Exploring the Pros and Cons of Monolithic Applications versus

Keywords:

Abstract:

Microservices

Daniel dos Santos Krug®?, Rafael Chanin®® and Afonso Sales®*

School of Technology, PUCRS, Porto Alegre, RS, Brazil

Microservices Architecture, Monolithic Applications, Architectural Decision Making.

Microservices architecture emerged as an alternative to monolith architecture. With monoliths, applications
are developed in entire blocks that communicate internally, manage their data usually in a single database,
and each new feature demands the deployment of the application as a whole. On the other hand, microser-
vices splits the application into smaller blocks with unique responsibilities, using lightweight communication
mechanisms and managing their own data. This new architecture has several advantages, but it also has some
disadvantages. From the understanding of these advantages and disadvantages, the main goal of this research
is to identify how the two architectures have been used in professional practices. As well as how the academy
can help in the understanding that if the microservices architecture entails a longer development time for the
applications, in order to understand when the decision for an architecture may be more appropriate with an-
other in software development. To fulfill the explained objective, it is intended to carry out a systematic study
with the snowballing technique, research in the grey literature and a survey with specialists.

1 INTRODUCTION

The microservices architecture decomposes tradi-
tional monolithic applications into smaller, au-
tonomous services (Richardson, 2016). These ser-
vices, possibly written in different languages, interact
through APIs and are commonly managed in contain-
ers such as Docker and Kubernetes (Bernstein, 2014),
facilitating deployment across varied environments.

Early academic studies on microservices date
back to the mid-2010s (Viennot et al., 2015; Stubbs
et al., 2015), with discussions on the term’s origins
remaining unclear. Microservices offer several advan-
tages over monolithic architectures, such as faster de-
livery, improved scalability, and increased autonomy
(Soldani et al., 2018). These benefits stem from prac-
tices as Domain Driven Design (Merson and Yoder,
2020) and its bounded contexts, promoting a modu-
lar structure ideal for larger development teams and
independent deployment, while allowing for diverse
technologies.

However, microservices also introduce chal-
lenges, including security concerns, as each service

https://orcid.org/0009-0008-8984-7801
@ https://orcid.org/0000-0002-6293-7419
¢ https://orcid.org/0000-0001-6962-3706

256

Krug, D., Chanin, R. and Sales, A.

Exploring the Pros and Cons of Monolithic Applications versus Microservices.
DOI: 10.5220/0012703300003690

Paper published under CC license (CC BY-NC-ND 4.0)

requires individual protection (Yarygina and Bagge,
2018), and network performance issues due to API-
based communication (Liu et al., 2020). Data con-
sistency is another problem, as each service manages
its data, potentially leading to inconsistencies (Kholy
and Fatatry, 2019).

These disadvantages are well-studied and can
be mitigated during development. Nonetheless, the
added complexity and cost of developing communi-
cation layers, ensuring security, and maintaining data
consistency make the development process more de-
manding, which is the focus of this research.

It is crucial to note that this research does not dis-
courage the use of microservices; when properly im-
plemented, the architecture’s advantages often make
it the preferred choice for many applications.

The research foundation and examples highlight
significant benefits of adopting a microservices ar-
chitecture. However, it also reveals complexities not
fully addressed by the scientific community, suggest-
ing areas for further exploration.

Building on the aforementioned insights, and
given the absence of literature specifically address-
ing the potential increase in software development
time with microservices, this study proposes an ex-
ploratory investigation into whether this issue is sig-
nificant. The study’s goal is to elucidate the pros

In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 2, pages 256-263

ISBN: 978-989-758-692-7; ISSN: 2184-4992

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

Exploring the Pros and Cons of Monolithic Applications versus Microservices

and cons of implementing monolithic or microser-
vices architectures in software development, provid-
ing a balanced perspective to aid developers in mak-
ing informed architectural decisions.

The main research question of this work is formu-
lated as follows: “How can developers practicing mi-
croservices architecture be supported in making de-
cisions regarding its use or the choice of traditional
architectures, such as monoliths?”

The overarching goal of this research is to discern
the conditions under which monolithic architecture is
adequate for application development and when mi-
croservices present a more favorable option. The spe-
cific objective of the research is to create a recom-
mendation guide that assists developers, considering
the characteristics of the software to be developed, in
deciding between using microservices architecture or
monolithic architecture.

The remainder of this paper is structured as fol-
lows: Section 2 outlines the research methodology.
Section 3 discusses the findings from the analysis of
the proposed methodological steps. The conclusion
and future work are presented in Section 4.

2 METHODOLOGY

A Multivocal Literature Review (MLR) proposed by
Garousi et al. (Garousi et al., 2019) was conducted,
focusing on the execution of snowballing (Wohlin,
2014) - to obtain academic studies on the topic re-
search - as well as in the Grey Literature Review
guidelines, which consider the knowledge available in
non-academic sources, which are relevant to the soft-
ware industry (Figure 1).

STEP3 STEP 4 STEP4 STEP 4
Literature Questionnaire surve —— survey
STEP2 Analysis Development Y Analysis
Grey Literature
Figure 1: Methodology stages.

2.1 Snowballing Process

To understand the academic community’s perspec-
tive on the increased development time associated
with choosing a microservices architecture, the snow-
balling methodology was employed. This systematic
study approach starts with an initial selection of arti-
cles, using their references and citations for a compre-
hensive review (Wohlin, 2014). It involves "backward
snowballing" (using references) and "forward snow-
balling" (using citations), with each round of selec-
tion considered an “iteration”. Iterations continue un-

til no more relevant articles meeting the inclusion and
exclusion criteria are found.

The inclusion criteria for the snowballing process
and subsequent iterations are: articles discussing the
advantages and disadvantages of using microservices;
articles in English or Portuguese. The exclusion cri-
teria include: grey literature works, to be covered in
the grey literature review; studies not in English or
Portuguese; theses and dissertations; books. These
results are presented in Section 3.1.

2.2 Grey Literature Review Process

The term “grey literature” encompasses a variety of
definitions with varying degrees of interconnected-
ness. The first official definition was introduced at
the Third International Conference on Grey Literature
in Luxembourg, 1997, conceptualizing it as unpub-
lished primary studies containing information from
several sectors like government, academia, business,
and the electronic industry, not controlled by commer-
cial publishers. This definition was later expanded in
2004 at the same conference to include academic and
industrial reports, as well as dissertations and theses.

In 2010, at the Prague conference, the concept of
grey literature was further refined to address intellec-
tual property issues related to internet-based works.
Grey literature now includes documents from govern-
mental, academic, business, and industrial levels, in
both print and electronic forms, protected by intellec-
tual property rights and of sufficient quality for col-
lection and preservation by libraries or institutions,
without being under the control of primarily publish-
ing companies. Notably, this definition excludes blog
posts and tweets as grey literature.

Adams et al. (Adams et al., 2016) initiated in 2017
a formal evaluation on incorporating grey literature
in organizational studies, structuring it into categories
reflecting their scientific reliability. The first category
(tier 1) encompassed sources with stringent source
control, such as books, journals, and governmental
reports. The second category (fier 2) included ma-
terials with moderate reliability, like corporate annual
reports and media content. The third category (tier
3) was designated for sources with lower academic
credibility, such as blogs and social media posts. This
approach aimed to ensure the scientific integrity and
relevance of grey literature in scholarly research.

In the Software Engineering context, Garousi et
al. (Garousi et al., 2019) tailored the concept by
Adams er al. (Adams et al., 2016) to consider all non-
peer-reviewed materials as grey literature. This adap-
tation was crucial to encompass the vast array of rel-
evant but academically peripheral content in the field.

257

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

The grey literature review, complementing the
snowballing method findings, is particularly rele-
vant in Software Engineering due to the industry’s
rich practice-oriented knowledge. This approach
aligns with Garousi et al.’s rationale (Garousi et al.,
2019), emphasizing the importance of studies that
reflect real-world professional experiences, a per-
spective supported by additional researchers (Kamei,
2020; Soldani, 2020) advocating for more industry-
representative studies in Software Engineering.

The grey literature review phase was initiated in
parallel with the snowballing approach. To iden-
tify pertinent documents, a series of search strings
were crafted and applied within Google’s search!
functionality. The specific search terms employed
are described as follows: (“comparison” “advan-
tages” “disadvantages” “microservices” “monolith”
site:“intended domain address”).

The choice to include the terms advantages and
disadvantages was due to the fact that this search
could provide results showing the advantages and
disadvantages of using monolithic and microservices
architectures. Similarly, the inclusion of the terms
monolith and microservices was motivated by the
search for articles comparing one architecture with
the other. The domain filter was chosen because
of the need to refine the search, due to the num-
ber of results obtained. The six sites selected were
chosen because they are recognized by the software
development community and are listed as follows:
Stack Overflow blog; Site Point; GFG; freeCode-
Camp; DZone; Medium.

The following inclusion criteria were used to se-
lect the papers from the grey literature: text content;
texts from the selected blogs, due to the fact that there
is a large amount of content shared by the community
on this type of platform; content that addresses the is-
sue of comparing microservice and monolith architec-
tures; texts in English or Portuguese. The items that
formed the criteria for excluding grey literature works
are as follows: audio or video content without text
transcription; texts not originating from blogs; dupli-
cate texts; texts that do not compare the proposed ar-
chitectures; texts in languages other than English or
Portuguese. The results obtained from the review of
the grey literature are shown in Section 3.2.

o«

2.3 Survey

Although the previous stages of systematic literature
analysis through snowballing, combined with the sys-
tematic review of grey literature, can already add
value to this research (Runeson and Host, 2009), we

Uhttps://www.google.com/

258

have decided to expand the data source by conducting
a survey with experts.

In this stage, the objective was to identify, using
an exploratory qualitative approach, the understand-
ing of the use of proposed software architectures from
interviews with industry practitioners. Qualitative re-
search denotes a type of research that produces re-
sults not resulting from statistical or other quantifi-
able procedures, but that qualifies the phenomenon
under investigation (Corbin and Strauss, 2008). Stud-
ies of this nature refer to research about people’s lives,
experiences, behaviors, emotions, and feelings, as
well as organizational functioning, social movements,
cultural phenomena, and interactions between people
(Corbin and Strauss, 2008). Thus, qualitative research
involves the interpretation of the subjects studied, ex-
amining things in their natural settings in an attempt
to interpret the phenomenon based on the accounts
provided by the research participants (Taylor, 2005).

For the field study, the survey method was used,
which, based on the theme of this research, employed
a questionnaire that was administered to participants
during interview sessions. The questionnaire was de-
signed in a way that the questions would result in an-
swers that add value to this work and that they were
also engaging, so that people would be more inclined
to provide complete and accurate responses if they
could see that the study’s results would likely be use-
ful to the community. The basis for formulating the
questions proposed to the interviewees came from the
analysis of the results of the methodologies applied in
previous steps of this same research.

Additionally, in order to propose an instrument of
value for a representative sample, a pilot test was con-
ducted with the initial interviewees. This allowed for
the identification of issues with the questionnaire as
well as the follow-up rate procedure. The pilot test
was also useful in contributing to the assessment of
reliability (Singer et al., 2008).

2.3.1 Interview Process

Semi-structured interviews were conducted following
the guidelines associated with Software Engineering
(Hove and Anda, 2005) with 7 participants who ac-
cepted the invitation. The interviews were conducted,
transcribed, and analyzed by the author of this study.
For the interviews, questions were formulated based
on the results of previous methodological steps. All
participants were asked the initial set of questions;
however, as is common in semi-structured interviews,
new questions emerged during the interviews based
on specific responses. This allowed the participants
to freely express their perceptions and opinions.

Exploring the Pros and Cons of Monolithic Applications versus Microservices

3 RESULTS ANALYSIS

This study employed the snowballing methodology
for the systematic collection and analysis of academic
data, expanding the sample through citations and ref-
erences from initial studies to gain a broader un-
derstanding of the field (Wohlin, 2014). It also in-
corporated an analysis of grey literature, including
non-commercial sources, for a more comprehensive
view (Garousi et al., 2019). Moreover, a survey with
software development professionals was conducted to
gather their perceptions and opinions, complement-
ing the theoretical evaluation with practical insights.
Together, these methods provided an in-depth under-
standing of the use of software architectures under
study.

3.1 Snowballing

For the systematic study using the snowballing tech-
nique, the initial selection of articles was extracted
from the Association of Computer Machinery (ACM)
- Digital Library and IEEE Xplore databases. To
achieve this initial selection, the previously cited
search string was employed, with filters being applied
according to predefined inclusion criteria. As a result
of this process, a total of 41 articles was identified. Of
these, 28 were from ACM and the remaining 13 were
from the IEEE Xplore database. All abstracts of these
articles were carefully read and analyzed.

After analyzing the abstracts, 29 articles from the
initial list were excluded. The main reason for the
removal of these articles was that their themes were
not aligned with the main focus of this research. Ad-
ditionally, some articles were excluded based on the
previously established inclusion and exclusion crite-
ria. This resulted in a total of 12 articles that were
selected for the first iteration of the snowballing re-
view process.

The execution of the initial snowballing search en-
abled the acquisition of 12 articles that were analyzed
to extract the advantages and disadvantages present
in monolithic and microservices architectures. This
identification and categorization work was essential
to deepen the understanding of these two architectures
and provide a solid foundation for the main objective
of this research.

One of the main points of interest of this study is
to understand how the adoption of microservices ar-
chitecture can lead to a longer software development
time.

It is important to emphasize that this research does
not intend to offer a definitive or exhaustive view,
but rather to provide a starting point for a more in-

depth discussion on the topic. Each disadvantage pre-
sented below represents a characteristic that should
be carefully considered by development teams and
decision-makers when evaluating the adoption of mi-
croservices architecture in their projects.

After the initial selection of articles and analy-
sis of their contents, the iteration process began, in-
volving the use of backward and forward snowballing
techniques. This approach allowed for the inclusion
of 14 additional articles to the initial set, resulting in
a significant increase in information sources for the
research (see Table 1).

Table 1: Final selection of articles by Snowballing.

D Reference D Reference

S1 | (Kyryketal., 2022) S14 | (Di Francesco et al., 2018)
S2 | (Gos and Zabierowski, 2020) S15 | (Ponce et al., 2019)

S3 | (Vidie¢can and Bobdk, 2022) S16 | (Benavente et al., 2022)

S4 | (Raharjo et al., 2022) S17 | (Christian et al., 2023)

S5 | (Goérdesli and Varol, 2022) S18 | (Blinowski et al., 2022)

S6 | (Velepucha and Flores, 2023) S19 | (Karabey Aksakalli et al., 2021)
S7 | (Akbulut and Perros, 2019) S20 | (Kumar et al., 2021)

S8 | (Afanasev et al., 2017) S21 | (Liu et al., 2020)

S9 | (Bianetal., 2022) S22 | (Jamshidi et al., 2018)

S10 | (Weietal., 2021) S23 | (Kurpad et al., 2023)

S11 | (Taibi et al., 2017) S24 | (Butzin et al., 2016)

S12 | (de Oliveira Rosa et al., 2020) S25 | (Hassan and Bahsoon, 2016)
S13 | (Salii et al., 2023) S26 | (Balalaie et al., 2016)

The added articles underwent detailed analysis,
during which the main points related to the disadvan-
tages of using microservices were extracted. Notably,
already in the second iteration of the snowballing pro-
cess, no new disadvantages beyond those previously
listed were identified, suggesting a saturation of infor-
mation on the topics of interest.

Given that subsequent iterations did not produce
new information, it was decided to conclude the itera-
tions proposed by the snowballing. This decision was
based on the assessment that further iterations would
not bring significant new data, and that the time and
resources invested would be better used in analyzing
the data already collected.

The 26 articles selected for the research were read
in full to ensure a complete understanding of their
content and the context in which they were written.

Regarding the disadvantages associated with the
use of microservices architectures, a complete list of
all identified disadvantages, as well as the frequency
of their occurrences in all analyzed articles, is avail-
able in Table 2. This table provides a comprehensive
view of the perceptions and experiences reported in
the literature on the use of these architectures.

In the analysis of the results obtained through
the snowballing process, several challenges associ-
ated with the implementation of microservices archi-
tecture that can impact software development time

259

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

Table 2: Disadvantages associated with the use of microser-
vices.

Disadvantages ‘ Quotes ‘
Operational complexity 20
Initial cost of adoption 12
Data consistency challenges 11
Network overhead 9
Increasing complexity of DevOps 9
More complex monitoring 5
Communication challenges 4
Debugging difficulties 4
Versioning difficulties 4
Challenging security standards 4

were identified. Operational complexity is one of the
main issues, as the multiplicity of autonomous ser-
vices requires intensive management and coordina-
tion, increasing the workload.

Other notable challenges include the initial cost
of adoption, which involves acquiring specific techni-
cal skills and implementing new tools and processes.
Additionally, data consistency is a recurring obstacle,
as each service manages its own database, leading to
data fragmentation and making it difficult to maintain
consistency. Network overhead is also a significant
challenge, as constant communication between ser-
vices can result in latency and degraded performance.

Increased complexity in DevOps, communication
challenges between services, difficulties in debugging
and versioning, as well as challenging security stan-
dards are other obstacles that can prolong the software
development cycle. Despite the benefits of microser-
vices architecture, such as scalability and flexibility, it
is crucial for organizations to be aware of these chal-
lenges and be prepared to manage them effectively.
The decision to adopt this architecture should there-
fore be carefully weighed, considering both the po-
tential benefits and inherent challenges.

3.2 Grey Literature

The results obtained from internet blog searches to-
taled 90 articles. Among these articles, 68 were ob-
tained from Medium blogs, 1 from Site Point, 6 from
Geeks For Geeks, 1 from freeCodeCamp, 13 from
DZone, and 1 from the Stack Overflow blog.

For the selection of articles according to the in-
clusion and exclusion criteria, the texts were read and
the disadvantages mentioned by them were classified.
As some of the blogs contained a large number of re-
sults, this classification of the disadvantages of using

260

microservices architecture was useful for generating
a knowledge base on these, which showed that the in-
dustry has a comprehensive perception of the prob-
lems related to the use of this architecture. The final
number of selected texts was 27 articles, according
to the proposed exclusion criteria. Among these arti-
cles, 20 were obtained from the Medium blog, 1 from
Site Point, 2 from Geeks For Geeks, 1 from freeCode-
Camp, 3 from DZone, and none from the Stack Over-
flow blog, as seen in Table 3.

Table 3: Results from the grey literature review.

Site ‘ Results ‘ Selected
Medium 68 20
DZone 13 3
Geeks For Geeks 6 2
Site Point 1 1
freeCodeCamp 1 1
Stack Overflow blog 1 0

Similarly to what was found in academia with the
use of snowballing, the study of the selected texts by
analyzing the grey literature reveals a series of chal-
lenges associated with the implementation and use
of microservices architecture. These challenges, al-
though varying in degree and complexity, highlight
the inherent difficulties of this architecture and the is-
sues that need to be considered when adopting it.

First of all, complexity in implementation and
maintenance is cited in 25 of the analyzed texts. This
challenge is due to the fact that microservices archi-
tecture involves the creation and management of mul-
tiple independent services, each with its own lifecy-
cle. This can lead to significant complexity both in
the implementation phase and in the maintenance of
these services.

Secondly, challenges in managing distributed state
are mentioned in 18 of the texts. This problem arises
because, in a microservices architecture, the applica-
tion state is generally distributed among various ser-
vices. This can make managing the application state
complex and prone to errors.

Furthermore, difficulties in deploy automation and
configuration are mentioned in 13 of the texts. Au-
tomation is essential for efficiently managing the large
number of services in a microservices architecture.
However, automation can be difficult due to the com-
plexity and diversity of the services.

Additional infrastructure costs, cited in 12 of the
texts, are also a concern. As each service in a mi-
croservices architecture is usually run in its own en-
vironment, this can lead to increased infrastructure
costs.

Exploring the Pros and Cons of Monolithic Applications versus Microservices

Other issues identified in the texts include in-
creased network latency due to communication be-
tween services (11 texts), the need to deal with a vari-
ety of technologies (11 texts), difficulties in conduct-
ing comprehensive and effective testing (11 texts), se-
curity challenges arising from the complexity of the
microservices architecture (8 texts), the need for an
entry point system to facilitate communication and
control between services (3 texts), the lack of ade-
quate training for development teams (2 texts), and
challenges in managing and controlling code version-
ing (2 texts).

The distribution of these issues can be visualized
in Table 4. This provides a comprehensive view of the
challenges associated with microservices architecture
and can help guide future research and practices in
this field.

Table 4: Problems found in the grey literature review with
the use of microservices architecture.

Listed Problems ‘ Quotes ‘
High complexity in implementation and maintenance 25
Challenges in distributed state management 18
Difficulties in automating deploy 13
Additional infrastructure costs 12
Increased network latency due to communication 11
Need to deal with diversity of technologies 11
Difficulties in conducting comprehensive tests 11
Security challenges arising from complexity 8
Need for a point of entry system 3
Lack of adequate training for teams 2
Management and control of code versioning 2

3.3 Survey

In this study, semi-structured interviews were con-
ducted to collect qualitative data on developers’ per-
ceptions and experiences with microservices and
monolithic architectures. The seven respondents rep-
resent a variety of roles, experiences ranging from 3 to
16 years of experience (avg. +8 years), and industry
sectors (such as ERP development, travel and others),
providing a comprehensive insight into the subject.

The analysis reveals that both types of architec-
ture have their advantages and disadvantages. Mi-
croservices architectures, while more complex, offer
greater scalability and ease of maintenance, especially
in large and complex projects. However, they can re-
sult in longer development times, particularly in the
initial stages or in less complex projects. On the other
hand, monolithic architectures are easier to develop
and test due to their simplicity and centralization but
can become more challenging to manage in larger and
more complex projects.

The respondents agree that the choice of architec-
ture depends on several factors, including the com-
plexity and size of the project, as well as the skills and
experiences of the developers. Moreover, the organi-
zation and management of the project may be more
relevant to the success of the development than the
choice of architecture itself. Therefore, the choice of
architecture should be based on a careful assessment
of the project’s needs, organizational context, avail-
able resources, and team experience.

3.4 Threats to Validity

Any findings and insights from this study are lim-
ited by the nature of the sub-studies of which it is
composed. Each study has associated limitations, but
some of these are more generally applied.

First, this study could have been submitted to
the research bias, where the researcher expects a re-
sult and thus interprets findings from this perspective.
This study has put in practice techniques which re-
duce this bias, such as multi-author analysis and dis-
cussion of results.

Given that this study has made use of interviews,
recordings and transcriptions, there is the limitation
towards transcription of interviews and interpretation
of responses by the researcher. This is mitigated by
the scientific procedures adopted, but cannot be fully
eliminated.

It is important to remark that our study involved
interviews with only seven experts in the field. While
this number may seem modest, the depth and breadth
of insights provided by these seasoned specialists sig-
nificantly enrich our research. Their extensive expe-
rience and profound understanding of software archi-
tectures lend our findings a depth that might not be
achievable through larger, less specialized participant
pools. This approach underscores the quality over
quantity principle, ensuring our conclusions are both
informed and nuanced.

Furthermore, the rapidly evolving field of soft-
ware architecture means our results might be context-
bound or lose relevance over time. Recognizing these
limitations is crucial for a balanced understanding of
the study’s scope and applicability.

4 CONCLUSION

The research conducted in this study provided a com-
prehensive analysis of microservices and monolithic
architectures, considering their advantages and dis-
advantages and how the choice between them can
impact software development time. The results ob-

261

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

tained through snowballing methodologies, grey lit-
erature, and surveys with industry professionals indi-
cate that while microservices architecture offers sig-
nificant benefits in terms of scalability, flexibility, and
fault isolation, it also presents challenges that can lead
to an increase in development time.

The challenges associated with microservices ar-
chitecture, such as operational complexity, initial
adoption cost, data consistency challenges, network
overhead, and increased DevOps complexity, require
careful management and may demand significant time
and resource investment. However, for large and com-
plex projects, microservices may be the better option,
offering advantages that outweigh the disadvantages.

This research contributed to the existing literature
by providing a detailed view of the implications of ar-
chitectural choice on software development time. The
findings reinforce the need for a thorough assessment
of the project’s needs and available resources before
deciding between microservices and monoliths.

4.1 Future Works

In relation to future works, it is recommended to con-
tinue the investigation into microservices and mono-
lithic architectures, with a particular focus on opti-
mizing development time and mitigating identified
challenges. Further research could explore strate-
gies and tools that facilitate the transition from mono-
liths to microservices, as well as practices that pro-
mote efficiency in the development and maintenance
of microservices-based architectures.

Another area of interest is the development of
frameworks that automate aspects of microservices
development, reducing operational complexity and
speeding up the development cycle. Moreover, de-
tailed case studies in different industry contexts could
provide practical data on how companies are address-
ing the challenges associated with each architecture
and which solutions are proving effective.

Finally, future research could focus on the educa-
tion and training of developers to work with microser-
vices, identifying essential skills and creating educa-
tional materials that better prepare professionals for
the challenges of this architectural paradigm.

ACKNOWLEDGEMENT

This study was partially supported by the Ministry
of Science, Technology, and Innovations from Brazil,
with resources from Law No. 8.248, dated October
23, 1991, within the scope of PPI-SOFTEX, coordi-
nated by Softex.

262

REFERENCES

Adams, R. D., Smart, P, and Huff, A. S. (2016). Shades of
grey: Guidelines for working with the grey literature
in systematic reviews for management and organiza-
tional studies. International Journal of Management
Reviews, 19:432-454.

Afanasev, M. Y., Fedosov, Y. V., Krylova, A. A., and
Shorokhov, S. A. (2017). An application of microser-
vices architecture pattern to create a modular com-
puter numerical control system. In 2017 20th Confer-
ence of Open Innovations Association, pages 10-19.

Akbulut, A. and Perros, H. G. (2019). Performance anal-
ysis of microservice design patterns. [EEE Internet
Computing, 23(6):19-27.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016). Mi-
croservices architecture enables devops: Migration to
a cloud-native architecture. IEEE Soft., 33(3):42-52.

Benavente, V., Yantas, L., Moscol, 1., Rodriguez, C., In-
quilla, R., and Pomachagua, Y. (2022). Comparative
analysis of microservices and monolithic architecture.
In 2022 14th Int. Conf. on Computational Intelligence
and Communication Networks, pages 177-184.

Bernstein, D. (2014). Containers and cloud: From Ixc
to docker to kubernetes. IEEE Cloud Computing,
1(3):81-84.

Bian, Y., Ma, D., Zou, Q., and Yue, W. (2022). A multi-way
access portal website construction scheme. In 2022
5th Int. Conf. on Al and Big Data, pages 589-592.

Blinowski, G., Ojdowska, A., and Przybytek, A. (2022).
Monolithic vs. microservice architecture: A perfor-
mance and scalability evaluation. IEEE Access,
10:20357-20374.

Butzin, B., Golatowski, F., and Timmermann, D. (2016).
Microservices approach for the internet of things. In
2016 IEEE 21st Int. Conf. on Emerging Technologies
and Factory Automation, pages 1-6.

Christian, J., Steven, Kurniawan, A., and Anggreainy, M. S.
(2023). Analyzing microservices and monolithic sys-
tems: Key factors in architecture, development, and
operations. In 2023 6th Int. Conf. of Computer and
Informatics Engineering, pages 64—69.

Corbin, J. and Strauss, A. (2008). Qualitative research.
Techniques and procedures for developing grounded
theory, 3.

de Oliveira Rosa, T., Daniel, J. a. F. L., Guerra, E. M., and
Goldman, A. (2020). A method for architectural trade-
off analysis based on patterns: Evaluating microser-
vices structural attributes. In Proceedings of the Eu-
roPLoP 2020, pages 35:1-8. ACM.

Di Francesco, P., Lago, P., and Malavolta, I. (2018). Migrat-
ing towards microservice architectures: An industrial
survey. In 2018 IEEE Int. Conf. on Software Architec-
ture (ICSA), pages 29-2909.

Garousi, V., Felderer, M., and Mintyld, M. V. (2019).
Guidelines for including grey literature and conduct-
ing multivocal literature reviews in software engineer-
ing. Info. and Software Technology, 106:101-121.

Gos, K. and Zabierowski, W. (2020). The comparison of
microservice and monolithic architecture. In 2020

Exploring the Pros and Cons of Monolithic Applications versus Microservices

IEEE XVIth International Conference on the Per-
spective Technologies and Methods in MEMS Design
(MEMSTECH), pages 150-153.

Gordesli, M. and Varol, A. (2022). Comparing interservice
communications of microservices for e-commerce in-
dustry. In 2022 10th International Symposium on Dig-
ital Forensics and Security (ISDFS), pages 1-4.

Hassan, S. and Bahsoon, R. (2016). Microservices and their
design trade-offs: A self-adaptive roadmap. In 2016
IEEE International Conference on Services Comput-
ing (SCC), pages 813-818.

Hove, S. and Anda, B. (2005). Experiences from conduct-
ing semi-structured interviews in empirical software
engineering research. In //th IEEE METRICS), pages
10 pp.—23.

Jamshidi, P., Pahl, C., Mendong¢a, N. C., Lewis, J., and
Tilkov, S. (2018). Microservices: The journey so far
and challenges ahead. IEEE Software, 35(3):24-35.

Kamei, F. K. (2020). The use of grey literature review as ev-
idence for practitioners. SIGSOFT Softw. Eng. Notes,
44(3):23.

Karabey Aksakalli, I., Celik, T., Can, A. B., and Tekinerdo-
gan, B. (2021). Deployment and communication pat-
terns in microservice architectures: A systematic lit-
erature review. Journal of Sys. and Soft., 180:111014.

Kholy, M. E. and Fatatry, A. E. (2019). Framework for
interaction between databases and microservice archi-
tecture. IT Professional, 21(5):57-63.

Kumar, P. K., Agarwal, R., Shivaprasad, R., Sitaram, D.,
and Kalambur, S. (2021). Performance characteriza-
tion of communication protocols in microservice ap-
plications. In 2021 SmartNets, pages 1-5.

Kurpad, S., BT, S., Vijaykumar, S., Jain, S., and Kalambur,
S. (2023). Microarchitectural analysis and character-
ization of performance overheads in service meshes
with kubernetes. In 2023 3rd Asian Conference on
Innovation in Technology (ASIANCON), pages 1-6.

Kyryk, M., Tymchenko, O., Pleskanka, N., and Pleskanka,
M. (2022). Methods and process of service migra-
tion from monolithic architecture to microservices. In
2022 IEEE 16th Int. Conf. on Advanced Trends in
Radioelectronics, Telecommunications and Computer
Engineering (TCSET), pages 553-558.

Liu, G., Huang, B., Liang, Z., Qin, M., Zhou, H., and Li,
Z. (2020). Microservices: architecture, container, and
challenges. In 2020 IEEE 20th Int. Conf. on Software
Quality, Reliability and Security Companion (QRS-
C), pages 629-635.

Merson, P. and Yoder, J. (2020). Modeling microservices
with ddd. In 2020 IEEE Int. Conf. on Software Archi-
tecture Companion (ICSA-C), pages 7-8.

Ponce, F., Marquez, G., and Astudillo, H. (2019). Migrat-
ing from monolithic architecture to microservices: A
rapid review. In 2019 38th Int. Conf. of the Chilean
Computer Science Society (SCCC), pages 1-7.

Raharjo, A. B., Andyartha, P. K., Wijaya, W. H., Pur-
wananto, Y., Purwitasari, D., and Juniarta, N. (2022).
Reliability evaluation of microservices and monolithic
architectures. In Int. Conf. on Computer Engineering,
Network, and Intelligent Multimedia, pages 1-7.

Richardson, C. (2016). Pattern: Monolithic ar-
chitecture (2014). URL http://microservices.
io/patterns/monolithic. html.

Runeson, P. and Host, M. (2009). Guidelines for conduct-
ing and reporting case study research in software en-
gineering. Empirical Soft. Eng., 14:131-164.

Salii, S., Ajdari, J., and Zenuni, X. (2023). Migrating to a
microservice architecture: benefits and challenges. In
2023 46th MIPRO, pages 1670-1677.

Singer, J., Sim, S. E., and Lethbridge, T. C. (2008). Software
Engineering Data Collection for Field Studies, pages
9-34. Springer London, London.

Soldani, J. (2020). Grey literature: A safe bridge between
academy and industry? SIGSOFT Softw. Eng. Notes,
44(3):11-12.

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J.
(2018). The pains and gains of microservices: A sys-
tematic grey literature review. Journal of Systems and
Software, 146:215-232.

Stubbs, J., Moreira, W., and Dooley, R. (2015). Distributed
systems of microservices using docker and serfnode.
In 2015 7th International Workshop on Science Gate-
ways, pages 34-39.

Taibi, D., Lenarduzzi, V., Pahl, C., and Janes, A. (2017).
Microservices in agile software development: A
workshop-based study into issues, advantages, and
disadvantages. In Proceedings of the XP2017 Scien-
tific Workshops, XP °17, New York, NY, USA. Asso-
ciation for Computing Machinery.

Taylor, G. R. (2005). Integrating quantitative and qualita-
tive methods in research. University press of America.

Velepucha, V. and Flores, P. (2023). A survey on microser-
vices architecture: Principles, patterns and migration
challenges. IEEE Access, 11:88339-88358.

VidieCcan, M. and Bobdk, M. (2022). Container-based
video streaming service. In 2022 IEEE 22nd Inter-
national Symposium on Computational Intelligence
and Informatics and Sth IEEE International Confer-
ence on Recent Achievements in Mechatronics, Au-
tomation, Computer Science and Robotics (CINTI-
MACRo), pages 000191-000196.

Viennot, N., Lécuyer, M., Bell, J., Geambasu, R., and Nieh,
J. (2015). Synapse: A microservices architecture
for heterogeneous-database web applications. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, EuroSys 15, pages 21:1-16. ACM.

Wei, Y., Yu, Y., Pan, M., and Zhang, T. (2021). A feature ta-
ble approach to decomposing monolithic applications
into microservices. In Proc. of the 12th Asia-Pacific
Symposium on Internetware, Internetware ’20, page
21-30, Singapore, Singapore.

Wohlin, C. (2014). Guidelines for snowballing in system-
atic literature studies and a replication in software en-
gineering. In EASE, pages 38:1-10, London, UK.

Yarygina, T. and Bagge, A. H. (2018). Overcoming secu-
rity challenges in microservice architectures. In 20/8
IEEE SOSE, pages 11-20.

263

