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Abstract: Neural network-based enterprise modelling support is becoming popular. However, in practical enterprise 
modelling scenarios, the quantity of accessible data proves inadequate for efficient training of deep neural 
networks. A strategy to solve this problem can involve integrating symbolic knowledge to neural networks. 
In previous publications, it was shown that this strategy is useful, but the trust issue was not considered. The 
paper is aimed to analyse if the trained neural-symbolic models just “learn” the samples better or rely on the 
meaningful indicators for enterprise model classification. The post-hoc explanation (specifically, the concept 
extraction) has been used as the studying technique. The experimental results showed that embedding 
symbolic knowledge does not only improve the learning capabilities but also increases the trustworthiness of 
the trained machine learning models for enterprise model classification.  

1 INTRODUCTION 

Recently, the application areas of machine learning 
methods based on artificial neural networks (ANN) 
have significantly extended. Nevertheless, the 
efficient application of ANNs is still highly 
dependent on training data that is required in 
significant volumes. Thereby absence of large 
volumes of training data is still a significant 
constraining factor for their application in a number 
of areas (Anaby-Tavor et al., 2020; Nguyen et al., 
2022). On the other side, once defined symbolic 
knowledge can be tailored to new problems without 
the necessity of training on extensive datasets. 
Consequently, the fusion of symbolic knowledge and 
ANNs (sub-symbolic knowledge) can be considered 
as a promising research direction. The result of such 
a fusion is referred to as neural-symbolic artificial 
intelligence (Garcez & Lamb, 2020). 

One of the areas that can benefit from sub-
symbolic and symbolic knowledge fusion is 
enterprise modelling assistance. Application of 
machine learning techniques to enterprise modelling 
assistance has been addressed recently (Shilov et al., 
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2021, 2023) demonstrating the potential efficiency of 
the enterprise modeller assistance based on the ANN 
paradigm. The assistance can include both suggestion 
and verification of node and relationship types and 
labels implementing such functions as auto-
completion and error corrections. It was also shown 
that efficient assistance can only be achieved if the 
ANN-based models take into account the modelling 
context, e.g., class of the model (such as concept 
model, process model, etc.), its target users (engineers 
or top managers), and others.  

In the previous publication (Smirnov et al., 2023) 
the authors analysed the application of the symbolic 
artificial intelligence to the enterprise model 
classification problem. It was demonstrated that its 
usage indeed improved the ANN-based model trained 
on a limited dataset. However, the publication did not 
consider the trust issue. It was not researched if the 
trained models just “learned” the samples or relied on 
the meaningful model class indicators. The research 
question to be answered in this work is “If the neural-
symbolic machine learning model is more 
trustworthy than the pure ANN model?”. For this 
purpose, an approach from the area of explanation of 
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trained ANNs (namely, post-hoc ANN explanation) 
has been used to understand if the ANNs rely on 
meaningful enterprise model class indicators. 

The paper is structured as follows. Section 2 
describes the state-of-the-art in the areas of symbolic 
and sub-symbolic knowledge integration and post-
hoc ANN explainability. It is followed by the 
presentation of the data used and the research 
methodology. Section 4 presents the experimentation 
results and their discussion. The concluding remarks 
are given in Section 5. 

2 STATE OF THE ART REVIEW 

The section briefly considers approaches and 
architectures used for integration of symbolic and 
neural knowledge as well as techniques of post-hoc 
ANN explanations.  

2.1 Approaches for Embedding 
Symbolic Knowledge into ANNs 

Embedding of symbolic knowledge into ANNs can be 
achieved using various techniques. The paper 
(Ultsch, 1994) defined four distinct approaches: 
neural approximative reasoning, neural unification, 
introspection, and integrated knowledge acquisition. 
The approaches address different tasks and their 
choice is normally defined by the task being solved. 

• The neural approximative reasoning combines 
methods in the area of approximate inference 
generation in intelligent systems (Guest & 
Martin, 2023) mostly aimed at building ANNs 
approximating existing rules. 

• The integrated knowledge acquisition aims to 
extract knowledge from a limited set of 
examples (usually generated by an expert) and 
then to re-formulate discovered patterns into 
rules (Mishra & Samuel, 2021).  

• The neural unification aims training ANNs to 
learn logical statement sequences leading to the 
original statement confirmation or refutation 
for generalizing argument selection strategies 
when proving assertions (Picco et al., 2021). 

• The introspection assumes ANNs to monitor 
steps performed during logical inference thus 
learning to avoid erroneous pathways and to 
come to reasoning results faster 
(Prabhushankar & AlRegib, 2022).  

Thus, the most appropriate approaches for 
embedding symbolic knowledge into ANN-based 

classifier are the neural approximative reasoning and 
integrated knowledge acquisition. 

2.2 Symbolic and Neural Knowledge 
Integration Architectures  

The symbolic and neural knowledge integration 
architectures are classified based on the “location” of 
symbolic rules in an ANN (Wermter & Sun, 2000):  

• The Unified architecture suggests to encode 
symbolic knowledge within the neural 
netowrk. In this case, two ways are possible: 
(i) encoding symbolic knowledge in separate 
ANN fragments (Arabshahi et al., 2018; Pitz & 
Shavlik, 1995; Xie et al., 2019), or (ii) by 
network’s non-overlapping fragments (Hu et 
al., 2016; Prem et al., n.d.). 

• The Transformation architecture assumes 
mechanisms translating neural knowledge into 
symbolic and/or back, e.g., extraction of rules 
from an ANN (Shavlik, 1994). 

• Hybrid modular architecture suggests to 
encode symbolic knowledge into modules that 
are separate from ANN. This can be done in 
three ways: (i) Loosely coupled architecture: 
one-way interoperability (Dash et al., 2021; Li 
et al., 2022); (ii) Tightly coupled architecture: 
two-way interoperability (Xu et al., 2018; Yang 
et al., 2020); and (iii) Fully integrated 
architecture: two-way interoperability via 
several interfaces (Lai et al., 2020). 

In contrast to the approaches (sec. 2.1), the 
architectures are not tailored to specific use cases but 
should be selected based on the unique problem under 
consideration. It can be noticed that when symbolic 
knowledge is stored within dynamic modules such as, 
for example, evolving ontologies, a hybrid modular 
architecture is preferable (the symbolic knowledge 
can be updated without affecting the neural 
knowledge). Conversely, when dealing with static 
knowledge, unified and transformational 
architectures might seem to be appealing due to their 
adaptability and the amount of techniques available. 
As a result, in (Smirnov et al., 2023) the loosely 
coupled hybrid modular architecture was selected to 
maintain the autonomy of symbolic knowledge with 
provisions for its extension and update. 

2.3 Post-Hoc Approaches to the 
Explainability of ANNs 

Post-hoc techniques (Confalonieri et al., 2019, 2020, 
2021; Panigutti et al., 2020) are designed to explain 
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pre-existing models that have been trained without 
explicit provisions for interpretability. These 
approaches have the potential to be employed with 
any existing ANN. The majority of post-hoc methods 
involve approximating the ANN using a more 
understandable model (e.g., a decision tree). 

An alternative approach for post-hoc explaining 
ANN’s predictions involves establishing a link 
between knowledge or concepts, typically 
represented in an ontology, and the activation of 
ANN’s layers (Agafonov & Ponomarev, 2022; de 
Sousa Ribeiro & Leite, 2021). This correspondence 
process, referred to as “concept extraction”, entails 
training a mapping ANN. The mapping network takes 
the output of specific neurons from the main network 
being explained and produces the probability that the 
sample processed by the main network corresponds to 
the specified ontology concept. Frequently, these 
mapping networks can attain a significantly high level 
of predictive accuracy, facilitating the dependable 
extraction of a set of concepts from a given sample. 

In (Agafonov & Ponomarev, 2023), a library was 
presented that includes a number of concept 
extraction approaches based on the construction of 
mapping networks. In particular, an algorithm was 
implemented that simultaneously extracts all 
concepts using a single ANN. This approach uses all 
activations from the main network as input to the 
proposed mapping network. The proposed 
architecture of such a mapping network includes 
outputs corresponding to specific concepts. 

In this paper, we consider how the concept 
extraction approach can be used to assess the 
reliability of networks in which symbolic knowledge 
has already been integrated. In particular, the scenario 
of using this approach is considered in the absence of 
an explicit ontological connection between the 
concepts of the subject area. 

3 RESEARCH APPROACH 

3.1 Problem and Dataset 

The considered problem is enterprise model 
classification. The class of an enterprise model is 
determined by the quantity and types of the model’s 
nodes (the detailed dataset description can be found 
in (Smirnov et al., 2023). The dataset comprising 112 
models (insufficient for conventional ANN training) 
of 8 unbalanced classes (Table 1). 

Among the 36 node types in the dataset, the 
analysis focuses only on 20 meaningful ones, 
including: Attribute, Cause, Component, Concept, 

Constraint, External Process, Feature, Goal, 
Individual, Information Set, IS Requirement, IS 
Technical Component,  Opportunity,  Organizational 

Table 1: Enterprise model classes in the dataset. 

Enterprise model class Number of 
samples

Business Process Model 43 
Goal and Goal & Business Rule Model 13 

Business Rule and Business Rule & 
Process Model

13 

Actors and Resources Model 12 
Concepts Model 10 

Technical Components and 
Requirements Model 

10 

4EM General Model 7 
Product-Service-Model 4 

 
Unit, Problem, Process, Unspecific/Product/Service, 
Resource, Role, Rule. The mean node count per 
model is 27.3.  

3.2 Methodology 

3.2.1 Classification of Enterprise Models 

The experiment reported in (Smirnov et al., 2023) 
was based on the usage of the ANN shown in Figure 
1(a). It is aimed at classification of enterprise models 
based the presence and quantities of nodes of certain 
types in the model without accounting for the graph 
topology. It has three fully connected layers followed 
by the rectified linear unit (ReLU) activation 
function. The input data is presented as a vector of the 
size 20, with each element presenting a distinct node 
type. Intermediate layers have sizes 128 and 64 
neurons respectively. The output data is the vector of 
size 8, with each value corresponding to enterprise 
model classes. The highest value position in the 8-
number vector identifies the model class. 

Pre-processing involves two steps. Initially, the 
quantity of nodes for each of the 20 types within an 
enterprise model is computed. This vector is 
normalized by dividing it by the highest node count, 
resulting in values ranging between 0 and 1. 

Training is done with the learning rate of 10-3, 
chosen after conducting multiple experiments with 
various learning rate values. The Adam optimizer 
(Kingma & Ba, 2014) is employed due to its superior 
performance in most scenarios, faster computational 
speed, and minimal parameter tuning requirements. 
Early stopping is implemented to stop training when 
the test set accuracy fails to improve for 20 
consecutive epochs. 
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Figure 1: Studied ANN-based machine learning models (based on (Smirnov et al., 2023). 

Classification model evaluation employs a 5-fold 
cross-validation approach, which assumes 
partitioning the dataset into 5 subsets of similar sizes, 
with 5 experiments conducted where each subset 
serves as the test set once, while the remaining 
subsets are merged to form the training set. 

The following approaches to network training 
were considered: 

Basic ANN training. In the initial experiment, a 
normal ANN is employed for classification, with the 
Cross Entropy function being used as the loss 
function, as illustrated in Figure 1 (b).  

Embedding symbolic knowledge using the 
semantic loss function. The semantic loss function 
proposed in (Xu et al., 2018) is combined with cross 
entropy loss via calculating the weighted sum (Figure 
1(c)): 

L = CELoss + λ ∙ SLoss,  (1)

where CELoss and SLoss represent the cross-entropy 
loss and the semantic loss respectively, λ > 0 is a 
hyperparameter the balances the constituents of the 
total loss function, representing the weight of the 
semantic loss. The initial semantic loss weight is 0.5. 
Each successive epoch the weight of the semantic loss 
is reduced by the value inverse to the total number of 
epochs. At each iteration, the final semantic loss 
weight is determined as the maximum between zero 
and the current semantic loss weight. The semantic 
loss function facilitates the integration of logical 
constraints into the ANN output vectors, leveraging 
such knowledge to enhance the training process. 
These constraints entail specifications where an 
enterprise model can be classified into a particular 
class if it has a node of a specific type. For example: 
"if the model includes a Rule node, it can only belong 

to one of the following classes: 4EM General Model, 
Goal Model and Goal & Business Rule Model, or 
Business Rule Model and Business Rule & Process 
Model". 20 rules have been defined for all 20 node 
types. The remaining training parameters were held 
as in the previous experiment. 

Embedding symbolic knowledge using 
symbolic pre-processing. The third experiment 
included extension with extra inputs derived from the 
application of rules to the original input data, as 
illustrated in Figure 1(d). These rules align with those 
described in the previous experiment. The additional 
8 inputs correspond to potential model classes 
(assigned a value of 1 if the class is viable, and -1 
otherwise). Consequently, the initial layer of the 
ANN was expanded to the size of 28 nodes instead of 
the original 20. All other training parameters 
remained unaltered. 

To conduct the experiment, 5 launches of the 
cross-validation procedure for each of the above 
approaches have been carried out. According to the 
results of each cross-validation, the mean accuracy 
value for all folds was saved along with the accuracy 
values of the best network (with the lowest loss value 
on the test set). 

The results of training the main models reported 
in (Smirnov et al., 2023) showed that symbolic 
knowledge can indeed notably enhance the results of 
regular ANN for classifying enterprise models with 
small amount of training data. The most substantial 
enhancement was observed for the model 
incorporating symbolic data pre-processing: mean 
achieved accuracy was 0.973 vs. 0.929 achieved 
using regular ANN). At the same time, the usage of 
the semantic loss function did not yield any 
significant improvement (accuracy of 0.920).  
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3.2.2 Trustworthiness Assessment Using a 
Concept Extraction Approach 

In the presence of trained networks for classifying 
enterprise models, it becomes possible to interpret 
their predictions using a post-hoc approaches to 
explanation. In particular, the concept extraction 
approach would allow to identify the types of nodes 
of a specific enterprise model, the presence or 
absence of which influenced the classification result. 
In other words, it will be possible to understand if the 
machine learning model relies on the node types as 
the significant sign of the enterprise model class and 
does not just learn the enterprise models in the 
training set. 

As noted earlier, the extraction of concepts (node 
types) is carried out using mapping networks, which 
provide links between the internal representation of 
the sample by the main classification network and 
each of the concepts. The quality indicators of 
mapping networks can be used to compare the 
classification networks of enterprise models in terms 
of consistency of their internal representations with 
symbolic knowledge. Thus, the more consistent the 
internal representations are, the higher the 
trustworthiness of the network and its reliability. 

The process of extracting concepts is carried out 
using the simultaneous extraction approach 
implemented in the RevelioNN library (Agafonov & 
Ponomarev, 2023). The simultaneous mapping 
network receives as input the values of the produced 
(when the sample is inferred) activation of all fully 
connected layers of the main network classifying 
enterprise models, and its outputs are the probabilities 
of each of the concepts (node types). 

The following values of the architecture 
parameters of the simultaneous mapping network 
were set (Figure 2): 

• 16 output neurons in decoder blocks; 
• 8 output neurons in the internal representation 

block; 

• Concept blocks are represented by layers 
containing 8 neurons at the input and 1 neuron 
at the output; 

• 20 concept blocks (in our case, it is determined 
by the number of possible types of nodes of the 
enterprise model). 

Each mapping network was trained three times for 
each already trained best classification network (with 
the lowest loss value on the test set). Thus, the number 
of mapping networks was 15 for each approach 
described in sec. 3.2.1. 

The number of learning epochs was limited to 
1000, and the patience value for the early stopping 
was 200. The Adam optimizer with a learning rate of 
0.001 was used. 

To assess the quality of mapping networks, the 
prediction accuracy of each of the concepts (node 
types) was calculated, as well as the mean prediction 
accuracy of all node types. 

4 RESULTS AND DISCUSSION 

The results of the carried out experiment are 
illustrated in Figures 3-5 and Table 2. The vertical 
line segments in the figures indicate the variation of 
the indicated value between different experiment 
launches. 

Figure 3 shows the distribution of the mean 
accuracy of enterprise model classification networks 
based on the results of all launches of the cross-
validation procedure. It can be seen that the best 
classification quality (accuracy about 0.98) is typical 
for the approach using symbolic pre-processing (no 
variation between different launches). The reason for 
this can be the strong correlation between the 
additional inputs in this scenario and the anticipated 
outcome, which positively impacts the efficiency of 
the machine learning model. The classification 
accuracy in basic network training turns out to be  
 

 
Figure 2: Simultaneous mapping network structure. 
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Figure 3: Distribution of the mean classification accuracy 
for all networks. 

 
Figure 4: Distribution of the mean classification accuracy 
for networks with the lowest loss value at each cross-
validation. 

 
Figure 5: Distribution of the mean accuracy of concept 
extraction. 

significantly lower, as well as when using semantic 
loss. It is also worth noting that in the case of using 
symbolic pre-processing, there is practically no 
quality variation. 

An interesting observation can be done, if only the 
networks with the lowest loss value on the test set (the 
“best” ones) obtained during each cross-validation 
are considered. It turns out that when using the 
semantic loss function and the symbolic pre-
processing approach (those with symbolic 
knowledge), the mean classification accuracy is 1.0 
and there is no variation (see Figure 4). While the 
classical approach to ANN training produces a lower 

accuracy with a significant variation in its values. It 
can be concluded that embedding of symbolic 
knowledge makes it possible to achieve better 
prediction results (though not always) with a higher 
stability. 

Figure 5 shows the distribution of the mean 
accuracy of extraction of all types of nodes by 
mapping networks. Since 15 instances of mapping 
networks were trained for each approach to training 
the classification network, the results can be 
considered fairly representative. It can be noted that 
although numerically the values are quite close to 
each other, the greatest accuracy is achieved when 
extracting concepts from a network using symbolic 
pre-processing. 

Table 2 shows the characteristics of the 
distribution of the accuracy of extracting concepts 
(each of the node types) by mapping networks. As 
noted earlier, the mean prediction accuracy of the 
entire set of concepts turns out to be approximately 
comparable when for each of the approaches to the 
classification network training. However, if consider 
the best accuracy values for each node type are 
considered, one can see that networks trained by 
different approaches may be more preferable for 
extracting some types of nodes. From this point of 
view, none of the approaches under consideration is 
clearly better than the other. But when considering the 
best accuracy for each node type and for each 
approach, it can be noted that the largest number of 
concepts extracted with the highest accuracy 
(indicated with bold) is extracted from a classification 
network that uses symbolic pre-processing (15 out of 
20). Thus, it can be concluded that its internal 
representations are best aligned with symbolic 
knowledge, and, consequently, it inspires more trust. 

5 CONCLUSION 

The research question stated in the paper is “If the 
neural-symbolic machine learning model is more 
trustworthy than the pure ANN?”  

In order to answer the question, a state-of-the-art 
analysis in the corresponding areas has been 
performed and several experiments have been carried 
out. Enterprise model classification based on the 
contained node types has been used as the use case 
for the experiments.  

Three ANN-based architectures have been 
analysed: regular ANN without any symbolic 
knowledge, usage of the semantic loss function, and 
data pre-processing using symbolic rules. Earlier 
obtained results showed that embedding symbolic  
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Table 2: Characteristics of the distribution of the accuracy of extraction of concepts. 

Approach 
 

Node type 

Basic Network 
Training 

Using the Semantic 
Loss Function 

Using Symbolic  
Pre-Processing 

Mean SD Mean SD Mean SD 
Rule 0.9422 0.0320 0.9378 0.0330 0.9511 0.0330 
Goal 0.9244 0.0295 0.9422 0.0266 0.9467 0.0246 

Organizational Unit 0.9711 0.0117 0.9667 0.0218 0.9711 0.0117 
Process 0.9600 0.0187 0.9622 0.0172 0.9333 0.0000 

Resource 0.9622 0.0117 0.9644 0.0086 0.9644 0.0086 
IS Technical Component 0.9933 0.0187 0.9867 0.0276 0.9978 0.0086 

IS Requirement 0.9711 0.0117 0.9711 0.0117 0.9711 0.0117 
Unspecific / Product / Service 1.0000 0.0000 0.9978 0.0086 1.0000 0.0000 

Feature 1.0000 0.0000 0.9978 0.0086 1.0000 0.0000 
Concept 0.9022 0.0295 0.9178 0.0248 0.9289 0.0172 
Attribute 0.9556 0.0163 0.9578 0.0153 0.9667 0.0000 

Information Set 0.9200 0.0303 0.9222 0.0499 0.8800 0.0246 
External Process 0.7533 0.0676 0.7733 0.0491 0.7711 0.0486 

Problem 0.9667 0.0126 0.9644 0.0266 0.9889 0.0163 
Cause 0.9933 0.0138 0.9978 0.0086 1.0000 0.0000 
Role 0.9333 0.0000 0.9311 0.0086 0.9289 0.0172 

Constraint 0.9667 0.0000 0.9667 0.0000 0.9667 0.0000 
Component 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 
Opportunity 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 
Individual 0.9356 0.0086 0.9333 0.0000 0.9333 0.0000 

Mean accuracy 0.9526 0.9546 0.9550 
Number of concepts extracted with the highest accuracy 9 8 15 

 

knowledge as data pre-processing rules gives a 
significant advantage in terms of the enterprise model 
classification accuracy. 

In this paper the problem of trustworthiness of 
different ANN-based architectures has been analysed 
via post-hoc explanation (specifically, the concept 
extraction). This technique is aimed at searching for 
certain concepts within the ANN-based models, 
showing that the neural model indeed relies at these 
concepts as indicators for the classification instead of 
just learning the samples. The obtained results 
showed that the accuracy of concept extraction for the 
models with symbolic knowledge is higher than for 
the model without such knowledge, though the 
difference between the latter and the model with 
semantic loss is relatively small. Thus, it can be 
concluded that embedding semantic knowledge into 
ANN-based models increases their trustworthiness 
since they become more oriented to usage of proper 
features (node types in this particular experiment) for 
generating the output (enterprise model class). 

Future research directions will be concentrated on 
exploring more use cases and larger datasets. 
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