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Abstract: Hydrocyclones, vital in mineral processing plants, classify materials by size and density. Operational issues,
like roping, can cause inefficiencies and financial losses. This paper explores computer vision techniques
for the assessment of hydrocyclone underflow operational status. Testing revealed robust performance for
both a Resnet-18 and a MobileViT-V2 model. An edge device was implemented for real-time inferences
on a conceptual prototype that simulates underflow scenarios. The CNN models demonstrate high precision
and recall, with an F1 Score over 92% for roping detection on the edge device. The research contributes
to efficient hydrocyclone monitoring, addressing challenges in remote mining locations. The findings offer
potential for further optimization and industrial implementation, enhancing processing plant reliability and
mitigating financial risks associated with operational irregularities.

1 INTRODUCTION

Hydrocyclones are low-cost devices that are com-
monly used in mineral processing plants for material
classification. They are used to select or classify ma-
terial at a particular cut size and an optimum solids
concentration percentage defined by downstream pro-
cess requirements. The classification is achieved by
opposing centrifugal and drag forces which move
coarse and dense particles to the periphery, forcing
them downwards to join the underflow and exit at the
apex as part of the underflow. Meanwhile, fine and
light particles as well as most of the water are directed
to the upper exit at the vortex. (Luz et al., 2010)

The angle of the underflow discharge is an im-
portant diagnostic of the classification process con-
dition in a hydrocyclone. In an ideal operation, an air
core in the unit is generated and the apex discharge
presents a fan shape, as shown in Figure 1 whereas
under certain conditions the air core collapses and
causes the underflow to be characterized by a rope
shape, which indicates very high underflow density
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and that coarse particles are being discharged with the
overflow. (Napier-Munn and Centre, 1996).

Figure 1: Hydrocyclones underflow states.

The issues associated with roping are derived from
the higher classification cut size which may signifi-
cantly reduce the efficiency of downstream processes
and result in a lower metallurgical recovery. Another
effect that may arise is the blocking of the spigot or
of devices used in the overflow pipelines, which can
lead to plant shutdowns (Concha et al., 1996). Both
outcomes impair circuit performance and cause finan-
cial losses to the processing plant.

As a result, the monitoring of hydrocyclone opera-
tional status has been largely investigated for optimal
performance, with a focus on a variety of techniques,
which include ultrasound monitoring (Olson and Wa-
terman, 2005), vibration (S. Mishra and Majumder,
2022), and image analysis (Janse van Vuuren et al.,
2011). Even though some of these methods are com-
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mercially available, their widespread adoption in the
industry has been limited.

A recent promising approach has been developed
by (Giglia and Aldrich, 2020) which involves the use
of a convolutional neural network classifier with hy-
drocyclone underflow images. It accomplished high
accuracy without requiring significant image prepro-
cessing. However, the adoption of cloud-based pro-
cessing in industrial settings for real-time monitoring
and immediate action may encounter significant chal-
lenges, primarily revolving around two key points: la-
tency and the dependency on continuous cloud con-
nectivity. These issues arise from the time delay
in transmitting data to and from centralized cloud
servers and the necessity for uninterrupted cloud con-
nectivity. These challenges become particularly pro-
nounced in remote mining processing plants with lim-
ited or unreliable network connectivity.

Thus, this investigation extends the study by
(Giglia and Aldrich, 2020) by testing computer vi-
sion algorithms on an edge device with no centralized
processing. The objective is to make real-time infer-
ences regarding a conceptual prototype that simulates
the operational status of a hydrocyclone underflow. In
addition, a hybrid model between CNNs and Vision
Transformers (ViT), MobileViT-V2, was also evalu-
ated on the test dataset.

The paper is structured as follows: the next section
describes the theoretical reference. The procedures
and research design are explained in section 3. The
results of the experiments are presented and discussed
in section 4. Section 5 includes the conclusions.

2 THEORERICAL REFERENCE

The mining industry, as illustrated by (Zhang et al.,
2021), leverages computer vision algorithms for vari-
ous applications such as materials classification, iden-
tification of asset failure, analysis of ore constituents,
and so on. This section addresses the theoretical foun-
dations of two prominent deep learning architectures
employed in computer vision tasks — Convolutional
Neural Networks (CNNs) and Vision Transformers
(ViTs) — and explores the concept of edge AI.

2.1 Neural Network Models

Since the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), CNNs have become a corner-
stone in vision-related tasks due to their robust per-
formance demonstrated on this benchmark dataset,
as shown by (Krizhevsky et al., 2012), and they are
widely used in various computer vision applications.

CNNs are specifically designed to process data
with a grid-like structure, such as images, by employ-
ing convolutional layers to extract hierarchical fea-
tures from input data via kernel convolutions, exhibit-
ing memory-efficient properties like parameter shar-
ing and sparse connections (Goodfellow et al., 2016).
Subsequent pooling layers merge similar features to
reduce dimensions and enhance invariance to input
distortions. Fully connected layers at the network’s
end utilize the extracted features for specific tasks like
classification.

The Transformer, introduced by (Vaswani et al.,
2017), revolutionized neural network architectures by
relying solely on attention mechanisms for sequential
data processing, enabling flexible dependency mod-
eling without considering input distance and emerg-
ing as a state-of-the-art solution for Natural Language
Processing (NLP). Vision Transformers, pioneered by
(Dosovitskiy et al., 2021), extend the Transformer
concept to image recognition by treating images as
sequences of patches instead of image-specific archi-
tectural biases, surpassing many CNN-based image
classification methods in accuracy and computational
efficiency.

Further advancements include hybrid models that
combine self-attention mechanisms with CNNs to
capture both long-range dependencies and local infor-
mation. Research comparing CNNs and Transform-
ers for visual tasks found it challenging to declare a
winner, but highlighted hybrid models for their effi-
cacy and cost-effectiveness, leveraging strengths from
both architectures while mitigating their limitations
(Moutik et al., 2023).

Training CNNs and ViTs from scratch often re-
quires a large image dataset. Transfer learning of-
fers an effective strategy to overcome this limitation
by adapting pre-trained models, originally trained on
large datasets, to new settings. This approach in-
volves substituting the classification segment of the
pre-trained model with untrained layers tailored for
the specific classification task in the new setting,
thereby accelerating learning with limited data.

2.2 Edge Artificial Intelligence

Edge AI (EI) merges Edge computing (EC) and Ar-
tificial Intelligence (AI), processing AI computations
on edge devices near data sources. EI shifts data pro-
cessing tasks from the cloud to the edge of the net-
work, relieving the cloud of the burdens of data pro-
cessing, storage, and computing processes (Hua et al.,
2023). The relationship between EC and AI benefits
both domains as EC provides an ideal environment
for AI by enhancing data availability and accommo-
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dating diverse applications, while AI optimizes EC by
processing multimodal data, detecting patterns, and
improving decision-making (Singh et al., 2022).

Edge AI offers several advantages over cloud-
based computing, including lower latency, enhanced
privacy, cost-effectiveness, and improved reliability.
Localized computation reduces latency and boosts
privacy and security by processing sensitive data on-
site, while eliminating constant data transmission to
centralized data centers saves costs with communica-
tion and cloud infrastructure. It also enhances relia-
bility, with the ability to operate independently with-
out a continuous internet connection (Singh and Gill,
2023). However, limited processing and storage ca-
pacity in edge devices remains a challenge, prompt-
ing research into processor acceleration and model
adaptation techniques to optimize AI frameworks for
resource-constrained devices (Deng et al., 2020).

2.3 Related Work

Computer vision applications for failure and opera-
tional status detection are currently undergoing sub-
stantial expansion. Some of these developments are
covered in this topic.

(Giglia and Aldrich, 2020) applied a CNN-based
model to assess the operational status of a hydro-
cyclone based on its underflow images. They em-
ployed transfer learning to industrial underflow video
frames to construct two-state classifiers (fanning or
roping) using VGG-19 with a CNN classifier and
ResNet50 with an SVM classifier. The CNN classi-
fier attained accuracies of 76.0% and 82.8% on video
footage datasets, while an ensemble model combin-
ing CNN and SVM classifiers achieved accuracies of
98.2% and 84.4%, highlighting the effectiveness of
their approach. However, test results for roping with
industrial images were not provided.

(Liu and Aldrich, 2023) applied Vision Trans-
formers to classify froth flotation images associ-
ated with different operational regimes, demonstrat-
ing competitive accuracy compared to CNN-based
approaches. Additionally, (Hütten et al., 2022) con-
ducted a comprehensive comparison between CNNs
and Vision Transformers for industrial visual inspec-
tion tasks, concluding that Vision Transformers out-
performed CNNs, demonstrating no significant differ-
ence in convergence speed and showcasing their effi-
cacy in handling small datasets.

Other applications have recently been developed
for defect detection and classification by employing
CNN-based, ViT-based, or hybrid architectures. Ex-
amples include the classification of maize seeds, as
explored by (Chen et al., 2022) using ViT, strip steel

surface defect classification by (Li et al., 2022) uti-
lizing hybrid models, and PCB defect detection by
(An and Zhang, 2022) introducing a ViT-based model
achieving state-of-the-art results. Moreover, Edge AI
applications, like (Klippel et al., 2022) implementing
a CNN-based model for conveyor belt rip detection
and (Li et al., 2023) proposing a MobileViT-based ar-
chitecture for real-time plant disease detection, high-
light the diverse and expanding range of industries
benefitting from advanced computer vision models.

This article approaches an important problem in
the mining industry, hydrocyclone operational sta-
tus detection, and proposes a solution that leverages
Edge AI to overcome potential latency and connec-
tivity issues in remote plants while harnessing the ro-
bust generalization capacity of Artificial Intelligence
algorithms.

3 METHODOLOGY

This section provides an in-depth exploration of the
procedures and research design. Firstly, it discusses
the selected edge device for the experiments. It then
outlines the development of a conceptual prototype
designed to assess the feasibility of the proposed ap-
proach. Finally, the section explores the employed
framework for model training and deployment.

3.1 Edge Device

The edge device chosen for the experiments is the
Sipeed Maix Dock II, a cost-effective board designed
for AI applications. It is powered by the Allwinner
V831 chip, operates on Linux, and features a single-
core ARM Cortex-A7 with 64MB DDR2 RAM, sup-
porting speeds of up to 800 MHz. It incorporates a
Neural Processing Unit (NPU) dedicated to executing
AI tasks at a performance level of up to 0.2 TOPS.
The device is equipped with various peripherals, in-
cluding an analog microphone, a 3-axis acceleration
sensor, and a 2MP HD camera, which enhances its
versatility for diverse applications.

3.2 Conceptual Prototype

A conceptual prototype was developed to assess the
feasibility of the proposed approach and to serve as a
proof of concept for potential industrial applications.
The prototype simulated a hydrocyclone underflow by
using a hose with an adjustable sprayer placed 90 cm
from the camera. A black panel was positioned be-
hind the hose to improve contrast. The flow opening
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of the hose was manipulated to emulate both roping
and fanning phenomena observed in a hydrocyclone.

For image capture, two distinct devices were em-
ployed. The Samsung S22 smartphone camera, capa-
ble of recording high-definition video at 1920 x 1080
pixels resolution and a frame rate of 30 frames per
second (fps), served to capture dynamic footage of
the simulated underflow. Additionally, to provide a
more granular and varied dataset for in-depth analy-
sis, the Maix Dock II edge device was also configured
to capture images at a fixed interval of 0.2 seconds.

Furthermore, the spatial relationship between the
hose and the camera was systematically adjusted.
Horizontal and vertical variations were explored,
along with changes in the distance between them
within a range of 15 cm. This experimental design,
shown in Figure 2, aimed to comprehensively simu-
late diverse conditions resembling those encountered
in real hydrocyclone underflow scenarios.

Figure 2: Diagram of the conceptual prototype.

3.3 Training and Deployment
Framework

The training framework was implemented in Python.
This subsection provides an in-depth discussion of the
key components and processes within the framework.

For the construction of the inference models, two
different architectures were chosen: ResNet-18 and
MobileViT-V2. The Convolution Neural Network se-
lected was ResNet-18, introduced by (He et al., 2015).
It is an 18-layer network that adds residual learn-
ing blocks into ConvNets. This design enhances ac-
curacy by addressing challenges related to increased
network depth, thereby preventing accuracy satura-
tion that might occur as the depth of the network in-
creases. The hybrid Visual Transformer model was
MobileViT-V2, introduced by (Mehta and Rastegari,
2022). It combines the strengths of CNNs and Vision
Transformers (ViTs) to capture spatial hierarchies and
self-attention mechanisms, respectively, offering ver-

satility in image processing.
The initial phase of the framework involves cap-

turing images from the video footage made with
the smartphone camera by utilizing Python’s Decord
library and its VideoReader module. Images are
captured at intervals of 10 frames and, employing
OpenCV-Python, are subsequently exported into the
computer.

Images from both image capture devices are or-
ganized into three folders corresponding to their
class: background, roping, and fanning. They are
then loaded and divided into training and valida-
tion datasets using Torchvision’s ImageFolder dataset
generator in an 80-20 ratio. The images are la-
beled according to their class. The training dataset
undergoes transformation and augmentation, includ-
ing resizing to 224 x 224, random horizontal flip-
ping, random rotations within a 90-degree range, and
random adjustments to brightness, contrast, satura-
tion, and hue. These transformations are applied us-
ing Torchvision’s Transforms V2 and ColorJitter V2
transforms. Finally, normalization is performed us-
ing ImageNet’s mean and standard deviation statis-
tics. The validation dataset undergoes resizing and
normalization only.

Another video footage is utilized to generate im-
ages for the testing dataset, and these images undergo
the same transformations as the validation set. Sub-
sequently, the testing dataset is employed for an un-
biased evaluation of the models’ performance on new
and unseen data. This approach facilitates a proper
evaluation of the model, even without utilizing K-fold
validation, thereby saving computational costs.

As a result, the complete dataset comprises a total
of 1730 images, with 740 images each for roping and
fanning, and 250 images for the background. They are
randomly split into training and validation sets. Ad-
ditionally, there are 260 images in the testing dataset,
with 100 for roping, 100 for fanning, and 60 for the
background class.

Both models, initially pre-trained on the ImageNet
dataset, were adapted using transfer learning through
two distinct approaches. In the first method, termed
as partially retrained, only the parameters of the fi-
nal layer, the classification layer, were updated us-
ing the training dataset, while the rest of the model
parameters remained fixed. Conversely, the fully re-
trained approach involved updating all parameters of
the models using the training data. Both training pro-
cesses employed a low learning rate of 0.001, with an
exponential decay factor of 0.977 applied to it. Ad-
ditionally, Stochastic Gradient Descent optimizer and
cross-entropy loss were utilized during training.

The ResNet-18 encompasses a total of 11,178,051
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Figure 3: Training and deployment framework.

parameters. Similarly, the MobileViT-V2 model con-
sists of a total of 4,390,380 parameters. Their classi-
fication layer is composed of 1,539 parameters.

Three metrics are used to evaluate the models:
precision, recall, and F1 Score. Precision assesses
the model’s ability to identify instances of a particu-
lar class correctly while Recall evaluates the model’s
ability to identify all instances belonging to that class.
The F1 score is a balanced combination of precision
and recall. These metrics are calculated using equa-
tions 1, 2, and 3, respectively, taking into account true
positives (TP), false positives (FP), and false nega-
tives (FN) for each class. Weight averaging is used to
aggregate each metric result across all classes, ensur-
ing consideration of class imbalance.

Precision =
T P

(T P+FP)
(1)

Recall =
T P

(T P+FN)
(2)

F1score = 2∗ (Precision∗Recall)
(Precision+Recall)

(3)

Subsequently, the models are converted into the
Open Neural Network eXchange (ONNX) format
utilizing the ’torch.onnx.export’ ONNX exporter in
TorchScript. For inference on the Maix Dock II,
they undergo an additional conversion from ONNX
to AWNN format using the MaixHub tool. This fi-
nal step ensured compatibility and optimized perfor-
mance for deployment on the Maix Dock II.

The inference process occurs on the edge device
through exposure to simulated scenarios of roping,
fanning, and background. The device is set up to
record images at a 0.2-second interval onto an SD
memory, facilitating the assessment of the inference
performance. A full illustration of the training and
deployment framework can be found in Figure 3.

The ViT model was not implemented on the edge
device because Maix Dock II does not support it.
More efficient compression techniques are required to
enable their implementation as has been proposed by
(Song et al., 2022).

4 RESULTS

This section presents the results of the models for
classifying the underflow status under three classes:
background, roping, or fanning. The presentation
is organized into two subsections for clarity and
comparison. The first subsection details the results
achieved on the test dataset, while the subsequent one
outlines the outcomes obtained on the edge device.

4.1 Results on the Testing Dataset

The ResNet-18 partially retrained model was trained
for 24 epochs. The training process was halted
when no improvements in validation cross-entropy
loss were observed for five consecutive epochs. Pa-
rameters from the model exhibiting the lowest loss
during validation were chosen for the final model.
Figures 4 and 5 show the corresponding losses and
accuracies for both the training and validation phases.
The model reached validation accuracies over 90% af-
ter only two epochs and reached losses close to 0.1.

Figure 4: CNN partially trained model accuracy.

The confusion matrix for the test dataset is shown
in Figure 6.

The ResNet-18 fully retrained model was trained
for 15 epochs and the parameters from the model ex-
hibiting the lowest loss during validation were chosen
for the final model. Figures 7 and 8 show the corre-
sponding losses and accuracies for both the training
and validation phases.

After two epochs, the training reached accura-
cies over 98% and losses significantly lower than 0.1,
which is even better than the partially trained model.
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Figure 5: CNN partially trained model cross-entropy loss.

Figure 6: CNN part trained model confusion matrix - Test.

The confusion matrix for the test dataset is shown
in Figure 9. It indicates robust performance and suc-
cessful generalization, as only one sample from the
test dataset was not correctly classified.

The MobileViT-V2 fully trained model was
trained for 15 epochs. Parameters from the model ex-
hibiting the highest accuracy during validation were
chosen for the final model. The confusion matrix for
the test dataset is presented in Figure 10. The model
correctly assigned every sample from the test dataset,
achieving 100 % accuracy.

Table 1 summarises the performance metrics re-
sults. The results suggest a robust performance of
the fully trained models in comparison to the partially
trained model. The MobileViT performed better than
the CNN-based model but by a minimum margin, as it
correctly predicted every image but the latter only had
one sample mispredicted. It may be an indication that
the MobileViT-V2 model can be a superior choice for
this particular application.

Table 1: Models performance metrics on the testing dataset.

Model Precision Recall F1 Score
CNN part trained 0.978 0.977 0.977
CNN fully trained 0.996 0.996 0.996
ViT fully trained 1.000 1.000 1.000

4.2 Results on the Edge Device

The Maix Dock II edge device with each of the CNN-
based models was exposed to the conceptual proto-
type, which simulates hydrocyclone underflow condi-

Figure 7: CNN fully trained model accuracy.

Figure 8: CNN fully trained model cross-entropy loss.

tions. The edge device was assessed on its ability to
classify each class correctly.

The confusion matrix for the edge device results
of the partially trained model is shown in Figure 11,
while the results for the fully trained model are shown
in Figure 12. Table 2 summarises the performance
metrics results.

Table 2: Models performance metrics at the edge.

Model Precision Recall F1 Score
CNN part trained 0.892 0.855 0.855
CNN fully trained 0.943 0.941 0.941

Both models exhibited decreased performance
compared to their performance on the testing dataset,
which is a common occurrence when quantized mod-
els are used, as they operate with lower precision.
However, the results are promising, which is indicated
by all performance metrics over 94% achieved by the
fully trained model.

Furthermore, for the detection of roping, which is
the critical state that the device needs to be able to de-
tect, both partially and fully trained models exhibited
F1 scores above 92%, as summarized in Table 3. This
is an encouraging result for further improvements to-
wards implementation in industrial settings.

In summary, all three models demonstrated robust
performance on the testing dataset, with an F1 score
exceeding 97%, indicating their ability to accurately
identify each classes. The fully-trained models out-
performed the partially-trained one, benefiting from
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Figure 9: CNN fully trained model confusion matrix - Test.

Figure 10: MobileViT-V2 model confusion matrix - Test.

Figure 11: CNN part trained model confusion matrix-Edge.

Figure 12: CNN fully trained model confusion matrix-
Edge.

comprehensive optimization across all parameters.
Despite slightly reduced performance on the edge,

the fully trained CNN model achieved over 94% ac-
curacy overall and above 92% for roping detection,
indicating encouraging results for developing models
trained on industrial hydrocyclone images for real-
world deployment. Further hyperparameter tuning,
such as the number of epochs and learning rate, could
lower cross-entropy losses and improve performance
when deployed on the edge device. Exploring the use
of ViT models on the edge is worth considering given
their excellent performance on the test dataset.

However, for industrial deployment, some practi-
cal considerations need to be considered. First, the
device would require an unobstructed view of the hy-

Table 3: Models performance metrics for roping.

Model Precision Recall F1 Score
CNN part trained 0.889 0.977 0.931
CNN fully trained 0.922 0.932 0.927

drocyclone apex for effective operation. Additionally,
lighting, hydrocyclone sizes and design, and different
classified materials should be further explored when
training and deploying this concept.

5 CONCLUSIONS

In conclusion, this paper has explored the critical role
of hydrocyclones in mineral processing plants and
the potential issues associated with roping, which can
lead to reduced efficiency and financial losses. The
study presented an approach to monitor hydrocyclone
operational status using edge computing and com-
puter vision techniques.

The investigation tested the use of two neural net-
work models, ResNet-18 and MobileViT-V2, which
were examined for their effectiveness regarding the
operational status detection of a hydrocyclone. The
Resnet-18 model was also implemented on an edge
device, specifically the Sipeed Maix Dock II, and
tested on a conceptual prototype that simulates the
behavior of the underflow of a hydrocyclone. It re-
vealed a slight degradation in accuracy, likely at-
tributed to quantization effects, but the overall find-
ings support the feasibility of deploying these mod-
els in real-world scenarios, as meaningful results, F1
scores over 94% overall and 92.7% for roping detec-
tion, were obtained.

This research serves as a pilot for developing so-
lutions to optimize mineral processing plant perfor-
mance and address challenges in remote locations.
Future work should focus on training the models with
a dataset comprising images of the underflow from
various industrial hydrocyclones. This dataset should
encompass a diverse range of lighting conditions, un-
derflow rates, camera angles, and positions relative
to the apex, as well as various backgrounds to ef-
fectively enhance the model’s generalization capacity
across different scenarios. Additionally, refining the
model training process to achieve even lower valida-
tion losses could mitigate accuracy degradation when
the models are quantized and deployed on the edge
device. Furthermore, evaluating the performance of
Vision Transformers (ViT) could also lead to signifi-
cant improvements on the Edge device.

Finally, conducting rigorous testing on an
industrial-scale hydrocyclone operating under vary-
ing conditions is essential to validate the effectiveness
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and applicability of the proposed solutions in real-
world operational scenarios.
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