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Abstract: The diversity of existing representations of the same ontology creates a problem of manipulation of the same
knowledge according to any computational domain. Unifying similar ontologies by reducing their degree of
heterogeneity seems to be the appropriate solution to this problem. This solution consists of aligning similar
ontologies using a set of existing ontology schema-matching techniques. In this paper, we present an approach
for ontology alignment based on these techniques and machine learning models. To do so, we have developed
a matrix construction method based on ontology matching techniques, namely element matching techniques
and structure matching techniques implemented by elementary matchers. Once the matrix is constructed, we
apply a composite matcher, which is a classifier to combine the individual degrees of similarity calculated for
each pair of ontology elements into a final aggregated similarity value between the two ontologies. This com-
posite matcher is implemented via various supervised machine learning models such as LogisticRegression,
GradientBoostingClassifier, GaussianNB and KNeighborsClassifier. To experiment our alignment method
and to validate the used learning models, we used the reference ontologies and their alignments for the con-
ference and benchmark tracks provided by the Ontology Alignment Evaluation Initiative (OAEI a).

ahttp://oaei.ontologymatching.org/

1 INTRODUCTION

An ontology, as defined by Gruber (Gruber and Olsen,
1994), is a formal and explicit specification of a
shared conceptualisation. It is used to conceptualise
knowledge using concepts or classes, relationships
between these classes and individuals instantiating
these classes. However, the diversity of representa-
tions of the same ontology can lead to difficulties in
knowledge management and manipulation. To rem-
edy this problem, we propose to unify similar ontolo-
gies by reducing their heterogeneity through a process
of ontology alignment. This process aims to compute
similarity measures between the different entities or
elements of each pair of ontology schema (Euzenat
et al., 2007) based on existing schema matching tech-
niques (Shvaiko and Euzenat, 2005). Schema match-
ing techniques (Rahm and Bernstein, 2001; Euzenat
et al., 2007) are based on two main aspects: (i)the
granularity of matching, i.e. at the level of elements

a https://orcid.org/0000-0001-7525-4505
b https://orcid.org/0000-0002-3476-0185

(ontology classes or individuals) or structure (rela-
tionships between classes) and (ii) the way these tech-
niques interpret input information (class labels, data
properties and relationships). These techniques are
implemented using individual matchers (Rahm and
Bernstein, 2001), which calculate similarity accord-
ing to input interpretation criteria corresponding to
each level of ontology granularity. There are two
types of interpretation: syntactic and external. When
the input is interpreted according to the syntactic cri-
terion, it is considered as a sequence of characters
specified by a defined syntactic structure. On the
other hand, when the input is interpreted according to
the external criterion, it is seen as a linguistic object,
using external resources such as a thesaurus to express
relationships between the terms of the labels. There-
after, the composite matchers combine the results of
the different individual matchers, which were used
independently according to different criteria, to pro-
vide a final decision on ontology similarity. Hence,
we have implemented the composite matchers using
supervised machine learning models, as we used la-
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beled data (labels of ontological entities) and contin-
uous values (values of ontological similarity measures
in the interval [0,1]). Several studies (Bulygin, 2018;
Bulygin and Stupnikov, 2019; Xue and Huang, 2023)
have explored the application of machine learning to
ontology matching and they have shown that this ap-
proach can improve the accuracy and efficiency of on-
tology alignment. However they presented a number
of limitations, such as:

1. No respect of the ontology structure in the align-
ment process (Xue and Huang, 2023).

2. Incorrect values of similarity measures for similar
ontology classes.

3. Reduced number of matching techniques are used
to compute ontology element similarity measures.

To overcome these limitations and achieve a high
level of accuracy by the ontology alignment process,
we propose, in this paper, an ontology alignment ap-
proach based on supervised machine learning models
and various schema matching techniques with respect
to the ontology structure.

The remainder of this paper is organised as fol-
lows. Section 2 presents a discussion of related work.
Section 3 presents our alignment approach. Section 4
presents the Experimentation and validation. This ar-
ticle is discussed in section 5. We conclude this paper
in section 6 and propose some perspectives.

2 RELATED WORK

In the literature, several works have been performed
to align ontologies. Some of them are based on ma-
chine learning, such as those published in (Bulygin,
2018; Bulygin and Stupnikov, 2019; Xue and Huang,
2023).

The work proposed in (Bulygin, 2018) exploits
lexical and semantic information as inputs to the
machine learning models NaiveBayesClassifier, Lo-
gisticRegression and XGBoost. Unfortunately, this
work delivers identical entities with incorrect simi-
larity measures and provides very low precision and
accuracy rates compared to the work proposed in (Bu-
lygin and Stupnikov, 2019). Authors in (Bulygin
and Stupnikov, 2019) have proposed an approach that
combines 29 similarity techniques based on strings,
languages, and structures to build their data matri-
ces. They have used LogisticRegression, Random-
ForestClassifier, and GradientBoosting as machine
learning models. While authors in (Xue and Huang,
2023) have proposed an ontology alignment approach
based on the unsupervised machine learning method
of the generative adversarial network with a simulated

annealing algorithm (SA-GAN). The used similarity
measure techniques include string-based techniques
such as Levenshtein distance, Jaro distance, Dice co-
efficient, N-gram, and the WordNet language-based
technique. The principal limit of the approaches pro-
posed in (Bulygin and Stupnikov, 2019; Xue and
Huang, 2023) is to consider entities in the alignment
process independently from their data properties and
object properties, which affects the alignment accu-
racy.

Based on this comparative study, the originality of
our contribution is defined as follows:

• The alignment of ontological classes is according
to their data properties and their relationship or
object properties. However, the approaches pre-
sented in (Bulygin, 2018; Bulygin and Stupnikov,
2019) align classes independently of their data
properties and their relationship properties which
decreases the accuracy.

• The alignment process respects the ontology’s
structure , whereas this aspect is not taken into
account in the approach proposed by (Xue and
Huang, 2023).

3 PROPOSED APPROACH

Our approach consists in matching ontologies based
on the use of different machine learning models to
combine the individual degrees of similarity calcu-
lated for each pair of ontology elements in a final ag-
gregated similarity value. Indeed, the accuracy and
efficiency of our approach are based on the similarity
measure matrices that we have constructed, which are
the input to the used machine learning models. Ac-
cording to figure 1, this approach is mainly composed
of three principal phases: the Pre-Processing phase,
the Training and Testing phase and the Quality Eval-
uation phase(cf. Figure 1).

3.1 Phase 1: Pre-Processing

As shown in figure 1, this phase takes as in-
put a pair of reference ontologies and their corre-
sponding reference alignment files provided by the
OAEI (Ondřej Zamazal, ). The output of this phase
is a matrix containing the calculated similarity values
and the reference alignment values. This matrix is
constructed in two steps: Ontology Element Extrac-
tion step and Similarity Value Calculation step.
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Figure 1: Architecture of the proposed approach.

3.1.1 Step 1.1: Ontology Element Extraction

This step consists of extracting the ontological ele-
ments needed to build the ontological element ma-
trix from the OWL files of the ontologies of the in-
put reference ontology pairs, provided by the OAEI
competition, as well as the confidence values, calcu-
lated by the OAEI competition, from their input refer-
ence alignment files (RDF files). The result is a matrix
of ontological elements, including class labels, data
property labels, relationship labels or objectProperty
labels as indicated in the OWL file. In addition, the
confidence value (calculated by OAEI) is extracted
from the reference alignment file.

The process of constructing the ontological ele-
ment matrix is detailed as follows:

• Step 1: extracting the classes lists, respectively
named Classes1 and Classes2, of the two ontolo-
gies Onto1 and Onto2.

• Step 2: for each class CLi of the Classes1 list,
construct a pair of classes in the form (CLi,CL j)
with all the classes CL j of the Classes2 list with
i≥ 1 and j≥ 1. More precisely, applying the
Cartesian product of all classes CLi from list
Classes1 with all classes CL j from list Classes2.

• Step 3: for each pair of constructed classes
(CLi, CL j), we extract from the OWL files of the
two ontologies Onto1 and Onto2 the list of data
properties of each of the two classes CLi and
CL j, named respectively Data Properties CLi
and Data Properties CL j, as well as the list of ob-
ject properties of each of the two classes CLi and
CL j, named respectively relationships CLi and re-
lationships CL j. In addition, we extract the con-
fidence value, named Confident alignment, of the

two classes CLi and CL j from the reference align-
ment file (RDF file).

• Step 4: for each pair of classes (CLi, CL j), we
construct a vector called VElements, containing
all the data extracted by the end of step 3. This
vector is defined by:

VElements=(Onto1,Onto2,Cli,Clj,
DataProperties CLi,DataProperties CLj,
relationships CLi,relationships CLj,
Confident alignment)

• Step 5: we construct the Ontol-
ogy Element Matrix, where each of its row
is an instance of the VElements vector. The size
of the Ontology Element Matrix is n * m where
n and m are respectively the number of classes of
the ontologies Onto1 and Onto2 to align.

3.1.2 Step 1.2: Similarity Value Calculation

This step consists of computing the syntactic and ex-
ternal similarity measures for the different pairs of
entities stored in the Ontology Element Matrix. The
output is a similarity matrix containing the computed
similarity values and the reference alignment values
of the ontology elements stored in the input matrix.
To do this, we have used 24 individual matchers im-
plementing 21 string-based (Bulygin and Stupnikov,
2019) techniques and 3 language-based (Bulygin and
Stupnikov, 2019) techniques (cf. Table1).

Thus, the computation of the similarity measure is
detailed as follows :

• Step 1: we Apply a normalisation to the onto-
logical elements stored in the input matrix, i.e.
class labels, data property labels and relation-
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Table 1: String, language and structure-based techniques used by our approach.

Technique class Techniques

String-based techniques N−gram 1, N−gram 2, N−gram 3, Dice coefficient, Jaro measure, Monge-Elkan, Smith−Waterman,
Needleman−Wunsh, Affine gap, Bag distance, Cosine similarity, Partial Ratio, Soft TF-IDF, Generalized
Jaccard, Jaro−Winkler, Partial Token Sort Fuzzy Wuzzy Ratio, Soundex, TF−IDF, Token Sort, TverskyIndex,
Overlap coefficient, and Longest common subsequence (Euzenat et al., 2007; Bulygin, 2018).

Language-based techniques Wu and Palmer similarity,Word2vec and Spacy (Euzenat et al., 2007).

Structure-based techniques Apply all string-based and language-based techniques between two class labels, data property labels and
relationship labels of two ontological entities.

ship labels.Our objective is to transform these en-
tities to a common format in order to enhance the
alignment result. We have used the normalisation
techniques: case normalisation, blank normal-
isation, link striping, punctuation elimination,
diacritics suppression and digit suppression.

• Step 2: we apply different individual matchers to
compute the similarity measures for each pair of
normalised ontological elements.

• Step 3: we construct a vector for each pair
of ontological elements containing the calcu-
lated similarity measures. We distinguish
VSIm Classes vector, VSim Properties vector and
VSim relationships vector. Each of these vectors
is defined on 24 similarity values and takes the
following form:

VSIm Entity= (sim Ngram,sim Wordnet,
, . . . ,sim jaro,sim Spacy)

Where Entity denotes classes, data properties or
relationships.

• Step 4: we combine the constructed vectors into
a global similarity vector called V GSim, which
contains all the calculated values, as well as the
confident alignment of each pair of elements con-
cerned. The V GSim vector is defined as follows:

V GSim= (VSIm Classes,VSim Properties
,VSim relationships,
Confident alignement)

This vector is constructed for each pair of classes
of the ontologies to be aligned. Thus, this vector
contains 72 similarity values (3 VSIM vectors *
24 techniques) and the confident alignment of the
current pair of classes.

• Step 5: we build the similarity ma-
trix Global Similarity Values Matrix,
where each of its row represents an in-
stance of the computed V GSim. The
Global Similarity Values Matrix has the same
size as the Ontology Element Matrix created by
the previous step.

3.2 Phase 2: Training and Testing

This phase consists in determining the final aggre-
gated alignment of a pair of ontologies. It takes as
input the Global Similarity Values Matrix provided
by the previous phase and four machine learning mod-
els. As output, the training and testing phase pro-
vide the degree of similarity of a pair of input on-
tologies, as well as the efficiency measures includ-
ing precision, recall and f-measure values, provided
by each used machine learning model. We have
used the LogisticRegression, GradientBoostingClas-
sifier, GaussianNB and KNeighborsClassifier models
that are most frequently used in the literature (Bu-
lygin, 2018; Bulygin and Stupnikov, 2019). We
trained each of these models using a training ma-
trix built of 60% of the number of rows of the
Global Similarity Values Matrix. Then we tested
each of these trained models using a test matrix built
of the remaining 40% of the number of rows in the
Global Similarity Values Matrix. For each pair of
ontologies, each machine learning model used builds
the necessary datasets to evaluate the degree of sim-
ilarity between the ontologies, based on the first 72
columns of the training matrix. This creates a trained
model. Then, this model uses the first 72 columns
of the corresponding test matrix to provide a final
classification of the current ontology pair, evaluating
their similarities according to the confident alignment
value (column Con f ident alignment). This classifi-
cation is based on the conformity measures that eval-
uate the degree of correspondence between the de-
grees of similarity predicted by each machine learning
model and the confident value of alignment. Indeed,
we have used the accuracy or precision (P), recall
(R) and f-measure (Euzenat et al., 2007) metrics as
conformity metrics. These metrics are the most fre-
quently used in this context. They are defined as fol-
lows:

P : Λ×Λ → [0..1]

P(A,T ) =
|T ∩A|
|A|

R : Λ×Λ → [0..1]
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R(A,T ) =
|T ∩A|
|T |

f −measure =
2∗P(A,T )∗R(A,T )

P(A,T )+R(A,T )
Where Λ is the set of all values of calculated align-
ments and of reference alignments provided by OAEI,
T is the set of all values of reference alignments, A is
the set of all values of calculated alignments and |A ∩
T| is the cardinality of the set of values of calculated
alignments according to the values of the reference
alignments.

3.3 Stage 3: Quality Evaluation

This phase takes as input the matrices of conformity
metrics, provided by the previous phase, for the ref-
erence ontology pairs that we have used in our ap-
proach. It consists of comparing the results pro-
vided by our approach with those of various OAEI ap-
proaches, in particular (Bulygin and Stupnikov, 2019;
Huber et al., 2011; Bock et al., 2011; David, 2011;
Xue and Huang, 2023; David, 2007; Eckert et al.,
2009; Straccia and Troncy, 2005; Euzenat et al.,
2005). Notably, the ultimate goal of this comparison
is the validation of the machine learning models. It
is based mainly on the table of f-measure values re-
turned by each model for all the alignment tests that
we have performed on the reference ontology pairs (
see Table 3 and Table 4). We chose to use this metric
in this comparison because it calculates the harmonic
mean of precision and recall, giving them the same
importance (Euzenat et al., 2007) (see section 3.2).

4 EXPERIMENTATION AND
QUALITY EVALUATION OF
THE ALIGNMENT APPROACH

To implement different phases of our approach, we
have used Python with anaconda1.10.1 and the Spy-
der5.0.3 editor, which are configured by a set of
tools, namely the dictionary GoogleNews-vectors-
negative3- 00 and the libraries py stringmatching,
beautifulsoup4, Owlready2, pandas, fuzzycomp,
NGram, Wordnet, nltk (Natural Language Toolkit),
spacy, en core web lg, textbfGensim, tqdm, Keras
and sklearn. These tools are executed on a laptop
with a 64-bit operating system, an X64 Intel Core pro-
cessor i7-8550U 1.80GHz - 1.99GHz with a version
of Windows 10 Professional N and a RAM of 8.00G
bytes.

4.1 Hyper Parameter Tuning of Used
Machine Learning Models

Table 2 summarises the hyper parameter tuning for
LogisticRegression, GradientBoostingClassifier and
KNeighborsClassifier models, as the GaussianNB
model does not need to be configured.

Table 2: hyper parameter tuning of used machine learning
models.

Model hyperparameter
LogisticRegression max iter= 1000, solver=

’lbfgs’
GradientBoosting
Classifier

learning rate = 1,
n estimators= 100

KNeighborsClassifier n neighbors=1

4.2 Used Reference Ontology Tracks

In our approach, we are focused on the benchmark
track and the conference track among the various
tracks provided by the OAEI (Ondřej Zamazal, ) com-
petition. Each track consists of a set of reference on-
tologies (OWL 1 files) and their reference alignments
(RDF 2 files). Indeed, the benchmark track consists of
a collection of reference ontologies from various do-
mains and of different sizes. This collection includes
the reference ontology, Ontology 101 (OWL file), as
well as several variations of this ontology (Ondřej Za-
mazal, ). These variations (OWL files) are systemat-
ically generated from Ontology 101 by deleting cer-
tain ontological information in order to evaluate the
performance of our algorithms in the absence of this
information. The ontology variations are classified
into three test families. The first, the simple 1xx test
family, compares the reference ontology to itself, to
an irrelevant ontology, or to an ontology with linguis-
tic restrictions and language generalisation. The sec-
ond, systematic test family 2xx, involves deleting or
replacing ontology components with synonyms, ran-
dom strings or strings in another language. Finally,
the third, the 3xx family, consists of four real on-
tologies reminiscent of BibTeX namely the ontologies
301, 302, 303 and 304. In our contribution, we have
used ontologies 101 and 104 from family 1xx, ontolo-
gies 201, 208, 221, 247, 248 and 266 from family 2xx
and all ontologies from family 3xx. The conference
track shows the highest degree of heterogeneity com-
pared to the other tracks. This is an essential feature
for the ontology alignment task. It consists of seven
reference ontologies (OWL files).

1https://www.w3.org/OWL/
2https://www.w3.org/RDF/
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Table 3: Values of the f-measure of our approach compared to the approach proposed by (Bulygin and Stupnikov, 2019) for
each pair of tests in the 2023 OAEI conference track.

Pair of Reference Ontologies
Our Approach Approach in (Bulygin and Stupnikov, 2019)

LR GBC GNB KN LR RF XGB

cmt-conference 0.30 0.30 0.45 0.44 – – –

cmt-confOf 0.45 0.44 0.50 0.51 0.44 0.41 0.48

cmt-edas 0.92 0.91 0.75 0.79 0.72 0.76 0.63

cmt-ekaw 0.66 0.60 0.69 0.72 0.58 0.62 0.70

cmt-iasted 0.80 0.79 0.85 0.82 0.88 0.88 0.88

cmt-sigkdd 0.79 0.75 0.70 0.81 0.73 0.80 0.73

conference-confOf 0.69 0.60 0.61 0.75 0.61 0.54 0.57

conference-edas 0.55 0.55 0.60 0.59 0.53 0.5 0.55

conference-ekaw 0.38 0.35 0.51 0.45 0.43 0.40 0.47

conference-iasted 0.45 0.42 0.70 0.66 – – –

conference-sigkdd 0.66 0.62 0.65 0.63 0.64 0.54 0.58

confOf-edas 0.55 0.59 0.70 0.55 0.62 0.62 0.62

confOf-ekaw 0.45 0.50 0.60 0.43 0.58 0.68 0.64

confOf-iasted 0.55 0.55 0.55 0.42 0.71 0.61 0.66

confOf-sigkdd 0.79 0.78 0.79 0.76 0.72 0.72 0.72

edas-ekaw 0.56 0.52 0.96 0.90 – – –

edas-iasted 0.38 0.45 0.75 0.32 0.42 0.57 0.57

edas-sigkdd 0.70 0.72 0.75 0.66 0.53 0.63 0.63

ekaw-iasted 0.62 0.70 0.55 0.44 0.58 0.75 0.70

ekaw-sigkdd 0.70 0.70 0.77 0.79 0.77 0.77 0.77

iasted-sigkdd 0.90 0.80 0.80 0.75 0.75 0.81 0.81

LR: LogisticRegression, GBC: GradientBoostingClassifier, GNB: GaussianNB, KN: KNeighborsClassifier, RF: RandomForest, XGB: XGBoost.

Table 4: Comparison of our approach with the results obtained by participants in the 2016 OAEI benchmark test in terms of
f-measure.

Pair of Reference

Ontologies
Approaches in the Literature Our Approach

Falcon GeRMeSMB CODI MapPSO AROMA edna GAN GBC GNB KN LR

101-104 1.00 1.00 0.99 1.00 0.98 1.00 1.00 0.95 0.55 0.75 0.80

201-208 0.84 0.88 0.45 0.69 0.73 0.54 0.79 0.66 0.45 0.65 0.77

221-247 0.99 0.97 0.98 0.98 0.95 0.88 0.99 0.91 0.88 0.92 0.90

248-266 0.50 0.60 0.37 0.48 0.37 0.35 0.55 0.44 0.55 0.42 0.38

301-304 0.79 0.47 0.59 0.34 0.62 0.46 0.78 0.60 0.75 0.66 0.79

Pair of Reference

Ontologies
FOAM XGBoost OLA OMAP LR RF DT GBC GNB KN LR

101-302 0.77 0.72 0.34 0.74 0.72 0.71 0.75 0.77 0.70 0.75 0.88

101-303 0.84 0.75 0.44 0.84 0.82 0.82 0.81 0.75 0.80 0.88 0.90

101-304 0.95 0.91 0.69 0.91 0.90 0.91 0.96 0.97 0.91 0.90 0.88

LR: LogisticRegression of (Bulygin and Stupnikov, 2019), GBC: GradientBoostingClassifier, GNB: GaussianNB, KN: KNeighborsClassifier, XGBoost: XG-
Boost from (Bulygin and Stupnikov, 2019) NN: Neural Network, DT: DT of (Eckert et al., 2009) GAN: Generative Adversarial Network from (Xue and Huang,
2023).

To evaluate the performance of ontology matching
processes, it is necessary to use reference alignments.
These alignments are available as a set of RDF files on
the OAEI competition website. Each file contains only
similar entities in ontology pairs, and their confidence

value, generally equal to 1.0. We have selected eight
reference alignment cases from the benchmark track,
as they are the most frequently used by researchers in
the literature. In addition, we have used 21 reference
alignment cases of the conference track.
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4.3 Quality Evaluation of the Alignment
Approach

To validate machine learning models that we have
used in our approach, we have developed the evalu-
ation process shown in figure 2. This process is based
on the comparison of f-measure values provided by
each of used machine learning models (cf. Table 3
and Table 4). To evaluate our alignment approach,
we have used the reference ontologies and their align-
ments namely the conference and benchmark tracks
provided by the OAEI. These datasets are frequently
used by various approaches in the literature (Bulygin
and Stupnikov, 2019; Huber et al., 2011; Bock et al.,
2011; David, 2011; Xue and Huang, 2023; David,
2007; Eckert et al., 2009; Straccia and Troncy, 2005;
Euzenat et al., 2005).

Figure 2: Validation process.

After running the evaluation process (cf. Figure 2)
on the ontologies of the conference track, the com-
parison of our results and those published in (Bulygin
and Stupnikov, 2019) leads to the following observa-
tion:

1. For the LogisticRegression model, 61.60% of our
alignment tests are better than the tests of the
alignment approach proposed in (Bulygin and
Stupnikov, 2019).

2. For the GradientBoostingClassifier model,
57.14% of our alignment tests are better than
the tests of the alignment approach proposed in
(Bulygin and Stupnikov, 2019).

3. For the GaussianNB model, 80.95% of the align-
ment tests provided by our approach are better
than those provided by the alignment approach
proposed in (Bulygin and Stupnikov, 2019).

4. For the KNeighborsClassifier model, 57.14% of
our alignment tests are better than those per-
formed by the alignment approach published
in (Bulygin and Stupnikov, 2019).

After executing the evaluation process of figure 2 on

the ontologies of the benchmark track, the results of
the comparison indicate that :

1. For the GradientBoostingClassifier model and
the KNeighborsClassifier model, 50% of the
alignment tests provided by our approach are bet-
ter than the tests applied by (Bulygin and Stup-
nikov, 2019; Huber et al., 2011; Bock et al., 2011;
David, 2011; Xue and Huang, 2023; David, 2007;
Eckert et al., 2009; Straccia and Troncy, 2005; Eu-
zenat et al., 2005).

2. For the GaussianNB model and the LogisticRe-
gression model, 75% of our alignment tests are
better than the tests of the approaches proposed
by (Bulygin and Stupnikov, 2019; Huber et al.,
2011; Bock et al., 2011; David, 2011; Xue and
Huang, 2023; David, 2007; Eckert et al., 2009;
Straccia and Troncy, 2005; Euzenat et al., 2005).

Hence, the validation process shows that all of models
that we have used in our alignment approach are valid.

5 DISCUSSION

We have evaluated our approach according to the de-
gree of accuracy of the ontology alignment generated
by our approach compared to the alignment accu-
racy generated by the existing approaches published
in (Bulygin and Stupnikov, 2019; Huber et al., 2011;
Bock et al., 2011; David, 2011; Xue and Huang,
2023; David, 2007; Eckert et al., 2009; Straccia and
Troncy, 2005; Euzenat et al., 2005). It is clear that
our approach produces good results on the majority of
alignment tests that we have performed on the confer-
ence and benchmark tracks provided by OAEI. This is
because our approach exploits ontological data more
effectively than the existing approaches. In particular,
the ontology scanning process that we have used re-
spects rigorously the structure of the ontologies to be
aligned. In addition, the machine learning models that
we have used, are more efficient than those employed
in the existing approaches.

However, our approach shows low accuracy
for some reference ontology pairs such as confof-
iasted, confof-ikaw, edas-ekaw, cmt-conference, cmt-
confOff, conference-ekaw, conference-iasted, 201-
208, and 248-266. This decrease in accuracy is
mainly due to the absence of the data type properties
(dataProperty) and object properties (objectProperty)
in the structure of each of these ontologies. These
properties play a crucial role to increase the accu-
racy of our alignment approach. Consequently, the
absence of these elements in a given ontology schema
considerably reduces the accuracy of the alignment.
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Therefore, our ontology alignment approach remains
a prospective when we use the maximum of the ontol-
ogy schema elements. In fact, we will consider other
ontology elements such as sub-classes, individuals, to
enhance our approach’s accuracy.

6 CONCLUSION AND
PERSPECTIVES

In this paper, we have proposed an ontology align-
ment approach based on several schema matching
techniques and machine learning models. We have
detailed the different phases and steps that compose
this alignment approach, namely the Pre-Processing
phase, the Ontology Element Extraction step, the
Similarity Value Calculation step, the Training and
Testing phase and the Quality Evaluation phase. The
pre-processing phase involves building similarity ma-
trices using individual matching tools executed on the
reference ontologies provided by the OAEI competi-
tion, in particular the Conference track and the Bench-
mark track. The training and testing phase consists of
determining the final aggregated alignment of a pair
of ontologies. The Quality Evaluation phase consists
of comparing the results obtained by our approach
with those of various OAEI participants, in order to
validate or invalidate the used machine learning mod-
els. We have validated our approach by performing
experimental results, which give better accuracy than
the approaches described in (Bulygin and Stupnikov,
2019; Huber et al., 2011; Bock et al., 2011; David,
2011; Xue and Huang, 2023; David, 2007; Eckert
et al., 2009; Straccia and Troncy, 2005; Euzenat et al.,
2005).

As future work, we propose to enrich the align-
ment approach by adding another set of ontology el-
ements, such as sub-classes and individuals. In ad-
dition, we will test other machine learning models
and select the best performing model for the ontology
alignment task.
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