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Abstract: This work proposes the use of a deep learning-based adversarial diffusion model to address the translation of 
contrast-enhanced from non-contrast-enhanced computed tomography (CT) images of the heart. The study 
overcomes challenges in medical image translation by combining concepts from generative adversarial 
networks (GANs) and diffusion models. Results were evaluated using the Peak signal to noise ratio (PSNR) 
and structural index similarity (SSIM) to demonstrate the model's effectiveness in generating contrast images 
while preserving quality and visual similarity. Despite successes, Root Mean Square Error (RMSE) analysis 
indicates persistent challenges, highlighting the need for continuous improvements. The intersection of GANs 
and diffusion models promises future advancements, significantly contributing to clinical practice. The table 
compares CyTran, CycleGAN, and Pix2Pix networks with the proposed model, indicating directions for 
improvement.

1 INTRODUCTION 

Non-communicable diseases (NCDs) are medical 
conditions that cannot be spread directly from one 
person to another and are often caused by a 
confluence of behavioural, physiological, 
environmental, and genetic variables.  
In (WHO, 2023), it is stated that NCDs are the world's 
greatest cause of mortality, accounting for 41 million 
deaths per year (74% of all deaths worldwide). The 
bulk of NCD-related fatalities (17.9 million/year) are 
attributable to cardiovascular diseases, which also 
have a significant role in premature death and 
disability globally (Dondi, 2021). 

A timely and efficient way to improve population 
health overall is through diagnostic imaging. By early 
discovery, they can be utilised as a preventive 
approach to lessen cardiovascular issues.  

A common imaging modality for diagnosing 
cardiovascular disorders is computed tomography 
(CT) (Corballis, 2023; Counselor, 2023)—an 
imaging modality with growing diagnostic utility.  

Cardiac CT plays a crucial role in diagnosing and 
managing heart diseases. It is possible to obtain 

detailed three-dimensional images of the heart 
through cardiac CT, allowing for precise evaluation 
of cardiac anatomy, function, and circulation. This 
makes cardiac CT a valuable tool for diagnosing 
various heart conditions, including coronary artery 
disease, cardiomyopathies, and congenital heart 
defects 

Cardiac CT is particularly useful in detecting 
coronary artery disease (CAD), one of the leading 
causes of morbidity and mortality worldwide.  

Coronary artery disease (CAD) is a significant 
cardiovascular disease defined by a narrowing or 
blockage of the coronary arteries. With cardiac CT, 
the existence and severity of CAD may be evaluated 
non-invasively.  Coronary calcium deposits, linked to 
an elevated risk of coronary artery disease, are often 
evaluated by non-contrast cardiac computed 
tomography (NCCT). On the other hand, contrast-
enhanced cardiac computed tomography (CECT) is 
used when the goal is to quantify cardiovascular 
disease, evaluate blood flow dynamics, define the 
composition of plaque, and offer quantitative 
measurements of disease severity. This tomography 
technique injects contrast materials into the body to 
increase the contrast between certain organs, blood 
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arteries, or tissues and the surrounding structures on 
CT images. 

CECT improves patient outcomes by helping 
physicians detect and track many elements of 
cardiovascular disease. It does this by making 
cardiovascular structures and abnormalities more 
visible. 

But in contrast to NECT, CECT is more costly, 
involves more radiation exposure, and may have 
unfavourable side effects, including headaches and 
vomiting. Furthermore, anyone with allergies or renal 
problems might be in danger when using CECT. 

There has been great potential for using artificial 
intelligence in cardiac CT to improve diagnosis and 
prognosis. This exam has unique characteristics that 
make it even more attractive for the application of 
artificial intelligence, although the complexity of this 
application is increasing. 

Another application is in the assessment of 
cardiac function from cardiac CT images. Algorithms 
can automatically analyse cardiac volumes, ejection 
fraction, and wall motion, providing precise 
measurements that aid in evaluating heart function. 
This automated analysis saves time and resources, 
allowing physicians to focus on more complex 
interpretations and personalised treatment plans for 
each patient. 

Among these challenges, we highlight the need 
for quantitative evaluations, which generally involve 
quantitative evaluations such as ventricular volume, 
fraction of blood volume ejected out of the ventricle, 
volumetric evaluation of heart muscle tissue, amount 
of plaque present in the coronary arteries, area of 
stenosis, among others. In addition, the images are 
acquired with thinner slices, and the evaluation 
targets are smaller (e.g., coronary arteries). 

Given the potential risks associated with CECT, 
generative AI-based techniques for cardiac imaging 
can assist professionals in assessing coronary artery 
disease without the drawbacks of CECT. More 
precisely, we can create a CECT image that matches 
the given NECT image using data-driven methods 
without requiring contrast substance injection.  

The challenge of medical image synthesis may be 
approached through picture-to-image translation 
(Parmar, 2023) or style transfer (Jing, 2020). This 
topic poses extra complications in the context of 
cardiac CT images. Since the same patient's NECT 
and CECT images are frequently significantly out of 
alignment, direct monitoring for NECT to CECT 
mapping is rarely feasible.  

In recent years, medical image translation has 
emerged as a powerful solution to overcome these 
challenges. This process involves synthesising 

images of the target modality based on the guidance 
of images acquired from the source modality. 
However, the inherent nonlinear variations in tissue 
signals between modalities make this problem 
complex and ill-conditioned. 

Learning-based methods, especially Generative 
Adversarial Networks (GANs), have shown 
remarkable success in image translation tasks. GANs 
employ an adversarial mechanism in which a 
discriminator guides a generator to perform a one-
time mapping to produce the target image. While 
GANs exhibit exceptional realism in image synthesis, 
they indirectly characterize the target modality 
distribution, potentially introducing biases and 
limiting the mapping process's reliability. 

As an alternative approach, recent studies in 
computer vision have explored diffusion models 
based on explicit likelihood characterisation and a 
gradual sampling process to enhance sample fidelity. 
However, the potential of diffusion methods in 
medical image translation remains largely 
unexplored, partly due to computational challenges 
and difficulties in the non-paired training of regular 
diffusion models. 

In this work, we propose a deep learning-enabled 
image-to-image translation model that can map 
contrast-free CT images of the heart to contrast-
enhanced ones. To achieve this, we implemented an 
adversarial diffusion model, applying concepts from 
GANs to generate high-quality images. This method 
aims to provide an accurate model compared to other 
approaches. 

2 RELATED WORKS 

In (Azarfar, 2023), authors present several papers 
proposing deep learning architectures  to reduce or 
eliminate administered contrast media to acquire 
clinically useful computer tomographies.  

The introduction of GANs (Goodfellow, 2014) 
presented an innovative approach to generative 
models. GANs operate based on the principle of 
rivalry between two networks - the generator and the 
discriminator. The generator aims to produce 
synthetic data indistinguishable from real data, while 
the discriminator strives to differentiate between the 
two. Through adversarial training, GANs achieve 
Nash equilibrium, converging the generator's 
distribution to the training data. 

In image translation, especially in the analysis of 
medical images, GANs are widely used for their 
ability to automatically learn patterns in input data so 
that the model can generate new examples (output) 
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that could exist in the original dataset. When 
performing image generation, the simplest model 
maps from source to destination through a trained 
generator using adversarial loss (Goodfellow, 2014). 
Consequently, the GAN-based translation approach 
has been extensively adopted in various applications. 

Conditional GANs excel in mapping a single 
source to a destination, improving sensitivity to high-
frequency details in tissue structure compared to 
traditional pixel-to-pixel losses. Integrating 
adversarial loss terms has proven effective in 
enhancing spatial accuracy and realism in target 
images synthesised with GANs, surpassing 
conventional convolutional models. 

Other studies, specifically using GANs, whose 
primary focus lies in the synthesis of contrast-
enhanced computed tomography (CECT) images 
from non-contrast CT (NCT) scans, are (Chun, 2022) 
and (Seo, 2021). They employ a two-stage framework 
and sophisticated network architectures as generators, 
such as DenseNet and SPADE (Park, 2019). They 
successfully align NCT and CECT images, 
surpassing previous methods in accuracy and 
applicability. 

Other research extends to artery-contrasted 
computed tomography (ACT), which is crucial for 
diagnosing conditions like aneurysms. To mitigate 
the risks of contrast agents, they introduce an aorta-
aware deep learning approach that synthesises artery-
contrasted CT volumes directly from non-contrast CT 
data (Hu, 2022). Utilising aGANs and innovative loss 
functions, their model demonstrates remarkable 
accuracy in estimating ACT slices, thus enhancing 
diagnostic precision while minimising patient risk. 

The Pix2Pix (Zhu, 2017) model is one of the 
approaches designed for image-to-image translation 
tasks. It consists of a generator to create synthetic 
images and a discriminator to distinguish between 
real and generated images. Training involves an 
adversarial process, where the generator tries to 
deceive the discriminator, and the discriminator seeks 
to identify fake images. 

Applications of the Pix2Pix architecture (Choi, 
2021) utilise the fundamental structure of the original 
pix2pix model to generate synthetic contrast 
enhanced from non-contrast chest CT, with the 
distinction that the 2D convolutional layers are 
substituted by their 3D equivalents. This model 
comprises a generator and discriminator networks 
akin to a conventional GAN. The generator network 
is a U-Net convolutional neural network encoder-
decoder with skip connections. The discriminator 
network is a PatchGAN that classifies each pixel 

patch as real or fake, and its convolutional module is 
identical to the encoder block of the generator. 

A dissertation (Domingues, 2022) compares the 
performance of two GAN models, Pix2Pix-GAN and 
Cycle-GAN, in generating contrast-enhanced images 
from non-contrast CT scans. The study explores the 
trade-offs of using 2D, 2.5D, and 3D inputs, 
employing different types of generators and datasets. 
Evaluation metrics include Structural Similarity 
Index Measure (SSIM), Peak Signal-to-Noise Ratio 
(PSNR), Mean-Square Error (MSE), and Dice metric 
for high contrast region fidelity. 

CyTran (Ristea, 2021) is a GAN-based model 
designed for working with CT images. This 
innovative approach focuses on bidirectional 
translation of contrast and non-contrast computed 
tomography (CT) scans, even when the images lack 
direct pairing. CyTran aims to address the challenge 
of generating contrast scans for patients who cannot 
receive contrast and to enhance the alignment 
between contrast and non-contrast CT scans. The 
method employs a cycle-consistent architecture based 
on generative adversarial transformers designed for 
transferring CT scans across different contrast 
phases. Inspired by the CycleGAN framework, 
CyTran comprises two discriminators and two 
generators, enabling training on unpaired images 
through a multi-level cycle consistency loss. In 
addition to ensuring image-level consistency, Cytran 
utilises additional losses between intermediate 
feature representations to enhance the model's 
performance further. This comprehensive strategy 
contributes to the model's effectiveness in translating 
CT images bi-directionally, offering valuable 
applications in medical imaging scenarios. 

However, GANs present their challenges. Issues 
such as lower reliability in mapping a single sample, 
premature convergence of the discriminator, and poor 
representational diversity leading to mode collapse 
can compromise the quality and diversity of 
generated samples. Despite these challenges, GANs 
currently lead in image generation tasks, surpassing 
other models based on metrics such as Inception 
Score and Accuracy. 

Lately, deep diffusion models have become an 
alternative to GANs in generative modelling tasks in 
computer vision (Yang, 2022). These models are 
inspired by non-equilibrium thermodynamics, 
defining a Markov chain of diffusion steps to add 
random noise to the data slowly and then learning to 
reverse the diffusion process to construct desired data 
samples from the noise. Noise removal is conducted 
by a neural network architecture trained to maximise 
the correlation between adjacent pixels. 
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This diffusion technique provides greater 
reliability in network mapping and improves the 
quality and diversity of generated samples. The two-
step structured diffusion model starts with direct 
diffusion, where input data is gradually perturbed 
over multiple steps by adding Gaussian noise. In the 
reverse step, the model is trained to recover the 
original data, reversing the diffusion process step by 
step. This innovative method offers a robust and 
effective approach to generating realistic data in 
various computer vision contexts. 

Moreover, diffusion models are easily adaptable, 
able to use different architectures such as 
Transformers (Peebles, 2023) and adversarial 
networks (Wang, 2023), achieving results that 
surpass the quality of previous diffusion models in 
metrics like peak signal-to-noise ratio (PSNR), ratio 
is used as a quality measurement between the original 
and a compressed image, and structural similarity 
index measure (SSIM) for measuring the similarity. 

Table 1: Overview of the applied techniques cited in related 
works. 

Related Works Applied Techniques

(Ristea, 2021) CycleGan structure with 
Pix2Pix + Transformers

(Seo, 2021) GAN 
(SPADE +DCGAN)

(Chun, 2022) GAN 
(FC-DenseNet + PatchGAN)

(Choi, 2021) Pix2Pix 

(Domingues, 2022) CycleGan and Pix2Pix with  
SkipResidual Generator

(Park, 2019) SPADE 

3 METHODOLOGIES 

This work proposes a methodology for synthesising 
NECT to CECT images, utilising a GAN-based 
approach with diffusion models. This methodology 
consists of the following steps: data acquisition, data 
pre-processing and proposed network architecture. 

3.1 Data Acquisition  

The dataset was obtained at the Orca Score in the 
Grand Challenge platform (Wolterink,2022). Images 

in this dataset were acquired on four different CT 
scanners from four different vendors in four different 
hospitals using standard parameters for calcium 
scoring in cardiac CT. For each patient, both a non-
contrast-enhanced CT and a contrast-enhanced 
computed tomography angiography (CTA) image are 
provided. The training set consists of images of 32 
patients. The test set consists of images of 40 patients. 

From this dataset, 6209 images were extracted, 
divided into 2812 for testing and 3397 for training and 
validation. The entire set consists of images with and 
without contrast from the same patients. 

3.2 Data Pre-Processing 

For this study, it was essential to conduct specific 
preprocessing steps before utilising these CT images 
to enhance the overall quality of the model. The 
preprocessing involved segregating the slices of 
contrast and non-contrast CT images of each patient's 
heart, selecting those in the same position with a high 
similarity index. This approach ensured that only the 
most relevant and corresponding images were used to 
refine the model's analysis.  

To achieve this, the images were correlated using 
the SSIM and Normalised Cross-Correlation (NCC) 
to assess the structural similarity.  

Images with higher similarity indices were 
subsequently considered equivalent. Following this, 
the best images from each patient, meaning those with 
the same position and the highest similarity indices 
correlating contrast and non-contrast, were separated 
and allocated into training, testing, and validation 
sets. The number of retained images was as follows. 

Table 2: Orca Dataset Paired Filtration Summary. 

Contrast Non-Contrast
Train 200 200 
Test 100 100 
Validation 50 50 

3.3 Proposed Network Architecture 

Based on the SynDiff network (Özbey, 2023), a 
diffusion model was developed with a conditional 
origin adversarial projector for fast and accurate 
reverse diffusion sampling. Unlike conventional 
models that use a relatively large number of steps, this 
network employs fast-forward diffusion, adaptively 
adjusting noise variance to balance efficiency and 
precision in image generation. 

The proposed network utilises a Cycle-GAN 
architecture consisting of diffusive generators and a 
non-diffusive discriminator (Figure 1). The diffuse  
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Figure 1: Architecture of proposed network. 

generator translates images from the NECT to the 
CECT domain and vice versa. Conversely, 
discriminators aim to distinguish between real and 
generated images. In the diffusive module, generators 
employ a UNet backbone comprising six encoding 
and decoding blocks (Ho, 2020). Each block includes 
two residual subblocks followed by a convolutional 
layer. During encoding, the convolutional layer 
reduces the feature map resolution by half, while the 
channel dimensionality is doubled every other block. 
The convolutional layer doubles the resolution for 
decoding, while the channel dimensionality is halved 
every other block. 

The proposed network utilises a Cycle-GAN 
architecture consisting of diffusive generators and a 
non-diffusive discriminator (Figure 1). The diffuse 
generator translates images from the NECT to the 
CECT domain and vice versa. Conversely, 
discriminators aim to distinguish between real and 
generated images. In the diffusive module, generators 
employ a UNet backbone comprising six encoding 
and decoding blocks (Ho, 2020). Each block includes 
two residual subblocks followed by a convolutional 
layer. During encoding, the convolutional layer 
reduces the feature map resolution by half, while the 
channel dimensionality is doubled every other block. 
The convolutional layer doubles the resolution for 
decoding, while the channel dimensionality is halved 
every other block. 

The discriminator model is designed as a 
sequential neural network (Radford, 2015), tailored 
for input images of size 256 by 256 pixels. It consists 
of two convolutional layers with 64 and 128 filters, 
each with a kernel size of (5, 5) and a stride of (2, 2) 
for downsampling. Leaky ReLU activation functions 
introduce non-linearity after each convolutional 
layer. To prevent overfitting, dropout layers with a 
dropout rate of 0.3 are incorporated after each Leaky 
ReLU layer. 

Given the larger input dimensions, the 
architecture is adapted to handle the increased spatial 
information. Following the convolutional layers, a 
flattening layer transforms the 2D feature maps into a 
1D vector. Finally, a dense layer with one neuron is 
added, serving as the output layer for binary 

classification (discriminating between real and 
generated CT images). 

During training, the proposed network enforces 
cycle consistency, a crucial property that ensures the 
translated images maintain semantic content and 
realism. By incorporating an additional loss function 
to quantify the disparity between the NECT image 
generated by the second generator and the original 
NECT image, as well as vice versa, the proposed 
network promotes cycle consistency. This 
regularisation technique guides the generator models 
in the creation of CECT images. The generators aim 
to minimise both the adversarial loss, which measures 
their ability to generate realistic images, and the 
cycle-consistency loss simultaneously. Meanwhile, 
discriminators are trained to improve their ability to 
distinguish between real and generated CT images, 
thereby providing feedback to the generators. 

The training objective of the proposed network 
resembles the CycleGAN method, which utilises two 
main loss functions: adversarial loss and cycle-
consistency loss. Adversarial loss incentivises the 
generators to produce images indistinguishable from 
real images, as perceived by the discriminators. On 
the other hand, cycle-consistency loss enforces the 
constraint that translating an image from one domain 
to another and then back should result in a 
reconstruction close to the original image 

4 EXPERIMENT AND RESULTS 

To evaluate the adequacy of the proposed 
architecture, we conducted an experiment using the 
Orca dataset and compared the results with other 
papers that employ GAN approaches to generate 
CECT images from NECT images.. 

The network hyperparameters were set as 
follows: 100 epochs, the Adam optimizer with beta1 
= 0.5 and beta2 = 0.9, a learning rate of 10^-4 for the 
diffusion method and GAN, a batch size of 2, T = 
1000, which represents the number of interactions in 
the noising and denoising process, a step size of k = 
250, and T/k = 4 diffusion steps. The weight loss in 
diffusion and cycle models was set to λ1φ = 0.5 
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The metrics were obtained through the 
comparison between generated CECT images with 
real ones. The metrics presented in Table 3 are based 
on the averages of these results. 

The results obtained, exemplified by Figure 2 and 
Table 3, showcase the remarkable performance of the 
proposed diffusion model. Notably, the 
competitiveness of the PSNR and SSIM indicators in 
generating contrast-enhanced heart images reflects 
the model's significant ability to preserve both quality 
and visual similarity. 

 
Figure 2: Images with contrast generated by the network 
from non-contrast images. 

A noteworthy point is that although the images 
have a high degree of visual similarity, MAE and 
RMSE values are still much higher than expected. A 
good example is the two images below, which exhibit 
considerable visual resemblance but yield MAE and 
RMSE values as high as 0.6 and 0.7, respectively. 

 
Figure 3: Real Contrast Images (Left) and the Generated 
One (Right). 

However, in other images, the MAE and RMSE 
values reached 0.11 and 0.15, respectively, 
demonstrating that depending on the image, the 
network can generate a more accurate version closer 
to the real one. 

 
Figure 4: A Feature Matching of Real Contrast Images 
(Left) and the Generated One (Right). 

However, upon analysing the Root Mean Square 
Error (RMSE) values, it is observed that, despite the 
visual resemblance of the generated images, the 
model predictions deviate significantly from the 
actual values, as seen in Table 3. 

Upon closer examination of the images, a subtle 
yet discernible variance in the absolute pixel values 
between the original and the generated samples 
becomes apparent. Indeed, a slight disparity exists 
between the generated pixel values and the 
corresponding ideal pixel values, as shown in Figure 
2, with the generated pixel values exhibiting a 
marginally higher magnitude. While these minor 
discrepancies may seem inconspicuous individually, 
their cumulative effect in the summation process 
significantly contributes to the observed dissimilarity 
reflected in the RMSE. 

It is important to note that the interpretation of 
RMSE depends on the specific domain of the problem 
and the units of the variable being predicted. In some 
cases, a high RMSE may be acceptable if it aligns 
with the natural variations in the data or is justified by 
the nature of the problem being addressed. These 
indicators suggest the presence of substantial 
variations that require a deeper understanding of the 
generated images. Studying these discrepancies can 
provide valuable insights further to enhance the 
effectiveness of the image generation process. 

Table 3: Comparison of results among CyTran, Cycle-
GAN, Pix2Pix-GAN networks, Cycle-GAN-2D, and 
Cycle-GAN-2D with SkipResidual Generator against the 
proposed model. 

Model MAE RMSE SSIM PSRN

CyTran 0.061 0.144 0.745 29.66

Cycle-GAN 0.066 0.150 0.724 29.22

Pix2Pix-GAN 0.070 0.165 0.729 29.51

Cycle-GAN-2D 0,030 - 0,433  15,569

Pix2Pix-GAN-2D 0,025 - 0,492  16,375

Proposed 
Diff-Model

0.061 0.200 0.701 32,85 

5 CONCLUSIONS 

This paper addresses the translation of contrast and 
non-contrast cardiac computed tomography (CT) 
images using a deep learning-based adversarial 
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diffusion model. By overcoming challenges 
associated with medical image translation, we 
explore an approach that combines concepts from 
generative adversarial networks (GANs) and 
diffusion models. The obtained results, evaluated 
through metrics such as PSRN and SSIM, showcase 
the remarkable capability of the model in generating 
contrast-enhanced cardiac images while preserving 
quality and visual similarity. However, the analysis of 
RMSE indicates persistent challenges, suggesting the 
presence of variations that require a deeper 
understanding to enhance the consistency and fidelity 
of the generated images. 

In conclusion, the developed model delivers 
notable results, but the study acknowledges the need 
for continuous improvements to address variations in 
the generated images. The intersection of GANs and 
diffusion models proves promising, pointing towards 
future research and developments in medical image 
translation and significantly contributing to 
advancing this crucial area in clinical practice. 
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