views 26 18 8 52 0,79 0,55 0,24 0,52
4 |Fully extended views 28 13 6 47 0,85 0,39 0,18 0,47

NL question type, and the overall accuracy.

Overall, the accuracy results with GPT-4 were
much better than those with GPT-3.5-turbo-16k; if
we compare the best accuracy results (the gray cells),
GPT-4 achieved an overall accuracy 22% better than
GPT-3.5-turbo-16k.

Let us concentrate on the accuracy results with
GPT-4. A comparison between the results of Ex-
periments 1 and 2 indicates that the overall accu-
racy achieved with the conceptual schema views was
24% better than that achieved with the relational
schema. This means that simply renaming the tables
and columns to terms closer to the end-user vocabu-
lary sufficed to improve accuracy substantially.

Now, a comparison between the results of Exper-
iments 1 and 3 captures a more subtle improvement.
The partially extended views simplify the text-to-SQL
task by eliminating joins in certain medium and com-
plex questions. The overall accuracy achieved with
these views was substantially better (33% better) than
that achieved with the relational scheme.

Also, note that Experiment 3 failed to translate
two more simple NL questions than Experiment 2.
One explanation is that LLMs are non-deterministic;
if the experiments were repeated several times, Table

1 could report slightly different accuracy results for
Experiments 2 and 3.

A comparison between the results of Experiments
3 and 4 shows a decrease of 8%. Indeed, the fully ex-
tended views save more joins, facilitating the text-to-
SQL task, but they require passing much larger view
specifications in the prompt. Furthermore, the defini-
tion of a fully extended view, which combines several
views, requires renaming several columns, which may
create columns with similar names. In conjunction —
views with many columns and similar column names
— confuse the LLM, leading to ambiguous matches
with an NL question.

In summary, the results suggest that the partially
extended views, with just a few extra columns that
pre-define joins, is a better alternative than fully ex-
tended views, that combine several views. These
views also proved to be a much better alternative than
using the relational schema or the set of conceptual
schema views. From a broader perspective, the ac-
curacy increases when one moves from prompting
the LLM with the relational schema to prompting the
LLM with LLM-friendly views and data samples, cor-
roborating the position argued in this paper.

805

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

S CONCLUSIONS

This paper argued that the target user of a database
specification should be viewed as the LLM, when im-
proving the performance of a text-to-SQL strategy.

From the point of view of metadata, this posi-
tion quite simply asks to create a database specifi-
cation that defines a vocabulary close to that of the
NL questions to be submitted for translation to SQL.
This specification can be easily implemented with fa-
miliar views. As for the data, this position requires
creating a set of constructs that try to capture the data
semantics. This can be far more complex and would
require knowledge of the LLM API capabilities if one
wants to go beyond providing data samples. Fortu-
nately, LLMs are “few-show learners”, that is, they
can learn to perform a new language task from only a
few examples (Brown et al., 2020). Thus, providing a
few data samples per table helps.

To help convince the reader of the soundness of
the position, the paper introduced a test dataset, with
three sets of LLM-friendly views of increasing com-
plexity, and 100 NL questions and their translation to
SQL. Using the benchmark dataset, the experiments
suggested that there is a dramatic increase in accuracy
when one moves from prompting the LLM with the
relational schema to prompting the LLM with LLM-
friendly views and data samples, as argued in the pa-
per.

Views also help reduce the SQL query complex-
ity by including additional columns with pre-defined
joins. However, the larger the view, the more tokens
its definition would consume, and LLMs typically
limit the number of tokens passed. Also, the LLM
may get lost when the views have many columns.

Finally, there is room for further improvement.
For example, the LLM-friendly views used in the
experiments were created by inspecting the database
documentation and by mining a log of user questions.
Albeit this process was tedious but not too difficult,
further work will focus on a tool that automatically
creates views on the fly, depending on the NL ques-
tion submitted, along the lines of the tool described in
(Nascimento et al., 2023).

ACKNOWLEDGEMENTS

This work was partly funded by FAPERJ un-
der grant E-26/202.818/2017; by CAPES under
grants 88881.310592-2018/01, 88881.134081/2016-
01, and 88882.164913/2010-01; by CNPq under grant
302303/2017-0; and by Petrobras.

806

REFERENCES

Affolter, K., Stockinger, K., and Bernstein, A. (2019). A
comparative survey of recent natural language inter-
faces for databases. The VLDB Journal, 28.

Brown, T. B. et al. (2020).
are few-shot learners. In Proc. Advances in
Neural Information Processing Systems 33.
doi:10.48550/arXiv.2005.14165.

Gan, Y., Chen, X., Huang, Q., Purver, M., Woodward, J. R.,
Xie, J., and Huang, P. (2021a). Towards robustness
of text-to-sql models against synonym substitution.
CoRR, abs/2106.01065.

Gan, Y., Chen, X., and Purver, M. (2021b). Exploring
underexplored limitations of cross-domain text-to-sql
generalization. In Conference on Empirical Methods
in Natural Language Processing.

Katsogiannis-Meimarakis, G. and Koutrika, G. (2023). A
survey on deep learning approaches for text-to-sql.
The VLDB Journal, 32(4):905-936.

Kim, H., So, B.-H., Han, W.-S., and Lee, H. (2020). Natural
language to sql: Where are we today? Proc. VLDB
Endow., 13(10):1737-1750.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Kiittler, H., Lewis, M., Yih,
W.-t., Rocktischel, T., Riedel, S., and Kiela,
D. (2020). Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Advances in Neu-
ral Information Processing Systems, volume 33, pages
9459-9474.

Li, J. et al. (2023). Can llm already serve as a database in-
terface? a big bench for large-scale database grounded
text-to-sqls. arXiv preprint arXiv:2305.03111.

Nascimento, E. R., Garcia, G. M., Feij6, L., Victorio, W. Z.,
Lemos, M., Izquierdo, Y. T., Garcia, R. L., Leme, L.
A. P, and Casanova, M. A. (2024). Text-to-sql meets
the real-world. In Proc. 26th Int. Conf. on Enterprise
Info. Sys.

Nascimento, E. R., Garcia, G. M., Victorio, W. Z., Lemos,
M., Izquierdo, Y. T., Garcia, R. L., Leme, L. A. P.,
and Casanova, M. A. (2023). A family of natural lan-
guage interfaces for databases based on chatgpt and
langchain. In Proc. 42nd Int. Conf. on Conceptual
Modeling — Posters&Demos, Lisbon, Portugal.

Yu, T. et al. (2018). Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. In Proc. 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3911-3921.

Language models

