
Towards a Web Application Attack Detection System
Based on Network Traffic and Log Classification

Rodrigo Branco a, Vinicius Cogo b and Ibéria Medeiros c

LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal

Keywords: Web Application Attacks, Netflows, Machine Learning, Natural Language Processing, Software Security.

Abstract: Web applications are the preferred means of accessing online services. They have been built quickly and
can be left with vulnerabilities due to human error and inexperience, making them vulnerable to attacks.
As a result, security analysts must analyse and react to countless threats and alerts. Such alerts can not
provide sufficient information about the attack performed on the web application, which is crucial for a correct
risk assessment and remediation measures. Network Intrusion Detection Systems (NIDS) have been used as
a primary defence mechanism against web attacks. However, HTTPS, a widely adopted protocol in web
applications, encrypts traffic, hindering NIDS’ efficiency in searching for network security threats and attacks.
To enhance web application security, we present an approach that uses natural language processing (NLP)
and machine learning (ML) algorithms to detect attacks through the analysis of network traffic (including
HTTPS) and log-based payload contents. The approach employs anomaly detection by clustering netflows,
and then NLP and supervised ML are used on the payload contents of anomalous netflows to identify attacks.
Preliminary experiments have been made to detect SQL injection (SQLi), cross-site scripting (XSS), and
directory traversal (DT) web attacks.

1 INTRODUCTION

The pressure to release new features to web applica-
tions often leads to prioritising quantity over quality,
resulting in security breaches and creating vulnerabil-
ities in web applications. As a result, such applica-
tions have been a target for attackers for the undue
retrieval of sensitive and private data (e.g., bank ac-
counts). According to OWASP1, injection vulnerabil-
ities are present in 94% of web applications, the three
most common being SQLi, XSS, and DT2.

The HTTPS protocol has been widely used in an
attempt to mitigate web attacks, protecting data com-
munication in web applications by encrypting net-
work packets to guarantee data confidentiality. Al-
though organisations have adopted it, the vulnerable
code of the end-point software behind HTTPS re-
mains unprotected and a target for malicious users.

Network Intrusion Detection Systems (NIDS) are
the standard mechanisms to detect network attacks.

a https://orcid.org/0009-0008-6727-0642
b https://orcid.org/0000-0002-1299-8950
c https://orcid.org/0000-0003-4478-8680
1https://owasp.org/www-project-top-ten/
2https://owasp.org/Top10/A03 2021-Injection/

To detect these types of web attacks, a Deep Packet
Inspection (DPI) (Cheng et al., 2020) NIDS is re-
quired since such attacks are only detected by inspect-
ing the packet content (Shema, 2010). For instance,
for SQLi it looks for malicious queries and related
special characters (Pramod et al., 2015).

DPI-based NIDS can create network bottlenecks
as it has to inspect every packet, which will be in-
creased when traffic has to be decrypted first. To
overcome this, NIDS can employ two different ap-
proaches: Netflows and intermediary proxies. Net-
work flows (or Netflows) can solve the bottleneck
problem by enabling the analysis of large amounts of
traffic without individual inspection. A Netflow ag-
gregates into a single flow a sequence of packets that
share common characteristics and are observed in a
given point by a period of time (Claise, 2004). Al-
though Netflows can work on HTTPS protocol, since
there is no packet decryption, the detection of injec-
tion web attacks is unable over them since these do
not comprise application-level data required to detect
such attacks. Intermediary proxies focus on inter-
cepting and decrypting the network traffic so that the
DPI can analyse it (O’Neill et al., 2016). Although
they work on HTTPS protocol and allow the detec-

692
Branco, R., Cogo, V. and Medeiros, I.
Towards a Web Application Attack Detection System Based on Network Traffic and Log Classification.
DOI: 10.5220/0012722800003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 692-699
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



tion of these attacks, they raise security concerns be-
cause they increase the attack surface by adding more
components with access to the communication par-
ties’ cryptographic keys.

NIDS systems can resort to ML algorithms for
anomaly detection (Buczak and Guven, 2016), al-
lowing the identification of patterns from attacks it
knows, but their efficiency is limited when process-
ing encrypted data or an anomaly is flagged, but not
much relevant information is obtained of it. The Se-
curity Operation Center (SOC) team suffers from this
lack of information while receiving numerous alerts.
Hence, knowing the nature of the attack is highly ben-
eficial to alert prioritisation, assessment and remedia-
tion measures. DPI solves the problem of lack of in-
formation, while anomaly detection works efficiently
but does not give any helpful information. Therefore,
a DPI-based NIDS system capable of functioning in
both unencrypted and encrypted traffic, without ad-
ditional data decryption, which provides useful infor-
mation when detecting the attacks, is crucial for the
security of modern web applications.

This work proposes an approach to protect web
applications by identifying and classifying web at-
tacks in HTTP(S) network traffic based on NLP and
ML algorithms and log-based payload contents. Rely-
ing on unsupervised ML, the approach detects anoma-
lous Netflows in HTTP(S) traffic, followed by a DPI
using NLP and supervised ML that inspects the traffic
information recorded in the web server logs and asso-
ciated with the detected anomalous Netflows to search
for and classify web attacks. The approach leverages
the web server logs to overcome the encrypted data
challenge without decrypting the packets. The ap-
proach uses a clustering algorithm to identify clusters
with suspicious Netflows. Next, the data recorded in
the web server log and associated with those Netflows
is standardised into a vector by an NLP algorithm to
be processed by different supervised ML algorithms.
These last classify the vector into a web attack, and
then a heuristic classifies the vector to decide which
class of injection attack it belongs to.

Our initial implementation focuses on detecting
SQLi, XSS, and DT attacks and handles HTTP(S)
traffic. The supervised ML algorithms are trained
with NLP vectors of attacks performed by two web
scanners—Wapiti3 and Burp4. Preliminary experi-
ments aided in selecting and assessing the ML models
used for classifying the web attacks. The results show
that the web attacks’ class can be discovered.

The main contributions of the paper are: (1) a
DPI-based NIDS approach to detect anomalous

3https://wapiti-scanner.github.io/
4https://portswigger.net/burp

HTTP(S) traffic and perform a log-based classifica-
tion of the web attacks, resorting to NLP and ML al-
gorithms (§4); (2) an implementation of the approach
for detection of SQLi, XSS, and DT attacks (§5); (3) a
preliminary evaluation of this approach (§6).

2 WEB INJECTION ATTACKS

Web injection attacks allow the injection of malicious
code into an application for it to be executed.

SQL injection (SQLi) injects SQL code
(e.g., ’ OR 1=1;-- ), provided by a user input
field, in a SQL query. If the user input is not sanitised
or verified, and the target query is not protected, the
web application may contain an SQLi vulnerability.

A Cross-Site Scripting (XSS) exploitation oc-
curs when an application uses untrusted data to
generate a web page without preventing the exe-
cution of scripts provided from user inputs, like
<script>alert("XSS attack")</script>.

A Directory Traversal (DT) attack allows the at-
tacker to access arbitrary unprotected directories and
files outside the web application’s root directory. The
user input ../../Windows/system.ini tries to ac-
cess the system.ini file and display it to the attacker
if the system allows it to.

3 RELATED WORK

Several works in the literature study the detection of
attacks in network traffic. We discuss those from the
two methods most related to our proposed solution:
the use of machine learning (ML) and natural lan-
guage processing (NLP).

Deep Packet Inspection. Deep Packet Inspection
(DPI) examines the contents of data packets and
uses pattern-matching algorithms to identify poten-
tial threats and respond appropriately to them (El-
Maghraby et al., 2017). DPI is useful for detecting
anomalous traffic, but its popularity has decreased
with the widespread use of HTTPS, which encrypts
packets for secure transactions. Proxy servers can be
deployed, with its associated risks, in encrypted com-
munications to cope with that (Jarmoc, 2012). The
network traffic is intercepted by a proxy, meaning that
the client’s request is captured and terminated to in-
spect the conversation in plain text. The intercepting
process sends a second request to the server on behalf
of the client. As a result, the client sends the data to
the proxy, and the proxy resends the data to the server

Towards a Web Application Attack Detection System Based on Network Traffic and Log Classification

693



and vice-versa. The proxy has access to the plain-text
communication because it uses different encryption
keys for each communication channel. However, this
implementation has some risks, such as communica-
tion exposure, a single point of failure in the proxy,
cypher strength decreasing since two communications
possess two different encryption keys and transitive
trust issues. We also intend to evaluate HTTPS traf-
fic without intercepting and decrypting the traffic it-
self. We will resort to web server logs, which already
record packet content data after decryption.

Netflows. Different Netflows datasets for super-
vised ML were created, with netflows labelled as be-
nign or malicious (Sarhan et al., 2021). Despite the
good results obtained, their datasets do not reflect real
scenarios, incurring in overfitting. Alternatively, un-
supervised ML can detect anomalous traffic with Net-
flow analysis (Durão, 2022). Their evaluation high-
lighted that the source IP address significantly differs
between benign and malicious traffic—a distinction
also observed in the real-world. Like the latter, our
proposal addresses the lack of labelled data in real-
world scenarios.

ML and NLP for Anomaly Detection. Many stud-
ies have delved into the realm of ML for cybersecu-
rity (Xin et al., 2018). Most approaches employ su-
pervised ML or a blend of supervised and unsuper-
vised ML. Others used NLP and deep learning (DL)
to create an anomaly detection system for HTTP traf-
fic (Seyyar et al., 2022). They used the BERT algo-
rithm to create a vector of the user input and DL to
detect an attack. To the best of our knowledge, no
other work has attempted to classify the category of
an injection attack using NLP and ML, as we propose.

4 PROPOSED SOLUTION

4.1 Approach Overview

Our main goal is to create a NIDS to detect and clas-
sify web attacks on HTTP(S) traffic. We intend to de-
tect anomalous network traffic by analysing Netflows
and classifying their packet payloads in an injection
attack class without payload decryption (for HTTPS).
To do so, our approach uses unsupervised ML for Net-
flows, a log-based DPI with NLP, and supervised ML
for web attack classification.

To achieve this goal, the approach must handle
three aspects: (i) HTTPS traffic without requiring de-
cryption to access the payload, (ii) minimise bottle-

neck caused by DPI, and (iii) correct identification of
web attacks. To cope with (i), we propose using Net-
flows since they do not deal with the application-layer
data (i.e., payloads). Instead, they contain data from
the transport and network layers of the TCP/IP model.
Therefore, monitoring HTTPS traffic over Netflows
is feasible without decrypting the communication.
Thus, we propose using Netflows for system monitor-
ing and Netflow clustering through unsupervised ML
to detect anomalous HTTP(S) Netflows. However, as
DPI requires accessing packet payloads in clear text,
the approach obtains such data from the web server
logs, the end-point of communication where payloads
are stored in clear text, even for HTTPS. For handling
with (ii), the approach will only inspect the payloads
of the detected anomalous Netflows, which will be
retrieved from the web server’s logs. Lastly, for as-
pect (iii), as anomaly detection methods may not pro-
vide the needed insights for classifying the vulnera-
bility type (Seyyar et al., 2022; Gao et al., 2017) and
the wide range of (sub)strings involved in the attacks
are not suitable to a correct attack classification, we
propose using NLP algorithms in a supervised classi-
fication model accomplished with a heuristic to clas-
sify the web attack.

Figure 1 shows the architecture of the proposed
NIDS, comprising four modules: Netflow Detector,
Log Extractor, Data Preprocessor, and Web Attack
Classifier. While the first three modules are responsi-
ble for detecting suspicious Netflows, retrieving their
payloads from web server logs, and preparing them to
be delivered to the fourth module, the latter attempts
to classify the received preprocessed payloads into a
known web attack class, determined by NLP and ML
algorithms and a heuristic. If this module determines
that an attack occurred, an alarm is generated and sent
to the SOC, which can verify its veracity and take a

Client

User

WebServer

Web 
Application

Web Logger

Netflow
Detector

Log
Extractor

Data
Preprocessor

Standard
Dictionary

- Alarm -
Attack State

SOC

Security 
Analyst

Web Attack
Classifier

Figure 1: Architecture of the proposed NIDS to detect and
classify web attacks over network traffic. The arrows in red
represent the main workflow.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

694



remediation measure. In the system, a Client is an en-
tity that interacts with the web application (WebApp),
which can be a normal user, an attacker or a web scan-
ner. The following section details each module, with
insights into their design.

4.2 Detailed Design Insights

4.2.1 Netflow Detector

The Netflow Detector aims to detect anomalous
HTTP(S) Netflows associated with malicious activity
(e.g., web scanners). This module captures the traf-
fic the entities Client-WebApp generate. The traffic is
obtained as PCAP and converted into a Netflow. This
Netflow has information on the bi-directional traffic
of Client-WebApp in a single flow that occurs in a
period. The Netflow has a set of features in the net-
work and transport layers of TCP/IP protocol, such as
source and destination IP and ports, and others that
are calculated, for instance, the number of packets
and bytes exchanged in that period. These features
are converted to numbers for the ML algorithms to
use. Afterwards, Netflows are then clustered by an
unsupervised ML algorithm, such as k-Means, DB-
SCAN, and Meanshift, thus generating distinct clus-
ters with similar characteristics. Clusters containing
scarce Netflows are deemed anomalous and marked to
retrieve the associated logs from the Web Logger on
the WebServer entity. At this point, the approach has
significantly reduced the amount of data for further
analysis, leaving only a few Netflows to be inspected.

4.2.2 Log Extractor

The Log Extractor retrieves the logs corresponding to
these anomalous Netflows. It filters the Web Logger’s
logs and retrieves the data sent by the Client to the
WebApp, the URL and the parameters involved in the
attack, i.e., the page input fields.

It is presupposed that the Netflows possess only
anomalous traffic, so the system assumes that all the
payloads in these logs may be suspicious. Analysing
the logs is not straightforward since POST requests
are not logged by the web server by default, so we
must force this logging process since these types of
requests contain user input that is interesting to access
(see Section 5 on how this feature was implemented).

The module, to get the correct log subset from
the Web Logger, uses for matching keys the datetime,
source IP, and destination IP, as these features are
also present in the Netflows. It also considers the
datetime deviation between the time when traffic is
captured and the data is logged. So, it manages this
deviation through a threshold to ensure it gets all the

logs related to the identified anomalous traffic. It also
discards the logs that do not have a payload included.
The log data comes in chunks, so the module rebuilds
these logs, identifying the GET and POST requests,
joining all the parts, and rebuilding the payloads. The
final output of this module is a steady stream of logs
with all the requests and their payloads.

4.2.3 Data Preprocessor

This module takes suspicious logs and prepares pay-
loads for classification. The preparation process in-
volves capturing the essence of an injection attack,
enabling the system to preprocess the payload and
quickly identify and classify an attack.

To accomplish this, this module parses the previ-
ous payloads to get the user values, i.e., not the re-
maining features included in the URL (e.g., parame-
ters or input fields). This way, we can generalise the
system to any web application since, by removing the
input fields, the system does not need any knowledge
of the web application it monitors. Next, it removes
the dummy values among the user values retrieved.
Dummy values are strings without any metacharac-
ters contained in an attack. Note that, web scanners
and attackers do not inject malicious inputs on all in-
put fields included in a URL The system can detect
these dummy values because when the Web Logger
saves the payloads, it encodes all the metacharacters
into their HTML URL representation. For example,
the metacharacter slash (“/”) is encoded into “%2F”.

With only the suspicious user values, the sys-
tem standardises them using a Standard Dictionary.
This dictionary contains all the known malicious XSS
events and tags, SQL commands and some recurrent
substrings used in DT attacks. It catches these kinds
of data and replaces them with tokens for further anal-
ysis. This dictionary can be extended with more at-
tacks of the same or a new type.

Listing 1 exemplifies the data treatment pipeline
when processing a payload containing an SQLi at-
tack. The system isolates the user values and removes
the dummy values, keeping only the suspicious in-
stances. Then, the instances are standardised.

login=hello&password=my_password&num_secure=158%22%29+and

+82%3d82+and+%28%2216%22%3d%2216&submit=submit

↓
["hello", "my_password", "158%22%29+and+82%3d82+and

+%28%2216%22%3d%2216", "submit" ]

↓
158%22%29+and+82%3d82+and+%28%2216%22%3d%2216

↓
NUM %22 %29 AND NUM %3d NUM AND %28 %22 NUM %22 %3d %22 NUM

Listing 1: An example of a complete payload
preprocessing.

Towards a Web Application Attack Detection System Based on Network Traffic and Log Classification

695



The final output of this module is the list of stan-
dardised suspicious instances detected on the logs.

4.2.4 Web Attack Classifier

The Web Attack Classifier module is designed to clas-
sify suspicious user inputs into one of three main
types of injection attacks, namely SQLi, XSS, and
DT. The module uses NLP to create a vector of the
suspicious string, which is processed by up to four
supervised ML models: a multi-classification model
(that recognises three classes) and three binary clas-
sification models (each one for a type of injection
attack). Once they make their predictions, we iter-
ate over these probabilities and, based on a modular
heuristic, classify the suspicious user input and gen-
erate an alarm if needed.

Firstly, the NLP algorithm vectorises each attack
string (i.e., the suspicious user values extracted by the
previous module) into a vector. Following the exam-
ple of the standardised instance at the bottom of List-
ing 1, a resulting vector from the vectorisation process
is depicted in Listing 2.

[0.0399 0.1332 -0.0544 ... 0.0021 0.9311 -0.1202 -0.2332]

Listing 2: Resulting vector of the instance after the
vectorisation of the standardised instance of Listing 1.

Subsequently, this vector is used to feed four main
classification ML models—the three binary and the
multi-class—, all trained to classify SQLi, XSS, and
DT attacks. Therefore, each model takes the vector
and classifies it into an attack class. A significant
advantage of our system is that it is highly modu-
lar, which means we can use any ML model; it all
depends on the nature of the data. We can also add
more binary ML models for other types of injection
attacks and update the multi-classification ML model
with newer classes.

Once all models have classified the vector, the
module gets their resulting probabilities and calcu-
lates the final prediction by application of a heuristic.
The heuristic we propose can give one of four main
states to a vector:

• AT T : the heuristic considers the instance an
ATTack and correctly predicts the class (SQLi,
XSS, or DT);

• UNC: the heuristic considers the instance
belonging to one of the three classes it
knows but does not have certainty of its class
(UNCertain-class);

• AON: when the heuristic cannot guarantee the
instance belongs to an attack class it knows
(Attack-Or-Not);

• NAT : the heuristic is certain that the instance is
not of any attack class (Non-ATtack) it knows;
It is important to note that the system cannot

guarantee that an instance is benign just because it
is classified as NAT . NAT is a state used for in-
stances the system has identified as not belonging
to any known classes. On the other hand, AON
is used for instances the system is uncertain about,
and it cannot determine if they belong to the known
classes. Given a multi-probability tuple composed
of the probability of an instance belonging to each
class cn, being 1 <= n < ∞ performed by a multi-
classification model: vm = (c1, ..,cn), and a thresh-
old t1 being 1

n < t1 <= 1. As seen in Equation 1, if
max(c1, ..,cn) > t1, then the vector is stated with a
temporary state ts(vm) of DEFined (DEF), otherwise
it is considered UNDefined (UND).

ts(vm) =

{
DEF, if max(vm)> t1
UND, otherwise

(1)

After evaluating the multi-classification probabil-
ity, we evaluate the binary classification and per-
form the final classification. Given the binary prob-
ability tuple composed with the positive label p of
each binary classification model corresponding to
each class cn: vb = (p1, .., pn), a threshold t2 being
0.5 < t2 <= 1, the function class(x) that returns the
respective class cn of max(vm). Equation 2 details
s(vb, ts) that calculates the final state given vb and ts.

s(
v b
,t

s)

=



AT T, if ts = DEF ∧max(vb)> t2∧
class(max(vb)) = class(max(vm))

UNC, if ts = DEF ∧max(vb)> t2∧
class(max(vb)) ̸= class(max(vm))

AON, if (ts = DEF ∧max(vb)<= t2)∨
(max(vb)> t2 ∧ ts =UND)

NAT, if ts =UND∧max(vb)< t2
(2)

The state, together with all the relevant informa-
tion, like the class of the web attack and the payload
used, is then given to the SOC team, which will try to
behave accordingly. If the threat is classified as AT T ,
the SOC team can identify its nature and respond ac-
cordingly. For instance, if the attack is an SQLi, the
team can restrict database access; if it is an XSS, they
can look for hidden scripts in the database.

5 IMPLEMENTATION

This Section outlines decisions for the system’s cur-
rent implementation, including details on the con-

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

696



trolled network used and how we generate and extract
logs. We also discuss standardising instances and the
ML models chosen.

Development Scenario. We implemented the sys-
tem in a controlled network to test different scenar-
ios, collect data for building models, and make im-
plementation decisions. We used two Virtual Ma-
chines (VM) implemented with Oracle VM Virtual-
Box version 6.1; one hosted the WebServer that runs
the Apache Server, and the other was the client. The
network allowed for testing vulnerable applications,
using web scanners, and having total traffic control.
We used BWAPP5 for testing, a well-known vulnera-
ble PHP web application with diverse vulnerabilities.

Netflow Detector and Log Extractor. The Netflow
Detector module captures the network traffic using
Wireshark6. The Netflows are saved in PCAP for-
mat via tcpdump7, which are then processed using the
SiLK8 framework, which allows the customisation of
the data fields for ML applications. In this implemen-
tation, we used the rwp2yaf2silk tool to generate the
Netflow file with a .rw extension that was then con-
verted to a CSV file using the rwcut tool.

The Apache server’s logs, which the Log Extrac-
tor module uses to retrieve the suspicious logs, are en-
hanced with the mod dumpio add-on that allows us to
record the POST requests beyond the GET requests.
The error log format is customised with trace7 log
level. The Log Extractor module uses Python v3.11
scripts to filter and parse logs with payloads and
GET/POST requests.

Data Preprocessor. This module is a script built in
Python v3.11. The script extracts the user strings by
removing the input fields and filtering out dummy val-
ues. Some metacharacters are converted into their
decimal representation since they are not considered
malicious (e.g., “!”), and the user does not use them
with any harmful intent. Then, standardisation is per-
formed using a standard dictionary. The dictionary
includes SQL commands, XSS events and tags, re-
current substrings used in a DT attack, and their cor-
responding tokens. The standardisation result is a sen-
tence for each instance (see Section 4.2.3).

Web Attack Classifier. Our current implementa-
tion uses two supervised ML algorithms. The Support

5http://www.itsecgames.com/
6https://www.wireshark.org/
7https://www.tcpdump.org/manpages/tcpdump.1.html
8https://tools.netsa.cert.org/silk/index.html

Vector Machine (SVM) algorithm for binary classi-
fiers and the Logistic Regression algorithm for multi-
classification, both from the scikit-learn library9. We
opted for these models as they outperformed others
we experienced, such as K-Nearest Neighbor (KNN),
Random Forest, and Naive-Bayes classifiers. They
have been tested for binary and multi-classification,
proving to be worse than the two selected. Section 6.1
details the evaluation performed.

The implementation also utilises Doc2Vec from
the gensim library10 to convert input data into a nu-
merical vector form, allowing the models to learn
from the data and ultimately classify it depending on
its class of vulnerability. Combining these models
provides a robust and accurate means of detecting and
preventing potential security threats in the input data.

The heuristic is a script developed in Python v3.11
that receives the probabilities in a list format, iterates
over them, and outputs the final state of the vector in
analysis (following the definition in Section 4.2.4).

6 PRELIMINARY RESULTS

This Section presents a preliminary evaluation of the
system, aiming to answer the following two ques-
tions: Q1. Can the system correctly classify an attack
instance using NLP and ML? Q2. Can the proposed
heuristic correctly classify the samples based on the
probabilities given by the ML models?

After presenting the experimental environment
and methodology, Sections 6.1 and 6.2 discuss the re-
sults we obtained from the experiments.

Experimental Environment. We used the Apache
web server to run the BWAPP web application, and
the scanners Burp v2023.9.10 and Wapiti v3.1.3 to at-
tack BWAPP from a client host with only one type of
injection attack (e.g., SQLi) per flow. This method
enabled us to conveniently gather the payloads to be
processed in the Data Preprocessor.

We obtained 64 SQLi, 135 DT, and 38 XSS in-
stances (i.e., attacks) with the Wapiti scanner and 694
SQLi instances with the Burp scanner, thus totalling
758 SQLi, 135 DT, and 38 XSS instances.

Since we are in the presence of an unbalanced
number of instances per web attack class, which will
generate biased results, we performed an augmenta-
tion of the DT and XSS classes and a random under-
sampling of the SQLi class. To do so, we used
the SMOTE and RandomUnderSampler, respectively,

9https://scikit-learn.org/stable/
10https://radimrehurek.com/gensim/index.html

Towards a Web Application Attack Detection System Based on Network Traffic and Log Classification

697



from imbalanced-learn11. We obtained a final dataset
with 379 SQLi, 334 DT, and 238 XSS instances.

6.1 Classification Models Tuning and
Selection

This Section focused on answering Question Q1 by
searching for the best ML algorithm for each model,
one multi-class classifier and three binary classi-
fiers. Using a generic Doc2Vec NLP model with 30
epochs, we established a vocabulary using 100% of
our dataset and inferred the vectors.

As our dataset only contains attacks of three types
(SQLi, DT, and XSS), the classes of the multi-class
model are defined for these three attacks and the
classes of the binary models are defined as follows:
the positive class is the attack’s type we want the
model learns to classify, and the negative class will
contain the instances of the other two attack’s types.
Based on this, we have four datasets: the initial
dataset that will be used with the multi-class model
and three binary datasets, one for each type of attack.

We evaluated five ML algorithms for both binary
and multi-class models, including SVM, Logistic Re-
gression, KNN, Random Forest, and Naive Bayes.
We split each dataset into 70% for training and 30%
for testing. With the training datasets, we performed
model tuning and selection using grid search 10-fold
cross-validation to find the best hyperparameters for
each model.

Finally, we evaluated the models with the test set,
where their metrics are presented in Tables 1 and 2.
The SVM algorithm for binary classification had the
best results in all classes, and the Logistic Regression
algorithm was the best for the multi-class model. So,
these two are the algorithms we employ.

6.2 Heuristic Classifier

This Section focused on answering Question Q2 by
using the probability prediction performed by the
models selected in the previous Section. We di-
vided this Section into two evaluations: (1) Assess-
ing whether the heuristic can correctly classify web
attacks that belong to one of the three classes that the
system knows; and (2) Assessing whether the heuris-
tic can correctly classify web attacks that do not be-
long to any of the three classes that the system knows.

System-known Classes Injection Attack Classifica-
tion. Using the trained models and the same test set,
we ran the models and provided the heuristic with the

11https://imbalanced-learn.org/stable/index.html

Table 1: Metric results for Logistic Regression multi-class
classification ML model.

Accuracy Precision Recall F1-Score
0.9790 0.9798 0.9790 0.9789

Table 2: Metric results for SVM binary-classification ML
model for each class of injection attack.

Class Accuracy Precision Recall F1-Score
SQLi 0.9755 0.9765 0.9755 0.9754
XSS 0.9790 0.9807 0.9790 0.9793
DT 0.9895 0.9898 0.9895 0.9895

Table 3: Heuristic results for the different threshold config-
urations to classify the test set.

t1 t2 ATT UNC AON NAT FP
0.45 0.5 272 5 3 0 6
0.5 0.75 266 2 11 2 5
0.75 0.5 262 0 17 3 3
0.65 0.7 265 0 10 7 4

probabilities resulting from each test instance. We
evaluated the heuristic with different thresholds to
reason about the results and conclude the best thresh-
old ranges. As stated in Section 4.2.4, heuristic has
two thresholds: t1 that controls multi-class classifica-
tion probability and t2 that controls the binary ones.

We tested 4 configurations for thresholds t1 and t2.
Table 3 shows the results, where they indicate that
with the best configuration t1 = 0.45 and t2 = 0.5, the
heuristic can correctly classify 272 instances out of
the 286 instances in the test set. However, this config-
uration generates the most false positives (FP), but,
6 FPs in 286 instances is an acceptable number.

The worst configuration was with t1 = 0.75 and
t2 = 0.5, which only correctly classified 262 samples
out of the 286. It was also the configuration that clas-
sified the most samples as Attack-Or-Not (AON).

From these preliminary and promising results, we
can already draw some conclusions on the thresholds:

• High t1 leads to less UNCertain-attack (UNC)
and more Attack-Or-Not (AON).

• High t2 leads to less Attack-Or-Not (AON) and
less Non-ATtack (NAT).

CRLF-Injection Payload Classification. For the
second evaluation, we used an open-source collection
of 61 CRLF-Injection (CRLFi) web attack payloads12

to provide the system attacks it does not know. We
expect all the CRLFi samples to be classified as NAT ,
meaning the system is sure that the sample is not an
SQLi, XSS, or DT. We trained the models with the
complete dataset presented in Section 6 and fed the

12https://github.com/cujanovic/
CRLF-Injection-Payloads/blob/master/CRLF-payloads.txt

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

698



Table 4: Heuristic results for the different threshold config-
urations to classify the CRLFi payloads.

t1 t2 ATT UNC AON NAT FP
0.45 0.5 0 18 23 16 4
0.5 0.75 0 10 23 25 3
0.75 0.5 0 0 33 25 3
0.65 0.7 0 0 4 55 2

heuristic with the resulting probabilities of these 61
CRLFi attacks.

Using the same threshold configurations of Sec-
tion 6.2, Table 4 presents the outcomes. The results
indicate that the heuristic correctly did not classify
any of CRLFi as an ATTack (ATT) and can accu-
rately classify most samples as Non-ATtack (NAT)
when both thresholds are higher than 0.6. When
one of the thresholds is 0.5, and the other is any
value, the heuristic starts with doubts of NAT , split-
ting the classification by Attack-Or-Not (AON),
UNCertain-attack (UNC), and Not-ATtack (NAT),
but never by ATT . Such division is explained by some
malicious CRLFi code that could be similar to some
examples of DT, and the resulting probability in this
attack class can rise to 0.6.

7 CONCLUSION

This paper introduced a system for web application
security. The system detects web application at-
tacks using unsupervised ML to identify suspicious
HTTP(S) Netflows, and, for these, it analyses their
payloads with NLP and supervised ML to find web at-
tacks and classify them based on their injection attack
classification. Currently, the system uses Logistic Re-
gression and SVM algorithms to categorise attacks
as SQLi, XSS, and DT. We plan to expand the sys-
tem to other attack classes, with other ML algorithms,
namely NLP and deep learning, and the dataset using
more web scanners without an augmentation process.
We aim to improve the heuristic and develop a rec-
ommendation system based on similarity search. We
are improving the standardisation and exploring the
complexity of web attacks, which may require using
regular expressions to address the similarity problem.

ACKNOWLEDGMENTS

This work was supported by FCT through the
LASIGE Research Unit, ref. UIDB/00408/2020
(https://doi.org/10.54499/UIDB/00408/2020) and ref.
UIDP/00408/2020 (https://doi.org/10.54499/UIDP/
00408/2020)

REFERENCES

Buczak, A. L. and Guven, E. (2016). A Survey of Data Min-
ing and Machine Learning Methods for Cyber Secu-
rity Intrusion Detection. IEEE Communications Sur-
veys & Tutorials, 18(2):1153–1176.

Cheng, Z., Beshley, M., Beshley, H., Kochan, O., and
Urikova, O. (2020). Development of Deep Packet
Inspection System for Network Traffic Analysis and
Intrusion Detection. In Proc. of the IEEE Interna-
tional Conference on Advanced Trends in Radioelec-
tronics, Telecommunications and Computer Engineer-
ing, pages 877–881.

Claise, B. (2004). Cisco systems netflow services export
version 9. RFC 3954, RFC Editor. http://www.
rfc-editor.org/rfc/rfc3954.txt [Accessed: 18/03/2024].

Durão, N. P. G. C. (2022). Discovery of Web Attacks
by Inspecting HTTPS Network Traffic with Machine
Learning and Similarity Search. Master’s thesis, Fac-
uldade de Ciências da Universidade de Lisboa.

El-Maghraby, R. T., Abd Elazim, N. M., and Bahaa-Eldin,
A. M. (2017). A survey on deep packet inspection. In
Proc. of the 12th Int. Conf. on Computer Engineering
and Systems (ICCES), pages 188–197.

Gao, Y., Ma, Y., and Li, D. (2017). Anomaly detection of
malicious users’ behaviors for web applications based
on web logs. In Proc. of the 17th IEEE Int. Conf.
on Communication Technology (ICCT), pages 1352–
1355.

Jarmoc, J. (2012). SSL/TLS interception proxies and tran-
sitive trust. Black Hat Europe.

O’Neill, M., Ruoti, S., Seamons, K., and Zappala, D.
(2016). TLS Proxies: Friend or Foe? In Proc. of the
16th ACM Internet Measurement Conference (IMC),
page 551–557.

Pramod, A., Ghosh, A., Mohan, A., Shrivastava, M., and
Shettar, R. (2015). SQLi detection system for a safer
web application. In Proc. of the IEEE Int. Advance
Computing Conf. (IACC), pages 237–240.

Sarhan, M., Layeghy, S., Moustafa, N., and Portmann,
M. (2021). Netflow datasets for machine learning-
based network intrusion detection systems. In Big
Data Technologies and Applications, pages 117–135.
Springer.

Seyyar, Y. E., Yavuz, A. G., and Ünver, H. M. (2022).
An Attack Detection Framework Based on BERT and
Deep Learning. IEEE Access, 10:68633–68644.

Shema, M. (2010). Chapter 4 - server misconfiguration and
predictable pages. In Shema, M., editor, Seven Dead-
liest Web Application Attacks, pages 71–90. Syngress.

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao,
M., Hou, H., and Wang, C. (2018). Machine learning
and deep learning methods for cybersecurity. IEEE
Access, 6:35365–35381.

Towards a Web Application Attack Detection System Based on Network Traffic and Log Classification

699


