
Implementation of Composable Enterprise in an Evolutionary Way
Through Holistic Business-IT Delivery of Business Initiatives:

Real Industry Use Case

Ivka Ivas
Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Keywords: Enterprise Architecture, Composable Enterprise, Business Composability, Business-IT Alignment, Business
Capability Map, Value Stream, Holistic Value Delivery, EA Model.

Abstract: Service composability, introduced by service-oriented architecture (SOA), is a design principle that
encourages the design of reusable services that themselves also consist of reusable services. In domain
driven design (DDD), which inspired microservice architectures, the scope of composable service design is
interpreted as a software solution domain, while the problem domain lies in the detached business world.
This results in IT solutions that are often redundant at the enterprise level or tend to be composable only
within a specific enterprise IT ecosystem as a result of the design without understanding the business
domain or how the new solution fits into the overall delivery and enterprise architecture. On the other hand,
it is not uncommon for company´s "business", motivated by revenue increase, to push frequent deliveries of
business changes, putting pressure on company´s IT to implement quick fix solutions that only solve
immediate business problems. All this leads to inconsistent and redundant software systems that increase the
complexity of the organization and result in higher maintenance costs and less flexibility in implementing
future changes. As a solution, this paper proposes Composable Enterprise, a business-IT approach for
architecting the enterprise that introduces Business Composability and a holistic understanding of the
enterprise. Business Composability is a business-IT-aligned service abstraction that starts with the notion of
first applying service composability to business assets (business capabilities) to achieve the scale and pace
required to realize business changes. The purpose of this paper is to provide a methodology for
implementing Composable Enterprise in large, complex organisations, not as a massive, enterprise-wide
rationalization and consolidation initiative, but in an evolutionary way through the joint and holistic
business-IT delivery of business initiatives. The application of the proposed methodology is illustrated using
a real-industry use case.

1 INTRODUCTION

In large organisations IT has traditionally been seen
as a servant of the "business", existing to fulfil
business needs, with the "business" deciding on the
why, what and when and IT on the how. This mindset
led to late involvement of IT in the process of
business initiative delivery, resulting in quick fix
solutions implemented only to meet immediate needs
of a particular business initiative. Which led to
increased complexity, higher maintenance costs,
higher costs of future investments and less flexibility
to implement future changes. Earlier IT engagement
or a longer cycle time allowing IT to take enough
time for a "proper" design does not solve the problem.
When designed without understanding of the business

domain and without holistic understanding on how
the new solution fits into the overall delivery and
enterprise architecture (EA), solutions that are
designed to be modular and composable only from IT
perspective tend to be redundant at the enterprise
level or composable only within a specific IT
ecosystem. Which also leads to increased complexity,
higher costs, and less flexibility to implement
business changes. Widely adopted agile practices do
not help either, sometimes even the opposite, as agile
practices encourage frequent deliveries of business
changes, which puts pressure on IT to implement
quick solutions. The root cause of this situation is a
cultural split to "business" and IT, both existing as
two separate words pursuing their own interests. The
goal of enterprise IT is to lower costs, which can be
achieved through reusability, modularity, and

Ivas, I.
Implementation of Composable Enterprise in an Evolutionary Way Through Holistic Business-IT Delivery of Business Initiatives: Real Industry Use Case.
DOI: 10.5220/0012728400003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 397-408
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

397

composability. Where enterprise "business" has
interest in higher revenues for which they need
frequent deliveries of business changes. And in large
complex organisations this cannot be a separate, two-
world journey, as digital products, and services that
those organisations deliver to their customers are
highly dependent on and intertangled with the
underlying IT (Orlikowski, 2010).

The objective of this paper is to reconcile these
two worlds in large, complex organizations with
Composable Enterprise mindset. Composable
Enterprise is a new paradigm introduced by Gartner
that enables flexibility of business change through
composability and modularity that starts with
business assets and is achieved as a joined business-
IT venture (Panetta, 2020). This purpose of this paper
is to propose a methodology for implementing
Composable Enterprise in an evolutionary way
through holistic business-IT delivery of business
initiatives and to illustrate the implementation of the
methodology using a real industry use case. The
paper is the continuation of the announced research
on strategy realisation through implementation of
Composable Enterprise as part of the BASE
framework (Business Architecture-based EA
Framework for Strategic Alignment of the Enterprise)
(Ivas, 2023). As authors works as enterprise architect
in real industry, application of the proposed
methodology for implementing Composable
Enterprise will be carried out as part of her regular
business-support EA work.

2 BACKGROUND AND RELATED
WORK

This section will provide theoretical background on
terms and definitions related to SOA, microservices
and Composable Enterprise. Section also presents
results of focused literature research on development
method for implementing Composable Enterprise in
an evolutionary way.

2.1 About SOA and Microservices

The roots of Service Oriented Architecture (SOA) go
back to 90s (Krafzig, 2010) in time when "Software
crisis" from the previous decades was considered to
be over. "Software crisis" is a phenomenon that
emerged in 60s and referred to poor software
performance that was causing failed software projects
(Dijkstra, 1972, Randell, 1996). New programming
languages as Smalltalk, C++ and later Java were seen

as remedy for these ills from the past, as they
introduced structured programming, modularity, and
Object Orientation (OO). OO paradigm introduced
abstraction with focus on the "what" instead of the
"how", with caller invoking the exposed interfaces to
use the service without worrying about the service
internal "how" details (Jana, 2006). This sorted out
isolated application, but the focus than shifted to end-
to-end process chains and application landscapes
supporting them which introduced integration of
application landscapes as the next big challenge of IT
industry. As solution for this, SOA developed in three
phases. In the first phase, the aim was to solve the
problem of point-to-point integration of distributed
applications with middleware technologies such as
CORBA (Krafzig, 2010), which proved to be
unreliable and complicated to use and caused
unmanageable middleware complexity. The second
phase therefore introduced Enterprise Application
Integration (EAI) solutions (Linthicum, 2000).
Although EAI was introduced to reduce complexity,
it is now considered a disaster because it enriched the
middleware with auxiliary technical services, as
centralized data transformation or transaction
monitoring, which further increased application
landscape complexity. As a final solution, in the third
phase, service-oriented architectures (SOA) were
developed as a continuous improvement process at
company level. SOA introduced a holistic view of
enterprise IT architecture and the idea of enterprise
consisting of composable services (provided as
modules of enterprise monolith applications) that are
accessed via standardised web interfaces and used as
building blocks for business processes (Krafzig,
2010). Introducing service composability design
principle, SOA envisioned composable services as
reusable modular services consisting of other reusable
modular services. SOA also introduced service
orchestration with Enterprise service bus (ESB), a
central service integration unit providing capabilities
as integration, routing, orchestration, message
transformation or service monitoring. The ESB
approach led to centralization of business logic,
making the ESB as a central enterprise monolith a
bottleneck and a major pain point for many
organizations (Shadija et al., 2017). The promised
remedy came in the form of microservice
architecture. Microservice architecture, initially
introduced as a concept in 2011 (Dragoni et al.,
2017), is a distributed application consisting of
independently developed, deployed, and managed
fine-grained services that communicate via
lightweight protocols as REST (Shadija et al., 2017).
Microservice architecture introduced service

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

398

choreography, meaning that instead of central
orchestration unit as in SOA, microservices
themselves take responsibility for interacting with the
environment, i.e., in a microservice architecture
business processes are embedded into the services
(Cerny, 2017). This limited flexibility in design,
adjustment, and visibility of end-to-end business
processes, as well as difficulty of managing
microservice architectures, as a large unorganised set
of fine-grained, headless services, made unrealistic
the implicit expectation that microservice
architectures would be sufficient to meet all the needs
of large complex organizations (Xiao et al., 2016).
Furthermore, following Domain driven design
(DDD), microservices should be defined within a so-
called bounded context, a boundary of a model within
a specific domain. The purpose of this concept was to
encourage a design that focuses on delivering
business functionality rather than just focusing on
code reuse and decomposition (Evans, 2003).
However, very fuzzy definition of DDD´s bounded
context and the separation of business problem space
and solution space led to interpretion that DDD
domains (or subdomains) belong to "business" and its
problem space, while engineers define the bounded
context as the solution space-boundery of the
software they design (Tune, 2020). The next chapter
will introduce Composable Enterprise as a new
remedy for illnesses of large complex organisations,
aiming to bring bunded context of IT solution space
close to the business problem space and DDD
domains (or business capabilities).

2.2 Composable Enterprise

The term Composable Enterprise was introduced by
consultancy company Gartner in 2020, which defined
it as "an organization that can innovate and adapt to
changing business needs through the assembly and
combination of packaged business capabilities"
(Gaughan et al., 2020). Composable Enterprise is an
enterprise envisioned as modular and highly
adaptable to business changes. This is achieved
through Composable Business, an enterprise business
made up of a combination of easy interchangeable
and pluggable "lego-like" components. As
Composable Enterprise embraces the API economy, a
business model built around delivering enterprise
services to customers through APIs (Basole, 2019),
pluggability in Composable Enterprise is enabled
through APIs exposed by its composable
components. The key principles of Composable
Business include ensuring holistic system view at the
business level (and not just at the technology level)

and applying modularity to business assets to achieve
flexibility for implementing business change (Dessus,
2021). Modularity, defined as the extent to which a
system may be divided into smaller components, is an
important concept for reducing enterprise complexity
by breaking enterprise to independent parts, hiding
the complexity of each part behind abstraction and
API interfaces (Baldwin and Clark, 2000).
Modularity in Composable Enterprise is achieved
through enterprise business capabilities, which are
referred to as Packaged Business Capabilities (PBC)
in Composable Enterprise. Business Capability Map
(BCM), as a set of all enterprise business capabilities
(PBCs), is envisioned as a tool for achieving Business
Composability, a business-IT aligned service
abstraction that starts from the notion of first applying
service composability to business assets (or PBCs), to
achieve the scale and pace needed for implementing
business changes. Where PBCs would serve as
building blocks both for composing the enterprise and
encapsulating software components (Panetta, 2020).
Furthermore, Gartner defines three building blocks of
Composable Business: composable thinking,
composable business architecture and composable
technologies. Composable thinking promotes the idea
that everything can be composable by encouraging
the creative use of design principles throughout the
enterprise to enable more flexible adaptable way to
meet ever changing customer needs. Composable
business architecture, with use of business
capabilities delivering composable business processes
(Heinig, 2022), ensures that the organization and its
business are built as flexible and resilient. Where
composable technology enables flexible information
systems to support business which is achieved with
modular system architectures (Panetta, 2020). An IT
architecture that emerged to support building
composable technologies in Composable Enterprise is
so-called MACH architecture (MACH Technology,
n.d.). MACH is a set of design principles that
encourages building information systems as a set of
pluggable, scalable, and replaceable IT components.
MACH architectures promote the following concepts:
• Microservices-based: developing microservices

as independently developed, deployed, and
managed components

• API-first: hiding internal complexity, and
exposing functionalities through APIs that enable
pluggability of PBCs

• Cloud-native SaaS: leveraging hosting, elastic
scaling, and automatic updating of cloud
deployment models

• Headless: the core of composable concept are
headless, easy interchangeable components. At

Implementation of Composable Enterprise in an Evolutionary Way Through Holistic Business-IT Delivery of Business Initiatives: Real
Industry Use Case

399

IT level, this means that developed components
should be loosely coupled, reusable modules that
are agnostic to programming languages or
frameworks and preferably oihave decoupled
front-end and back-end.

A PBC solution should provide at least API-first and
Headless, meaning that the underlying technical
components that enable PBC should be loosely
coupled reusable modules with internal complexity
being hidden behind a generic public API. To found
theoretical background on Composable Enterprise
and development method for implementing
Composable Enterprise, author searched the literature
with selection criterion "is composable enterprise
mentioned as a concept". Table 1 lists the results of
focused literature review (Brocke et al. 2009) which
was carried out by searching the term "composable

enterprise" on Google Scholar, Web of Science and
ResearchGate, along with filtering relevant references
in the found articles. As listed in table 1, Composable
Enterprise is still very novel in scientific research
with only a few scientific articles found dealing with
the topic (Sunyaev et al., 2023, Scheer, 2023, Ćorić
and Mabić, 2023, van Schalkwyk and Isaacs, 2023,
Wang and Gao, 2022). As the search on academic
papers resulted in just a few results, the professional
literature was also searched using the same search
term "composable enterprise" on Google. This search
returned 37.900 results proving that Composable
Enterprise is a very important technology trend.
These results showed the mismatch between the
academic work on enterprise architecture and
practical enterprise architecture, as identified by
Gampfer et al. (2018).

Table 1: Overview of the most relevant literature on Composable Enterprise.

Title Reference Comment
Future of applications:
delivering the composable
enterprise. ID: G00465932

Gaughan et al.
(2020)

Professional Gartner´s paper that elaborates on necessity of modernising application
portfolio to become modular, flexible, and composable in order to support delivering
business strategy at the pace of business change. No development method for
implementing Composable Enterprise provided.

Gartner Keynote: The Future
of Business is Composable

Panetta (2020) Professional Gartner´s paper that elaborates on the concept of Composable
Enterprise and Composable Business. No development method for implementing
Composable Enterprise provided.

Method of Building
Enterprise Business
Capability Based on the
Variable-Scale Data Analysis
Theory

Wang and Gao
(2022)

Scientific paper that mentions Composable Enterprise as a new architecture based on
enterprise business capabilities. No development method for implementing
Composable Enterprise provided.

Composable architecture: the
latest trend in EA helping
companies adapt and grow.

Bhatnagar
(2022)

Professional paper that provides theoretical background on Composable Enterprise
providing high-level method to engage in composable architecture.

Composable business
processes – The journey
towards a composable
enterprise

Heinig (2022) Professional paper that elaborates on composability of business processes assembled
with business capabilities as building blocks. No development method for
implementing Composable Enterprise provided.

Is composable enterprise the
key to digital transformation?

Ćorić and
Mabić (2023)

Conference article providing theoretical background on Composable Enterprise in
the context of digital transformation. No development method for implementing
Composable Enterprise provided.

The Composable Enterprise:
Agile, Flexible, Innovative:
A Gamechanger for
Organisations

Scheer (2023) A set of scientific articles on Composable Enterprise published as a book. Provides
background information on the concept of Composable Enterprise with development
method for implementing Composable Enterprise, but as an enterprise-wide
rearchitecting approach.

The Future of Enterprise
Information Systems.

Sunyaev et al.
(2023)

Scientific paper that envisions enterprise processes made up of composable,
interchangeable building blocks supported by corresponding enterprise information
systems which enables "business to reassemble features dynamically and rearrange
them as needed depending on external or internal factors". No development method
for implementing Composable Enterprise provided.

Achieving Scale Through
Composable and Lean
Digital Twins.

van Schalkwyk
and Isaacs
(2023).

Scientific paper that mentions Composable Enterprise as an important topic for
enterprises to adopt Digital Twins (concept of using the power of technology to
make revolutionary improvements for the society). No development method for
implementing Composable Enterprise provided.

The fundamentals of MACH

MACH
Technology
(n.d.).

Professional material that explains the MACH architecture as a set of design
principles for implementing flexible, composable technology to support Composable
Business. No development method for implementing Composable Enterprise
provided.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

400

The most comprehensive work found on the topic
was the book "The Composable Enterprise: Agile,
Flexible, Innovative: A Gamechanger for Organisa-
tions" (2023) by August-Wilhelm Scheer, in which the
author proposes a Composable Enterprise development
method for rearchitecting the whole enterprise. While
this is a very valuable conceptual idea, this is unlikely
to be implemented in large, complex organisations as
such an enterprise-wide activity would require huge
investment and would hinder regular business
operations and delivery of new business changes. The
purpose of this paper is to propose a different more
cost-effective evolutionary approach with continuous
implementation of Composable Enterprise as part of
delivery of business initiatives.

Since most of the papers found only provide the
theoretical background introduced by Gartner
(Gaughan et al., 2020, Panetta, 2020), and none of
them provide a development method for
implementing Composable Enterprise in an
evolutionary way, the author concludes that such a
method has not been researched before

3 METHODLOGY

A prerequisite for implementation of the
methodology explained below is the existence of
some "good enough" version of BCM, a map of
enterprise business capabilities (e.g., figure 2), and
Holistic value delivery value stream (e.g., figure 4).
Holistic value delivery is an enterprise value stream
that illustrates all end-to-end critical steps that
enterprise must undertake to deliver value to its
customers, with the steps enabled by BCM business
capabilities (Ivas, 2023). Methodology for
implementing Composable Enterprise is as follows:
1. Understand business drivers and objectives. The

first step is to understand the business background
of the initiatives, i.e., the rationale, objective, and
scope from the business point of view.

2. Understand holistic scope of the initiative. The
second step is about understanding which value
streams steps and business capabilities from the
Holistic value delivery are being affected by the
initiative and how.

3. Understand current situation. Understand and
sketch current solution (architecture) in scope.

4. Understand situation and needs at enterprise
level. Identify if there are any components that
can be reused or optimised by this solution at
enterprise level, or if there are some other future
initiatives with the same need.

5. Design as API -first Headless PBC (preferably

according to MACH). If there is a need to
implement a new service, you should preferably
design it according to MACH principles.
Otherwise, deliver business change by designing
new or optimising existing monolith modules by
API-first and Headless MACH principles.

6. Implement business-IT aligned PBC solution and
consolidate. Implement business-IT agreed
solution and, consolidate into the new solution
any old solutions which implements the same
functionality (business capability).

Diagramming tool that will be used for creating
research artifacts is Archi, an open-source EA tool
supporting ArchiMate EA language (The Open
Group, 2022). The following section explains the
metamodel of the EA model used as part of the
proposed methodology.

3.1 EA Model

Figure 1: Metamodel of the EA model, newly added
elements, and relationships in green.

Figure 1 shows extended metamodel of the EA model
proposed in Ivas (2023). New elements added to the
EA model to support the Composable Enterprise are
API, API/Message and Microservice/Module. As
listed in tables 2 and 3, to support this model
extension, ArchiMate notation is used, as follows:
• element API/message added using ArchiMate´s

Application Interface element
• element Microservice/Module added using

ArchiMate´s Application service element
• element API added using ArchiMate´s Business

service element
• accessed by relationship added between Business

capability and API using ArchiMate´s associate
relationship

Implementation of Composable Enterprise in an Evolutionary Way Through Holistic Business-IT Delivery of Business Initiatives: Real
Industry Use Case

401

• accessed by relationship added between
Microservice/Module and API/message using
ArchiMate´s associate relationship

• composed of relationship added between
Business Application and Microservice/Module
using ArchiMate´s associate relationship.

Table 2: Definitions of the newly added EA model
elements.

Element Definition ArchiMate
Notation

API API interface exposed
by business capability to
leverage API economy.

API/message Application interface in
the form of API or
message (message
stream).

Microservice/
Module

A functionality
implemented as
microservice or module
of a monolith.

Table 3: EA model elements relationships.

Source Relationship
type

Target Description

Business
capability

accessed by API ArchiMate´s associate
relationship.

Microser.
/Module

realizes Business
capability

Business capability as
bounded context of
microservice /module
enables
implementation of
Business
Composability.
Relationship
supported by
ArchiMate.

Business
application

composed
of

Microser.
/Module

ArchiMate´s associate
relationship used.

Microser.
/Module

composed
of

Microser.
/Module

To implement service
composability
principle in IT.
Relationship
supported by
ArchiMate.

Microser.
/Module

accessed by API/
Message

ArchiMate´s associate
relationship used.

API/
Message

realizes API Relationship
supported by
ArchiMate.

Business
application

realizes API Relationship
supported by
ArchiMate.

4 RESULTS

The company used to implement the proposed
method acts as an acquirer, a financial institution
licensed to process credit and debit cards on behalf of
merchants. In this company author works as
enterprise architect and part of her regular work is
supporting initiative gate approval process with early
scoping of business initiatives. Early initiative
scoping serves as an input for investment
determination and initiative funding. One of those
initiatives was "generic surcharge". The high-level
scoping and design of the solution were carried out in
collaboration between the author as EA, an author´s
EA colleague (both belonging to IT part of the
company), the surcharge product owner and the
delivery manager (representing company´s
"business"). For step 5, IT solution architects were
consulted to help estimate and design the most cost-
effective solution.

The results of applying proposed methodology are
presented below. All data in presented diagrams are
anonymised.

Step 1: Understand Business Drivers and Objectives.

Over the last 30 years payment processing industry
has experienced a radical transformation that resulted
with so called "Race to Zero". "Race to Zero" refers
to the commoditization of payment processing
services, where processing fees have fallen to almost
zero due to increasingly competitive marketplace
(Fitzgerald, 2023). Payment processors (acquirers)
must therefore find other ways to generate revenue,
for example by offering so-called value-added
services. One of the value-added services offered by
researched company is the surcharge, a service
offered by acquirers to merchants who would like to
additionally charge cardholders for the Merchant
Service Charge (MSC) fee they pay to the acquirer
for acquiring service. Surcharge as a feature is
prohibited by EU legislation, meaning that surcharge
can be used only for transactions made by Business
Cards issued in the EU and all cards issued outside of
the EU. Surcharge feature is available/allowed on the
following card schemes: Mastercard, Visa, JCB,
CUP, DI/DC, and Amex. Surcharge is identified
during the purchase, after the card is read and prior to
the authorisation with surcharge eligible check being
based on the BIN-range of the card. The scope of
initiative is Finland, Norway and Denmark, Sweden
is out of scope due to local regulations. The
company´s rationale for building centralised generic
surcharge service is as follows:

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

402

Figure 2: Acquiring high-level business capability map (surcharge is part of 11.Value added services).

• The Competition and Consumer Authority has
made it clear that the current company´s
surcharge setup for external PSPs is not
compliant and have strongly urged company to
replace it, with very high risk that they will soon
mandate it out of service. The generic surcharge
service will modernize company´s setup and
eliminate the manual processes in the current
setup (which is the reason why current setup is
not compliant).

• By doing this build, company protects the
revenue from its current external PSPs, enables
easy onboarding of additional external PSPs, and
makes it significantly easier for internal PSPs to
enable surcharge.

• Non-financial benefits are:
o License to play in hospitality: surcharge is

seen as a prerequisite for having a viable
proposition for hospitality.

o Brand value: surcharge is an industry
standard feature – not having it may hurt
company´s brand.

• Financial benefits (quantifiable and non-
quantifiable):
o Revenue Protection: external PSPs are live on

current setup. Approving this build will
protect that revenue.

o Incremental Revenue: additional PSPs can be
added, both internal and external.

o Running Cost and Error Efficiency: with
current setup 3 days of manual work is

required monthly, which is also an error-
prone process.

o Price Erosion Protection: surcharge is an
important negotiation tool to maintain or
increase company´s margins.

o Cheaper enablement of surcharge on internal
PSPs: company´s internal PSPs will have a
more efficient way for surcharge enablement.

The information for this step is provided by P. Sand,
surcharge product owner, and M. W. Lund, delivery
manager.

Figure 3: Decomposition of 11.Value-added services (from
the full business capability map).

Step 2: Understand Holistic Scope of the Initiative.

In business capability map, surcharge capability
(11.6.Surcharge) belongs to 11.Value added services
(figures 2 and 3). As illustrated in company’s Holistic
value delivery (figure 4), 11.6.Surcharge business

Implementation of Composable Enterprise in an Evolutionary Way Through Holistic Business-IT Delivery of Business Initiatives: Real
Industry Use Case

403

Figure 4: In orange affected by holistic surcharge product end-to-end delivery.

capability directly supports value stream steps
3.Accept transactions and 4.Process payment
transactions. However, holistically scoping surcharge
product delivery means taking into consideration all
dependencies of the whole end-to-end value delivery
process. Which means that the scope of the initiative
are also the following value stream steps:
• 2.Onboard Customer
PSP or payment gateway (business capability
2.Payment gateway) is a system that routes payment
transactions received by payment terminal to core
acquiring systems. Internal and external PSPs will
have to integrate towards the new generic surcharge
API, first by getting registered on the API
Marketplace (self-service portal) and fetching the API
keys and then by adjusting their code to utilise the
new API. Existing process of merchant onboarding is
not affected.
• 3.Accept Transactions
The operational call for surcharge lookup should be
redirected to the new surcharge service, instead of
existing implementations in internal and external
PSPs. PSPs in scope are "PSP 1", "SoftPOS 3rd party
PSP" and "3rd party PSPs" (2.Payment gateway
business capability) that will fetch surcharge lookup
for "POS payment terminal 1", "SoftPOS mobile app"
and "3rd party POS payments terminals" (1.1.POS
business capability). POS (point of sales) systems are
used to support transactions in physical stores.
• 4.Process payment transactions
3.3.Merchant clearing & settlement system must feed
the new surcharge solution with additional parameter
mapping to support generic service. The system that
supports this and which falls within the direct scope
of the initiative is the "Core Acquiring System 1".
• 6.Provide reports
New "Generic surcharge service" should provide
additional lookup statistics and error metrics.

Step 3: Understand Current Situation.

Figure 5 illustrates the current solution with several
functional redundancies of surcharge calculation
capability as follows:
1. "Surcharge calculation" implemented in "PSP 1"

available only for "POS payment terminal 1"
(physical POS terminal).

2. "Surcharge calculation" implemented in
"SoftPOS 3rd party PSP" available only for
"SoftPOS mobile app" (mobile phone terminal
application)

3. "Surcharge calculation" implemented in "3rd
party PSPs" available only for "3rd party POS
payment terminals".

All solutions are only available within their
ecosystems, which means that decision to make the
surcharge product available on some other type of
internal or external POS terminal (to support physical
stores) or eComm (to support online web shop
transactions) requires their PSPs to develop their own
surcharge solution. In addition, the current setup
requires changes in both internal PSP, 3rd party PSPs
and internal core acquiring system if the data
exchange format changes. Furthermore, the second
solution with "SoftPOS 3rd party PSP" is the recent
implementation of functionality with the new "REST
API" interface being built to serve only "SoftPOS 3rd
party PSP". This means that there are now two
interfaces for the same surcharge parameters data
flow that need to be maintained. "SoftPOS" solution
exemplifies traditional delivery where business
initiatives tend to solve their own immediate needs
without considering how the new solution fits to the
overall enterprise architecture. Furthermore,
company´s internal system "PSP 1" is a legacy
monolith in which "surcharge calculation" is

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

404

Figure 5: Current situation illustrating functional redundancies of Surcharge functionality.

implemented as a module. However, there are
"surcharge calculation" services within the 3rd party
PSPs (whose implementation is a black box for the
company). Although these 3rd party solutions might
be implemented as reusable and composable
microservices inside their own 3rd party ecosystems,
it does not change the fact that surcharge solution at
enterprise level is inconsistent and redundant. This
confirms Aleatrati Khosroshahi (2016) who states
that without holistic high-level as-is overview,
organisations tend to introduce new services to fulfil
immediate business needs which leads to increased
complexity (Aleatrati Khosroshahi, 2016).

Step 4: Understand Situation and Needs at Enterprise
Level.

There is a need from a company´s "eComm PSP" to
use this solution. It is also discovered that there is
another POS terminal product that would like to have
this solution available both for "Acquiring core
platform 1" and "Acquiring core platform 2", which
means that generic solution must be designed in such
a way that any core acquiring platform can easily
plug in and feed the new surcharge solution with
needed parameters.

Step 5: Design as API-first Headless PBC Solution
(Preferably According to MACH).

As illustrated in figure 6, acquiring and PSP agnostic
target solution is designed according to following
MACH design principles:

• Microservices-based: the solution is envisioned
as an independent, self-contained microservice.
Figure 6 illustrates "Generic surcharge
microservice" which would provide needed
surcharge calculation functionality exposed for
internal and external PSPs to consume. Service
would calculate surcharge based on parameters
received from core acquiring systems. Also, as
figure 6 illustrates, following proposed
metamodel (figure 1) "Generic surcharge
microservice" is part of a business application
"Value added services". According to proposed
metamodel, microservices should always be
grouped in a business application to enable their
governance from the enterprise level (as
microservices alone are too small and there are
too many of them to be govern separately). In
this case, newly introduced business application
"Value added services" would also be used as a
placeholder for the grouping of all future value-
added service microservices.

• API-first: generic surcharge functionality would
be exposed through generic "REST API" API
application interface that would realise business
"API" interface (figure 6). "REST API" would be
designed with generic input and output
parameters, without any internal identifiers
exposed to the outside world. As showed in the
figure 6, what "business" sees is the "API"
interface of surcharge capability
(11.6.Surcharge), which is publicly available and
documented on company´s API marketplace, for
PSPs (internal or external) to configure and use.

Implementation of Composable Enterprise in an Evolutionary Way Through Holistic Business-IT Delivery of Business Initiatives: Real
Industry Use Case

405

Furthermore, inbound "Surcharge parameters
API" is also designed as generic, meaning that
any core acquiring system can easily use it to
share surcharge parameters without worrying
about internal complexity of the "Generic
surcharge microservice". This makes solution
both PSP and acquiring agnostic.

• Cloud-native SaaS: it is recommended to deploy
the solution to one of the company's cloud
providers to leverage cloud deployment model,
providing storage, hosting, elastic scaling, and
automatic updating.

• Headless: Front-end presentation exposed via
API interface with generic contract makes
internal back-end logic black box for its internal
and external PSPs and core acquiring systems.

As mentioned above, this initiative is part of the
early gate approval process, which means that earlier
steps were used to provide inputs for the cost
estimation of the initiative. An external team with
experience with microservice and cloud technologies,
but without previous experience with company´s
systems in scope, was asked to provide the cost
estimate and timeframe for the implementation of the
planned MACH solution (figure 6). This team's
estimate was rejected as the estimated
implementation and maintenance costs were too high
and the timeframe offered was unacceptable (as
important pre-sales enabler for hospitality, initiative
was promised to be delivered as soon as possible).

This is why a joined business-IT trade-off decision
was made to go instead for a more cost-effective

solution with a shorter time-to-market by adjusting
the existing surcharge solution in "PSP 1" developed
by an internal team (figure 5). Also, the internal "PSP
1" team already had experience with the company's
API marketplace. Figure 7 shows chosen target
solution, which is, like the MACH solution (figure 6),
both acquiring and PSP agnostic. Although this is not
a long-term solution, as "PSP 1" as a legacy platform
is likely to be replaced in the future, none of the
internal and external PSPs or core acquiring platforms
should be affected by a possible migration, as they
only see the front-end presentation exposed via
generic APIs. This chosen trade-off solution confirms
Ford et al. (2022) who state that cost-effective time-
to-market composable solutions could also be
achieved using modular monoliths.

Step 6: Implement Business-IT Aligned PBC Solution
and Consolidate.

After implementing the new trade-off solution (figure
7), plan is to first migrate "3rd party PSPs" and then
also "SoftPOS 3rd party PSP".

5 DISCUSSIONS

As exemplified in the previous chapter, business
initiatives often lead to inconsistent and redundant
software systems when executed in a traditional way
with IT serving to fulfil immediate business needs
and when IT designs business-detached solutions

Figure 6: Target composable solution designed according to MACH principles.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

406

Figure 7: Trade-off composable solution implemented as a module of a monolith.

considering only domain of a specific ecosystem,
without a holistic understanding of how solution fits
into the overall delivery and enterprise architecture.
Which increases the enterprise complexity and leads
to higher maintenance costs, higher costs for future
investments and less flexibility in implementing
future changes. As solution, Composable Enterprise
brings together "business" and IT introducing the
mindset of composability at the enterprise level as a
joint business-IT venture to enable ease of business
changes with lower costs. Composable Enterprise is
based on a holistic understanding of the enterprise
and Business Composability, a service abstraction
that starts from the notion of first applying service
composability to business assets (business
capabilities) to achieve the scale and pace needed for
implementing business changes. Instead of massive
enterprise-wide rationalization and consolidation
initiative, this paper proposes implementation of
Composable Enterprise in an evolutionary way
through joined and holistic business-IT delivery of
business initiatives. To support this thinking, paper
has proposed methodology that has been
implemented in a real industry where author works as
an enterprise architect supporting "business" with
early holistic scoping of business initiatives. The
implementation of the proposed methodology has
shown that "perfectly designed" IT solutions are not
always the most suitable options when considered
from all socio-techno-economic perspectives,
illustrating how the same business-IT aligned
objectives can also be achieved with modular
monoliths. Future work on Composable Enterprise

will incorporate value streams to explore how
enterprise composability can be considered as part of
business process design.

REFERENCES

Aleatrati Khosroshahi, P., Beese, J., Matthes, F., & Winter,
R. (2016). Causes and Consequences of Application
Portfolio Complexity–An Exploratory Study. In The
Practice of Enterprise Modeling: 9th IFIP WG 8.1.
Working Conference, PoEM 2016, Skövde, Sweden,
November 8-10, 2016, Proceedings 9 (pp. 11-25).
Springer International Publishing.

Baldwin, C. Y., & Clark, K. B. (2000). Design rules: The
power of modularity (Vol. 1). MIT press.

Basole, R. C. (2019). On the evolution of service
ecosystems: A study of the emerging API economy.
Handbook of Service Science, Volume II, 479-495.

Bhatnagar, R. (2021). Composable architecture: The latest
trend in EA helping companies adapt and grow.
Architecture & Governance magazine

Brocke, J. V., Simons, A., Niehaves, B., Niehaves, B.,
Reimer, K., Plattfaut, R., & Cleven, A. (2009).
Reconstructing the giant: On the importance of rigour
in documenting the literature search process.

Cerny, T., Donahoo, M. J., & Pechanec, J. (2017,
September). Disambiguation and comparison of soa,
microservices and self-contained systems. In
Proceedings of the International Conference on
research in adaptive and convergent systems (pp. 228-
235).

Ćorić, I., & Mabić, C. M. (2023, August). Is composable
enterprise the key to digital transformation? 6th
international scientific conference on digital economy
DIEC, Tuzla, BiH

Implementation of Composable Enterprise in an Evolutionary Way Through Holistic Business-IT Delivery of Business Initiatives: Real
Industry Use Case

407

Dessus, C., 2021, Business Composability,
https://www.slideshare.net/chdessus/business-
composability (Accessed on 15/02/2024).

Dijkstra, E. W. (1972). The humble programmer.
Communications of the ACM, 15(10), 859-866.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., & Safina, L. (2017).
Microservices: yesterday, today, and tomorrow. Present
and ulterior software engineering, 195-216.

Evans, E. J. (2003). Domain-driven design: tackling
complexity in the heart of software. Addison-Wesley
Professional.

Fitzgerald, N. (2023). Payment Processing Race to Zero.
https://www.linkedin.com/pulse/payment-processing-
race-zero-noah-fitzgerald/ (Accessed on 13/02/2024).

Ford, N., Parsons, R., Kua, P., & Sadalage, P. (2022). Building
evolutionary architectures. " O'Reilly Media, Inc.".

Gampfer, F., Jürgens, A., Müller, M., & Buchkremer, R.
(2018). Past, current and future trends in enterprise
architecture—A view beyond the horizon. Computers in
Industry, 100, 70-84.

Gaughan, D., Natis, Y., Alvarez, G., & O’Neill, M. (2020).
Future of applications: delivering the composable

enterprise. ID: G00465932
Heinig, M. (2022) Composable business processes – The

journey towards a composable enterprise.
https://www.linkedin.com/ pulse/composable-business-
processes-future-enterprises-modu lar-heinig (Accessed
on 18/02/2024).

Ivas, I. (2023). Introduction to BASE Enterprise
Architecture Framework for Holistic Strategic
Alignment of the Complex Enterprise. In ICEIS (2) (pp.
575-588).

Jana, D. (2006). Service oriented architectures–a new
paradigm. CSI Communications, 12-14.

Krafzig, D. (2010). Serviceorientierte Architekturen (SOA).
Informationsverarbeitung in Versicherungsunte-
rnehmen, 163-174.

Linthicum, D. S. (2000). Enterprise application integration.
Addison-Wesley Professional.

MACH Technology, https://machalliance.org/mach-
technology (Accessed on 2024/02/15)

Panetta, K. (2020). Gartner Keynote: The Future of
Business is Composable. https://www.gartner.com/
smarterwithgartner/gartner-keynote-the-future-of-busin
ess-is-composable (Accessed on 12/02/2024).

Randell, B. (1996). The 1968/69 NATO software
engineering reports. History of software engineering,
37.

Orlikowski, W. J. (2010). The sociomateriality of
organisational life: considering technology in
management research. Cambridge journal of
economics, 34(1), 125-141.

Scheer, A. W. (2023). The Composable Enterprise: Agile,
Flexible, Innovative: A Gamechanger for
Organisations, Digitisation and Business Software.
Springer Nature.

Shadija, D., Rezai, M., & Hill, R. (2017, September).
Towards an understanding of microservices. In 2017

23rd International Conference on Automation and
Computing (ICAC) (pp. 1-6). IEEE.

Sunyaev, A., Dehling, T., Strahringer, S., Da Xu, L.,
Heinig, M., Perscheid, M., ... & Rossi, M. (2023). The
Future of Enterprise Information Systems. Business &
Information Systems Engineering, 65(6), 731-751.

The Open Group. (2022). ArchiMate® 3.2 Specification.
https://pubs.opengroup.org/architecture/archimate32-
doc/

Tune, N. (2020). "Domain, Subdomain, Bounded Context,
Problem/Solution Space in DDD: Clearly Defined"
https://medium.com/nick-tune-tech-strategy-
blog/domains-subdomain-problem-solution-space-in-
ddd-clearly-defined-
e0b49c7b586c#:~:text=In%20DDD%2C%20a%20subd
omain%20is,most%20domains%20are%20a%20subdo
main (Accessed on 18/02/2024).

van Schalkwyk, P., & Isaacs, D. (2023). Achieving Scale
Through Composable and Lean Digital Twins. In The
Digital Twin (pp. 153-180). Cham: Springer
International Publishing.

Wang, A., & Gao, X. (2022, July). Method of Building
Enterprise Business Capability Based on the Variable-
Scale Data Analysis Theory. In International
Conference on Logistics, Informatics and Service
Sciences (pp. 267-278). Singapore: Springer Nature
Singapore.

Xiao, Z., Wijegunaratne, I., & Qiang, X. (2016,
November). Reflections on SOA and Microservices. In
2016 4th International Conference on Enterprise
Systems (ES) (pp. 60-67). IEEE.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

408

