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Abstract: Integrating secure multiparty computation (MPC) into data spaces is a promising approach for enabling secure
and trustworthy data-sharing in the future Data Economy. This paper systematically analyzes the integration
challenges of MPC in data spaces and proposes a comprehensive approach to address these challenges. The
authors evaluate various use cases to identify key challenges and gaps in existing research. They propose
concrete methods and technologies to solve these challenges, focusing on areas such as authentication and
identity management, policy description, node selection, global system parameters, and access control. The
paper emphasizes the importance of standardization efforts to ensure interoperability among MPC-enabled
data spaces. Overall, this work provides valuable insights and directions for further research in integrating
MPC into dynamic data sharing environments.

1 INTRODUCTION

Data spaces are central to enabling sovereign, inter-
operable, and trustworthy data-sharing, crucial for
the emerging data economy. Although certain tech-
niques to support data sovereignty are inherent to
data spaces, the use of modern cryptography beyond
the state-of-the-art can propel the concept to the next
level and unleash collaboration on sensitive data.

Multiparty computation (MPC) is an especially in-
teresting technique for computing on encrypted data.
MPC is a distributed protocol which naturally fits the
federated architecture of data spaces and could there-
fore be an integrated part of it.

To the best of our knowledge no comprehensive
analysis nor integration concept for MPC in data
spaces exist, especially in support of modern collab-
orative use cases. In this paper we systematically
analyze integration challenges for multiparty compu-
tation into data spaces. We evaluate a wide spec-
trum of use cases to identify a comprehensive set of
challenges. Moreover, we propose a complete ap-
proach for the integration, propose concrete methods
and technologies to solve the identified challenges,
and identify gaps where further research is required.
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This paper is structured as follows. Section 2 gives
a short review of the concepts of data spaces and mul-
tiparty computation. In Section 3 we introduce three
use cases and discuss them from a deployment per-
spective, extracting their key characteristics and chal-
lenges. In Section 4 we propose a first approach for
an ubiquitous and comprehensive integration of MPC
into data spaces. Based on that, potential technical so-
lutions and research gaps for the identified challenges
are discussed in Section 5. We conclude in Section 6.

1.1 Related Work

Related work that considers MPC in the context of
data spaces is not extensive, since the latter is rela-
tively young as a research field.

(Garrido et al., 2022) conduct a systematic review
on the application of privacy-enhancing technologies
(PETs) for internet-of-things (IoT) data markets, in-
cluding MPC. They conclude that PETs are not fre-
quently used in this setting, despite relevant use cases;
and that there is no consensus on a general architec-
ture, in particular regarding the usage of blockchain.

(Agahari et al., 2021) and (Agahari et al., 2022)
offer a business perspective on MPC for data shar-
ing, building on the business model for data mar-
ketplaces from (Spiekermann, 2019). They conduct
semi-structured interviews in the privacy and security
domain to study the perceived value propositions, ar-
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chitecture and financial models (Agahari et al., 2021),
as well as control, trust, and perceived risks (Agahari
et al., 2022). They find that the value of MPC is seen
in increased privacy, enhanced control and reduced
need for trust, but that specific data sharing risks re-
main since the results may still reveal sensitive infor-
mation. Different deployment scenarios are also de-
scribed, such as the distributed, asynchronous setup
that we present via data spaces in the current paper.

(Müller et al., 2022) focus on federated machine
learning, with an application for the automotive in-
dustry via the project Catena-X1. They explore var-
ious cryptographic techniques, such as MPC, and
identify usability challenges as the primary obstacle.
They note that these technologies are lacking in user-
friendliness and specialized libraries, and currently
necessitate expert knowledge for specific use cases.

Besides the limited research on MPC integration
into data spaces, some work on MPC on blockchain
exists, with Secret Network2 and Partisia3 (described
in Section 2.2.2) being the most prominent candi-
dates. One important difference to data space integra-
tion is the lack of a registration procedure to establish
trust relationships. Contrary to blockchain-based so-
lutions, the MPC node pool in data spaces is open, but
nodes and their attributes are certified e.g. via verifi-
able credentials (VCs). Thus MPC groups are also not
necessarily random subsets, but can be chosen by at-
tributes. Also, there is no need for complex broadcast
protocols for arbitration, and contracts can be signed
without involving a blockchain. Payment also does
not necessarily need to flow through cryptocurrencies.

To the best of our knowledge, concrete integration
of MPC into data spaces has not been discussed in the
literature and we are the first to propose a general and
comprehensive treatment. Data spaces require a fun-
damentally different approach to a pure blockchain
based system, and can be more flexible, scalable and
energy efficient compared to permissionless systems.

2 PRELIMINARIES

We next outline some fundamental concepts.

2.1 Data Spaces

A data space is “a distributed system defined by a gov-
ernance framework that enables secure and trustwor-
thy data transactions between participants while sup-

1https://catena-x.net/
2https://scrt.network/
3https://partisiablockchain.com/

porting trust and data sovereignty” (Data Spaces Sup-
port Centre (DSSC), 2023). The goal of data spaces is
to share data and data-related services via a federated
data marketplace (Zappa et al., 2022). This includes
data-based services, such as storage, web servers, or
algorithms operating on shared data. The latter is par-
ticularly relevant for privacy-preserving and/or dis-
tributed computing approaches that respect access and
usage restrictions, such as MPC.

Data spaces were introduced in computer science
as a shift from a central database to storing data at
the source (Franklin et al., 2005). This new way of
data management, where participants retain control
over their own data, is now called data sovereignty
(Otto et al., 2022). Data sovereignty is at the heart
of the European data strategy and related regulations,
in particular the General Data Protection Regulation
(GDPR)4, the Data Governance Act5, and the Data
Act6. The concept is also of international interest: by
now, GDPR-like regulations exist in 17 countries and
even more on the federal level (e.g. New York Privacy
Act7 and the California Consumer Privacy Act8); with
some (e.g. South Korea’s Personal Information Pro-
tection Act9) even pre-dating GDPR.

There are many initiatives supporting data space
development. The International Data Spaces Associ-
ation (IDSA) provided the initial concept, including
the first reference architecture, the International Data
Spaces Reference Architecture Model (IDS RAM).
Gaia-X is taking the concept further and considers
generic data products, also including services like
storage or data analytics, to enable interoperability
between different infrastructures. Gaia-X also de-
velops a trust framework: a composition of policies,
rules, standards and procedures based on standardized
descriptions for participants and services. These are
built using W3C Verifiable Credentials: cryptograph-
ically signed digital certificates that are thus tamper-
proof and automatically verifiable.

The Data Spaces Business Alliance (DSBA),
formed by BDVA, FIWARE Foundation, Gaia-X, and
IDSA, aims to harmonize these efforts by providing
a common technical framework (DOME) (Alliance,
2023). The Data Spaces Support Centre (DSSC) con-
tributes with coordination efforts, including a glos-
sary and building blocks, whereas simpl focuses on
creating reusable data space software. Sector-specific

4https://eur-lex.europa.eu/eli/reg/2016/679/oj
5https://eur-lex.europa.eu/eli/reg/2022/868/oj
6https://eur-lex.europa.eu/eli/reg/2023/2854
7https://nyassembly.gov/leg/?bn=S00365
8https://oag.ca.gov/privacy/ccpa
9https://www.law.go.kr/LSW/lsInfoP.do?lsiSeq=2138

57&viewCls=engLsInfoR&urlMode=engLsInfoR
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projects like Catena-X in the automotive industry or
Manufacturing-X for manufacturing, exemplify the
application of these frameworks. Promising open-
source software components for data spaces are now
also available, such as the Eclipse Dataspace Compo-
nents (EDC), the Gaia-X cross-federation services or
the Pontus-X ecosystem.

These collaborative efforts are laying the ground-
work for a unified, efficient, and sovereign digital
ecosystem, marking significant strides toward the re-
alization of a comprehensive Data Economy.

2.2 Secure Multiparty Computation

Multiparty computation (MPC) is a technology for
computing on encrypted data in a distributed setting,
i.e., with multiple nodes holding only secure frag-
ments of input data not learning anything from them.
The concept appeared more than 30 years ago and
has been the target of active research over the last 3
decades. For a long time, it was considered only the-
oretical, but progress in recent years led to many inter-
esting applications which can be realized with practi-
cal efficiency, given a suitable deployment.

2.2.1 Basic Model

In principle, MPC can be used to decentralize systems
where typically a central trusted authority is needed
to execute a function on behalf of the users. With
MPC, the function is evaluated jointly between multi-
ple parties such that the correctness of the output is
guaranteed and the privacy of the inputs of the in-
dividual parties is preserved; only the output of the
computation is learned. Furthermore, information-
theoretically secure MPC exist which makes it the
ideal method if long-term security is needed.

We quickly present the generic model of MPC as
introduced in ISO/IEC 49221011. Different roles are
necessary in a generic MPC system in order to qual-
ify as such. Input parties hold inputs for the secure
computation which must be encoded and then sent to
the compute parties. Compute parties run the multi-
party protocol, which is executed among them as they
jointly compute the intended function on the encoded
inputs. The intended function to be computed is not
kept secret and is defined according to the use case.
The function is composed of basic operations avail-
able to the MPC protocol and typically composed of
simple gates from a boolean or arithmetic circuit, de-
pending on the encoding and protocols used. After the
computation, the result is held by the compute parties

10https://www.iso.org/standard/80508.html
11https://www.iso.org/standard/80514.html

I1 I2 Ii…

C1 C2 Cm…

R1 RnR2 …

Figure 1: Generic MPC model: input nodes Ii encode data
and send them to compute nodes Ci, which then execute the
MPC protocol. After that, compute nodes hold the secret in
encoded form, which is finally sent to result nodes Ri that
recover the result in plaintext.

in an encoded form and then sent to the result parties,
which can reconstruct the result of the computation.

The main security properties are correctness and
input privacy, and it is the latter which guarantees
the confidentiality of the data. Depending on the pro-
tocol, the security parameters could hold against dif-
ferent kind of adversaries.

Certain additional, optional security guarantees
are also possible, e.g., fairness, guaranteed output de-
livery or covert security. Fairness means, that mali-
cious parties only receive their output if also the hon-
est parties do so. With guaranteed output delivery the
honest parties always receive their output. Contrary,
in a covert security model, the protocol aborts in case
of error and allows for cheater detection.

In summary, the overall concept is well under-
stood and elaborated, i.e., many computations have
been shown practical. However, the security assump-
tions are very different from traditional secret or pub-
lic key cryptography. Here, security is mainly gov-
erned by the non-collusion assumption, which makes
deployment of the technology challenging, especially
in dynamic scenarios as we often find in emerging
data markets and digital ecosystems with many stake-
holders involved.

2.2.2 MPC as a Service

Due to the complexity and deployment challenges,
potential users are often reluctant to use MPC. Thus,
collaborative use cases are often prevented in data
spaces if data privacy cannot be assured.

Leveraging the as-a-service paradigm could be a
way out for this problem, but requires careful integra-
tion of the service to assure high security and prevent
data leakage along the data life-cycle.
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Moreover, additional integrity guarantees and data
leakage prevention methods may be desirable depend-
ing on the sensitivity of the data and the use case. In
particular, public verifiability could be of additional
value for MPC-as-a-service (MPCaaS) and contribute
to the trustworthiness of the service.

Publicly verifiable MPC can assure the correct-
ness of computations even if all compute nodes are
compromised, and although input privacy does not
hold anymore. Typically, this is achieved by combin-
ing MPC protocols with compatible zero-knowledge
proof (ZKP) systems to provide the best possible se-
curity guarantees for the outsourcing scenario of re-
mote MPC, which is the case for the as-a-service us-
age. Yet, this is only to prevent from corrupt results
in the worst case of a fully malicious MPC system,
which can be prevented by careful selection of nodes.

The possibility for public audits of computation
results have additionally benefits for data spaces, be-
cause it also allows for high assurance levels of com-
putation results. If even third party stakeholders are
able to verify the results of a computation, this could
be used to establish end-to-end authenticity in data
spaces. For example, (Kanjalkar et al., 2021) used
this concept by combining MPC and zk-SNARKS
(Chiesa et al., 2020) with universal setup to enable
flexible verifiability for MPCaaS. The idea has also
been shown to be useful in the manufacturing context
(Lorünser et al., ).

Partisia is another example which uses blockchain
to persist data and as a broadcast channel in combina-
tion with an event driven architecture12. Here, MPC
node pools are built from available compute nodes,
and each MPC service is randomly assigned to a sub-
set of the nodes in the pool. Service buyers pay a pool
to run a service, and the whole process is orchestrated
via a smart contract, without the secret state appearing
on the blockchain.

Although first proposals for MPCaaS exist, is is
an open question how generic MPCaaS shall be inte-
grated into data spaces to support a wide range of use
cases, but without burdening complex configuration
and deployment issues on the users of the system. In
our work we systematically analyze this problem and
propose relevant technologies to be used to realize the
concept.

3 USE CASES

After introducing the basic technologies, we review
three use cases where MPC could add value to data

12https://medium.com/partisia-blockchain/

spaces. The use cases were selected to be highly
complementary, in order to derive representative chal-
lenges and requirements.

3.1 Air Traffic Management

In air traffic management, the value attributed to indi-
vidual flights can significantly vary. During peak pe-
riods, when demand exceeds available resources (e.g.,
due to bad weather or strikes), airlines have a vested
interest in prioritizing flights that are of higher value
to them. This need aligns with the economic interests
of airports, which aim for optimal utilization of their
infrastructure and a steady flow of passengers. Con-
currently, air navigation service providers (ANSPs)
are tasked with ensuring the safety of air travel, main-
taining fairness and equality among all participants.

This scenario presents a multifaceted set of prefer-
ences and constraints, forming an optimization prob-
lem: determining the ideal sequence of flights for ar-
rivals and departures. Each stakeholder – airlines,
airports, and ANSP – has different needs, which in-
clude additional strict confidentiality requirements on
which information to keep secret from other stake-
holders. In a series of works, (Schuetz et al., 2021;
Lorünser et al., 2022; Schuetz et al., 2022) proposed
systems to optimize the use of airport capacities while
taking all stakeholders’ needs into consideration.

Their approach is built on MPC to satisfy the dif-
ferent confidentiality and integrity needs. In partic-
ular, verifiability of the computation is required, to
minimize the risk of incorrect outputs resulting in
a bias for or against a specific airline. More gen-
erally, fairness conditions are considered, to ensure
that no specific airline is systematically privileged.
Performance-wise, slot assignments are periodically
computed for larger time intervals and the computa-
tion may take several minutes to succeed.

The considered approaches vary slightly:
(Lorünser et al., 2022) output optimal solutions solv-
ing linear assignment problems, while (Schuetz et al.,
2022) consider genetic algorithms that reach a near-
optimal solution with high efficiency. Independent of
the precise strategy, the necessary computations are
agreed upon in advance by the various stakeholders
and remain fixed over a high number of executions.

On the deployment side, air traffic management
turns out to be a relatively static scenario, where a
steady group of input providers (i.e., airlines) con-
tributes their preferences, and all stakeholders (e.g.,
compute nodes, inputs providers, output consumers,
etc.) are mutually known to each other.
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Figure 2: Manufacturing-as-a-Service Architecture.

3.2 Manufacturing as a Service

The sharing economy promises environmental ben-
efits, innovation, and reduction of costs, but con-
cerns persist over data sovereignty and trust. Also,
centralization in large infrastructures raises economic
alarms. Specifically for the manufacturing domain,
(Lorünser et al., ) examine a platform where manu-
facturing site owners can enlist as producers, register-
ing their machinery along with pertinent meta infor-
mation such as configurations and quality standards.
Customers can place orders, prompting producers to
submit bids to secure the order. A high-level architec-
ture and flow is depicted in Figure 2.

Their solutions heavily relies on secure multiparty
computation to achieve the requirements posed by the
different stakeholders. Specifically, producers need
confidentiality to make sure that non-winning bids are
not leaked, to avoid exposing internal cost structures
or similar information to competitors. Both customers
and producers are asking for integrity and verifiabil-
ity, i.e., it needs to be ensured that the correctness
of the computation can be publicly checked. This is
achieved leveraging zero-knowledge proofs, provid-
ing integrity guarantees in the case that a majority
of the MPC nodes acts maliciously during the com-
putation. Finally, immutability of bids, to avoid ad-
justments depending on competing bids, is avoided
using blockchain for securely storing encrypted bids
and outcomes.

In the scenario of manufacturing as a service, the
function to be computed is not entirely static, but may
vary depending on the specific tender. For instance,
while (Lorünser et al., ) consider first-price sealed-bid
auctions, also alternative options like second-price (=
Vickrey) auctions or multi-attribute auctions could be
used. The precise model would be defined by the cus-
tomer when publishing the tender.

From a deployment point of view, the compute
nodes, selected by the auction platform provider but
hosted by independent entities, can be assumed to be
known a priori to all stakeholders in the default set-

ting. However, in new versions, parties can also re-
quest to host nodes to be part of the MPC network,
leading to dynamic configurations. Moreover, as any-
body may act as a customer and/or producer, the users
cannot be assumed to be static and known to each
other, such that a permissioned setting requiring, e.g.,
a registration phase, need to be introduced in order to
overcome challenges with rogue bids and offers.

3.3 Secondary Use of Data

Data is often generated for a specific purpose, e.g., for
medical treatment or collecting GPS information for
charging road usage. However, often this data would
also be highly valuable in other contexts, e.g., med-
ical studies in hospitals or road traffic planning for
public authorities. This gives raise to the concept of
data market places, which enable selling (computa-
tions on) data to customers.

Different approaches based on different crypto-
graphic primitives have been proposed in the litera-
ture, e.g., using fully homomorphic encryption (Kout-
sos et al., 2022), or secure multiparty computation
(Koch et al., 2020; Koch et al., 2022).

According to (Koch et al., 2022), confidentiality
and privacy are paramount, ensuring that (computa-
tions on) data cannot be requested without consent.
That is, data providers must have fine-grained control
over data usage and sales, without relying on a single
trusted entity. Furthermore, verifiability and authen-
ticity are crucial: the marketplace operator should not
be able to tamper with analysis outputs, and mecha-
nisms are needed to prevent the sale of fake data to
increase trustworthiness and value of data, without
compromising privacy. Where possible, end-to-end
guarantees on data integrity are desirable, spanning
from data source (e.g., a sensor) to consumer.

In the context of data markets, it is also crucial
to support high flexibility in the computation to be
carried out. This is necessary to protect privacy and
address the asynchronous nature of these ecosystems,
where data providers may not be available at com-
putation time. Therefore, data subjects must have
the ability to define precise usage policies linked to
their data, specifying constraints on computations,
compute nodes, and the number of inputs involved.
It is imperative that compliance with these policies
is immutably documented for auditing purposes for
each computation. Additionally, contractual agree-
ments must be in place, e.g., to prevent the acquisi-
tion of previously independent compute nodes by the
same entity before data deletion. Moreover, the trade-
offs between transparency and auditability on the one
hand, and customer needs on the other hand, must be
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carefully considered. For instance, the mere interest
of a customer in certain data may inadvertently dis-
close information about their business strategy.

In terms of deployment, data markets require a
high level of flexibility. Data may be stored in var-
ious locations, and users may define different types of
policies, such as geographical constraints on nodes.
Consequently, in contrast to the previous use case do-
mains, node selection becomes a complex task. It
is also uncertain which nodes will require access to
which shares during data creation and storage, ne-
cessitating the deployment of advanced encryption
mechanisms and related key management procedures
to support this dynamism. Furthermore, since data
providers and consumers are typically unknown to
each other, strong identity management mechanisms
are essential. These mechanisms not only ensure that
users’ policies (e.g., “only medical research institutes
may request computations on my data”) are adhered
to, but also mitigate the risks associated with rogue
data. Finally, potential payments for data usage must
be executed in a manner that preserves privacy.

3.4 Challenges

As illustrated by the application scenarios above, in-
tegrating MPC into complex federated scenarios such
as data spaces comes with practical challenges that
may directly influence system design. In the follow-
ing we cluster the lessons learned from the considered
use cases to obtain a set of challenge categories to be
considered, which are also summarized in Table 1.

C1. Global System Parameters. In case that the
protocols to be executed require global system param-
eters – such as a common reference string (CRS) –
the security and trustworthiness of these parameters
needs to be guaranteed. This may for instance apply
when leveraging zkSNARKs to obtain public verifia-
bility of the computation output.

C2. Authentication and Identity Management.
Identity management is at the core of any security ar-
chitecture: any confidentiality concerns are vacuous
if the communication partner is not genuine. In the
context of MPC, not only compute nodes that handle
the data, but also data providers and receivers need to
be authenticated. The former is required to increase
trust in the input data and potentially achieve account-
ability, while the latter is needed to ensure that only
eligible parties may request computations.

However, out-of-the-box authentication methods
are not always applicable in certain scenarios, as the
identity of data sources and data receivers may subject

to data protection requirements. For example, it may
be desired to determine only the eligibility to request
a computation, but not the actual identity. Yet, in case
of misuse, methods for accountability may be needed.

The situation is further complicated when the data
is managed on behalf of the owner by a third party
(data custodian); when the owner is not able or willing
to manage their own data. In this case, authentication
would also be handled by the data custodian, with the
owner first granting the right to do so.

To support large scale adoption, compatibility
with governmental identities such as the upcoming
European eIDAS 2.0 regulation is also necessary.

C3. Data Usage Policies. Precise data usage poli-
cies play a critical role in increasing trust and achiev-
ing acceptance by end users, particularly when per-
sonal or confidential data is involved.

Such policies describe the permissible ways in
which data can be utilized, encompassing aspects
such as eligible groups of receivers, temporal restric-
tions, requirements on the MPC setup (e.g., threshold
or geographical distribution of nodes), the computa-
tion to be carried out (e.g., certain statistics including
the required sample size or validation mechanisms),
or data retention.

However, formulating and enforcing effective data
usage policies presents several challenges. These in-
clude striking a balance between maximizing data
utility for innovation and safeguarding privacy rights,
achieving high usability also for end users, address-
ing evolving technological advancements and data-
sharing practices, and ensuring transparency and ac-
countability. Additionally, changing legal and market
situations need to be addressable, potentially without
re-involving data subjects in asynchronous scenarios.

C4. Node Selection. The security of any MPC de-
ployment crucially depends on the involved compute
nodes, as well as the selected parameters (i.e., thresh-
old and number of nodes).

In certain (mainly static) scenarios, the selection
of these nodes can be done once and (almost) forever.
However, the situation is very different in highly dy-
namic scenarios where data from many data sources is
used as input, as each of them pose certain constraints
on node selection. Furthermore, compute nodes may
be offered on an “as-a-service” basis by market play-
ers, such that their availability may have temporal va-
riety. Therefore, any mechanism for node selection
needs to take these requirements into consideration.

In combination with the identity management
challenges mentioned before, it further needs to be
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Table 1: Comparison of challenges affected by different use cases.

UC1: Air traffic UC2: Industry 4.0 UC3: Secondary Use

C1. Global system pa-
rameters

CRS for end-to-end verifiability and integrity

C2. Authentication and
identity management

static, permissioned semi-static, permissioned dynamic, permissionless

C3. Data usage policies static, fully defined from beginning dynamic, meta-level specifi-
cations

C4. Node selection static dynamic

C5. Access control online input provisioning;
early encoding

synchronous input; early en-
coding; audit info

asynchronous input; late en-
coding

guaranteed that the involved nodes are not (potentially
indirectly) controlled by a single legal entity.

This immediately also poses the question who de-
cides, which nodes to involve. If this process relies
on a central entity, appropriate measures to minimise
the required trust should be taken, e.g., by aiming for
transparency of performed computations, or by hav-
ing compute nodes verify usage policies without com-
promising privacy. On the other hand, if this process
is performed in a federated way, a circular argument
(who chooses the participants of this set of entities)
should be avoided.

C5. Access Control. In static situations character-
ized by fixed computations and entities, it is often pre-
determined which inputs and outputs must be acces-
sible to each party. In this case, data providers may,
e.g., encrypt input shares directly for designated com-
pute nodes, which in turn encrypt the output for the
specified data recipient.

Yet, in dynamic environments, this predictability
may not always hold true. Thus, if it is unknown up-
front which (or how many) MPC nodes will execute a
given computation – and nodes might engage in com-
putations on the same data across different sessions –
appropriate technologies must be implemented to en-
sure that the shares for these nodes can be derived as
needed without compromising privacy.

A fundamental challenge lies in avoiding depen-
dence on a single trusted entity or a single point of
failure, necessitating careful design of key manage-
ment procedures. Moreover, it is essential to guar-
antee that nodes cannot receive multiple consistent
shares when the same input data is utilized in multiple
computations involving the same node.

4 MPC INTEGRATION FOR DATA
SPACES

We propose using data spaces as a basis to deploy se-
cure multiparty computing in a dynamic scenario; that
is, where some or all elements (stakeholders, input
data, algorithm) are not known in advance. Our goal
is to create an ecosystem where participants can of-
fer MPC-related assets under well-defined conditions
("policies"): input datasets, compute nodes or algo-
rithms (intended function to be computed). Other par-
ticipants may consume these offers by running a com-
putation on a chosen set of input datasets and com-
pute nodes, while respecting the conditions set by the
providers of these assets. We divide the deployment
of such a system in three phases: onboarding (partici-
pants), (asset) setup, and the transaction phase, where
a single computation is executed. The overall archi-
tecture is shown in Fig. 3.

4.1 Onboarding and Setup Phase

First, participants need to be onboarded to the sys-
tem (data space), which includes checking their iden-
tity and issuing some form of a proof of member-
ship. At this phase, the identity of participants may
be checked, possibly connecting to external trust an-
chors (TAs), see also challenge C2.

Second, onboarded participants may publish as-
sets in the data space. For MPC, these include input
data, compute nodes or even intended functions, each
described by asset-specific metadata and associated
with an individual policy that describes how they can
be used, cf. C3. Note that in a fully dynamic setting,
both steps of the setup are also dynamic: participants
and offers may be added, modified or removed during
the lifetime of the data space.
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Figure 3: Components of the proposed data space-based de-
ployment. Blue: onboarding phase; green: setup phase;
red: transaction phase.

4.2 Transaction Phase

In the last phase, the actual transaction may occur.

Offer Selection and Contract Negotiation. First,
participants (potential consumers) may browse avail-
able offers and select a combination of input data,
compute nodes and a function they would like to eval-
uate. When selecting compute nodes, the consumer
may pick offers explicitly or define conditions that
nodes need to satisfy (e.g. not all nodes are hosted
on the same server, all nodes are hosted in Europe).
From a usability point of view, it could also be desir-
able to offer some preconfigured choices relevant in
different domains (Framner et al., 2019) and from a
performance standpoint also network or performance
requirements could be included in the node selection,
e.g., latency <30ms between nodes. However, if the
MPC nodes are not concretely defined, the orchestra-
tor service may pick a random selection of compute
nodes on offer, to satisfy such criteria.

This request is sent to owner of the respective of-
fers as a contract request, after which an automatic
contract negotiation process takes place to validate
that all requirements with regards to the policies are
met. If this is the case, a contract between all par-
ties is signed and the computation can be triggered.
Validation of conditions may happen via a service
("MPC orchestrator") offered by the data space au-
thority, which can be the same service orchestrating
MPC computation, cf. also C4.

Input Provisioning. After all parties agreed to the
transaction, the actual computation is started. There-
fore, the input data has to be read by the compute par-
ties in encoded form. Depending on the configuration,

this step can be done either synchronously by the in-
put parties sending the inputs to the compute nodes,
but also asynchronously, if the data have been stored
at a data custodian. In this case, for security reasons
and following the zero trust principle, the data should
only be stored in encrypted form. However, this is not
trivial, if the receiving compute nodes are not known
in advance, cf. also C5.

Furthermore, to be more flexible, it is also desir-
able to delay the time of encoding if possible. Thus,
we distinguish immediate and late encoding.

Immediate encoding is the naive way to generate
input data by encoding the data prior to encrypting it
for storage at the data custodian. Then each compute
node only has to decrypt his received data fragment
during input processing. This is easier from a tech-
nological point of view, but less flexible and produces
more overhead: as each share is encrypted individ-
ually, the total amount of data to be stored is large.
Additionally, MPC system parameters and encoding
scheme have to be defined in advance.

In late encoding, the plaintext is directly en-
crypted and stored at the data custodian. This sig-
nificantly reduces the storage overhead and increases
flexibility, as MPC parameters are decided during the
transaction phase and not the setup phase. However,
it is also technically more challenging, because some
form of flexible threshold decryption is needed. A
compromise would be to symmetrically encrypt the
input data and then only encrypt the key with a thresh-
old method. This would also save storage space, but
require the compute nodes to first decrypt the data
obliviously (Lorünser and Wohner, 2020).

Protocol Execution. During computation the
agreed MPC protocol is executed among the agreed
nodes to compute the intended function on the data.
Although the step is rather straightforward, from
a data space perspective it is important that the
protocols available are standardized. Policies can
only be practically enforced, if wide interoperability
among MPC nodes available in the ecosystem is
guaranteed and enough stakeholders publish offers.
Additionally to executing the MPC protocols, plugins
may also be of use. If verifiability is a requirement, an
additional zero-knowledge proof has to be generated
by the system, posing additional challenges for policy
definition, the capabilities of the MPC nodes, and the
trustworthiness of required parameters, cf. also C1,
C3, and C4.

Additionally, calculating leakage of MPC compu-
tations which are intrinsic to the compute function by
methods from differential privacy could also require
for a plugin.
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Post-Processing. Finally, after the computation the
results are held by the compute nodes in encrypted
form and has to be communicated (synchronously
or asynchronously) with the result party. Post-
computation validation, logging, and payment could
then take place to finalize the transaction.

In summary, by our comprehensive integration
proposal of MPC to data spaces, we have shown the
complexity we are facing when we go beyond the
naive approach where dedicated parties with profound
technology knowledge run a specific instance of a
protocol. However, this extra effort is necessary to
make the system interoperable, being compatible with
data spaces, and to leverage the MPC-as-a-service ap-
proach to lower the barriers for adoption.

5 TECHNICAL SOLUTIONS

In this section technical methods to solve the iden-
tified challenges are discussed. We identify gaps in
the state-of-the-art, present potential avenues to ad-
dress the challenges and highlight where additional
research is needed.

Global Parameters. To minimize the necessary
trust, global parameters should be setup in a way that
does not give any sufficiently small set of entities the
possibility to control the choice of parameters. Differ-
ent approaches for this can be found in the literature.

One option are so-called setup ceremonies, where
a group of entities jointly generates parameters that
are later needed for cryptographic protocols, thus en-
suring the trustworthiness of the outcome. Such cere-
monies have been implemented for a variety of appli-
cations, including, e.g., the ZCash crypto currency13.

Another active research field in cryptography is
focusing on so-called subversion resilience, where at
least partial security guarantees can also be achieved
if, e.g., a common reference string (CRS) cannot be
trusted, e.g., (Abdolmaleki et al., 2021).

Other works, e.g., (Baghery and Sedaghat, 2021),
consider the updatable CRS model, where users can
update the CRS at any time, provided they demon-
strate the correctness of the update. The new CRS
can then be deemed trustworthy (i.e., uncorrupted) as
long as either the previous CRS or the updater was
honest. If multiple users partake in this process, it’s
possible to obtain a sequence of updates by different
individuals over time. If any update in the sequence
is honest, the scheme remains sound.

13https://zkproof.org/2021/06/30/setup-ceremonies/

Authentication and Identity Management. Au-
thentication and identity management can differ be-
tween data spaces and may rely on traditional cen-
tralized (e.g. via a user database based on LDAP or
Active Directory) or decentralized (e.g. using Decen-
tralised Identifiers and Verifiable Credentials (VCs))
approaches. In any case, an onboarding process needs
to be defined as part of data space governance, where
the identity of participants is validated before grant-
ing them membership. The validation step normally
relies on external trust anchors (e.g., eIDAS, DV SSL,
GLEIF), with accepted trust anchors defined by the
given data space’s governance framework. As part of
the onboarding process, participants may also record
their public key and prove their control over it, pro-
viding a basis for a secure communication channel.

For instance, for Gaia-X (Gaia-X European Asso-
ciation for Data and Cloud AISBL, 2023), aspiring
participants would submit their data as defined in the
Trust Framework (e.g., ID, public key, address) to one
of the Gaia-X Digital Clearing Houses (GXDCH) and
receive a VC that they can use as proof. Internally, the
GXDCH applies multiple validation checks, such as
compatibility with the required metadata schema and
validation via accepted trust anchors.

When a data custodian (ensuring data accessibility
and security for a data owner) is also part of the sys-
tem, the data owner first needs to authorize the cus-
todian to act on their behalf. This can happen outside
the data space context, via a separate contract between
these parties, or is part of a data space service offer-
ing. The custodian then participates in the data space
on behalf of the data owner. A more formalized and
regulated instance of a data custodian is a Data Inter-
mediary as defined in the Data Governance Act14 -
while a data custodian focus on the technical and se-
curity aspects of data management the data interme-
diary facilitates data sharing and usage in compliance
with legal and regulatory frameworks.

While strong authentication may be required in
many application cases, some scenarios require a del-
icate balance between privacy and authenticity, e.g.,
when an entity needs to fulfill a data usage policy
but does not want to reveal its identity. This can be
achieved, e.g., using attribute-based credentials (Ca-
menisch and Lysyanskaya, 2002; Camenisch et al.,
2015; Tessaro and Zhu, 2023) letting parties prove
statements about their attributes without revealing
them in the plain. In particular, this also covers se-
lective disclosure as considered by W3C15 or EBSI16.

14https://eur-lex.europa.eu/legal-content/EN/TXT/HT
ML/?uri=CELEX:32022R0868

15https://w3c-ccg.github.io/data-minimization/
16https://ec.europa.eu/digital-building-blocks/sites/disp
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Furthermore, somewhat similar to direct anony-
mous attestation (DAA) (Brickell et al., 2004) or In-
tel’s Enhanced Privacy ID (EPID)17, in order to in-
crease reliability in data without compromising se-
curity, concepts like privacy-enhancing group signa-
tures (Krenn et al., 2019; Diaz and Lehmann, 2021)
could be used. These let data sources such as sensors
sign data to prove that it was generated using a gen-
uine device, while keeping the precise identity of the
device confidential. MPC over authenticated inputs is
also considered by (Dutta et al., 2022).

Data Usage Policies. A significant challenge for
MPC in data spaces is the enforcement of data
policies. While the Open Digital Rights Language
(ODRL)18 offers a flexible mechanism for defining
permissions, prohibitions, and duties concerning dig-
ital content and services, its effectiveness is limited in
the context of MPC where data processing involves
complex computations across multiple data owners.
The enforceability of these policies becomes even
more complicated when considering the simpler, yet
enforceable, nature of Rego19 within the Open Policy
Agent (OPA) framework, which may not fully cater
to the legal nuances required in MPC scenarios.

Moreover, the integration of MPC-as-a-service
within data spaces necessitates a high degree of in-
teroperability between different policy standards and
legislative frameworks. The diverse landscape of
standards like the Data Privacy Vocabulary (DPV)20

for expressing policies related to personal data pro-
cessing, and international standards such as ISO/IEC
29184 and ISO/IEC 27560 for online privacy and data
sharing, must be seamlessly aligned to support the
complex operations of MPC.

Compliance poses another challenge, especially
with the introduction of legislative frameworks such
as the Data Governance Act and the Data Act. These
acts introduce new concepts like data intermediaries
and data altruism, which, while enriching the data
ecosystem, also add layers of complexity in ensuring
that MPC services adhere to these regulations. Ad-
ditionally, the empowerment of individuals through
platforms like SOLID21, granting them control over
their data, intersects with the operational dynamics of

lay/EBSI/Selective+Disclosure%3A+An+EBSI+Improve
ment+Proposal

17https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-enhanced-privacy-id-epid-securit
y-technology.html

18https://www.w3.org/TR/odrl-model/
19https://www.openpolicyagent.org/docs/latest/
20https://w3c.github.io/dpv/dpv/
21https://solidproject.org/

MPC, requiring robust mechanisms to ensure that user
consent and data usage terms are respected in a multi-
stakeholder environment.

Incorporating also the Data Catalog Vocabulary
(DCAT)22 into the ecosystem of data spaces, to fa-
cilitate the discovery and interoperability of datasets,
makes integrating usage polices even more challeng-
ing but also leads to a convergence of standards and
practices for the participating stakeholders. By estab-
lishing a common framework, DCAT can serve as a
tool in bridging the gap between different data pol-
icy standards. This convergence simplifies the pro-
cess of managing and enforcing data usage policies
across multiple platforms and jurisdictions, promot-
ing a more unified and efficient approach to data shar-
ing and processing.

Node Selection. In contrast to the permissionless
systems prevalent in the blockchain world (e.g.,
Enigma, Partisia), data space services require regis-
tration, meaning they operate within a permissioned
environment, thereby providing significant benefits
with regards to node selection.

Nodes or node operators must be registered and
each node will be assigned with attributes describing
its abilities. Besides standards capabilities, like sup-
ported protocols, connection parameters like band-
width, compute capabilities and other functional pa-
rameters, nodes must also be assigned with trust pa-
rameters. Every node must be assigned to an iden-
tity, geo location, and trust zones, to enable automatic
matching of compute task policies and nodes.

The following sample settings illustrate policies
that shall be supported in an MPC-ready data space:

• Nodes must be from 3 different entities in three
different countries

• All nodes must be from the same country but from
three different institutions or trust boundaries

• Nodes must have latency <10ms but be from dif-
ferent trust zones

It is also of interest to combine basic attribute-based
matching with random assignment capabilities for ad-
ditional robustness. Given the policy settings above, it
should be possible to randomly assign nodes from all
available combinations for different functions or even
sub-functions, thereby also preventing sybil attacks.

Access Control. An integral aspect of data usage
policies is the delineation of authorized users’ ac-
cess to specific datasets. While contractual enforce-
ment suffices in numerous practical scenarios, there’s

22https://www.w3.org/TR/vocab-dcat-3/
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a growing preference for technical solutions. This ap-
proach, e.g., obviates the need for a data custodian to
possess plaintext access to users’ sensitive data.

In the following we sketch two options that realise
this goal by leveraging advanced cryptographic meth-
ods beyond what was already discussed before.

One option following the late encoding approach
could be to let data owners encrypt their data un-
der their own public key using a so-called proxy re-
encryption scheme (Blaze et al., 1998; Zhou et al.,
2023). This allows the data custodian to transform
ciphertexts under the user’s public key into cipher-
texts under a compute node’s public key, provided that
the user previously handed a so-called re-encryption
key to the data custodian. In case that the encryp-
tion scheme supports a homomorphic operation on ci-
phertexts consistent with the secret sharing scheme,
the data custodian could now derive the shares for the
selected compute nodes ad-hoc, without ever requir-
ing to access the plaintext. One drawback of this ap-
proach is, however, that the user has to derive individ-
ual re-encryption keys for all possible compute nodes,
which may exclude nodes joining the ecosystem after
the user making their data offer.

An alternative option based on early encoding
leverages attribute-based encryption (ABE) (Sahai
and Waters, 2005; Hohenberger et al., 2023). In an
ABE scheme, each participant receives a secret key
linked to some attributes (e.g., geographical location),
while ciphertexts are linked to policies. A secret key
can now only decrypt a ciphertext if the attributes of
the secret key satisfy the policy of the ciphertext. For
instance, users could encrypt their shares according
to their requirements (e.g., each share with a spe-
cific country); while each compute node would re-
ceive a secret key linked to the country of its loca-
tion. Assuming proper identity management, doing
so could cryptographically enforce that only compute
nodes located in specific countries could decrypt cer-
tain shares, thereby enforcing that nodes from dif-
ferent legislations participate in a computation. The
main limitation of this approach is, that the master se-
cret key, from which the individual secret keys are de-
rived, needs to be administered securely and trustwor-
thy within the MPCaaS ecosystem, e.g., by distribut-
ing it among several nodes which engage in an MPC
protocol to derive novel keys for joining nodes. Fur-
thermore, the encoding scheme required for the com-
putations need to be known in advance.

6 CONCLUSION

This paper presents a comprehensive approach for in-
tegrating secure multiparty computation (MPC) into
data spaces,to enable secure and trustworthy data-
sharing in the future Data Economy. The authors ad-
dress various challenges and their potential solutions,
namely global parameters, authentication and identity
management, data usage policies, node selection and
access control. By adopting these solutions, organi-
zations can enhance privacy and security while facili-
tating data sharing in dynamic environments.

However, the paper also highlights several re-
search gaps that need to be addressed. Firstly, there
is a need for more efficient and scalable MPC proto-
cols that can handle large-scale datasets effectively.
Additionally, techniques for dynamic and flexible
access control in distributed environments are re-
quired. Privacy concerns arising from potential infor-
mation leakage during protocol execution must also
be addressed. Finally, standardized and interoperable
frameworks are needed to support MPC-enabled data
spaces across different domains and applications.

Addressing these research gaps will be crucial for
fully realizing the potential of integrating MPC into
data spaces and creating a secure and trustworthy
Data Economy. Further research and development ef-
forts are needed to overcome these challenges and en-
sure the successful adoption of this approach in prac-
tice.
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