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Abstract: Data Stream Processing (DSP) systems have gained considerable attention in edge computing environments
to handle data streams from diverse sources, notably IoT devices, in real-time at the network’s edge. However,
their effective utilization concerning end-to-end processing latency, SLA violations, and infrastructure power
consumption in heterogeneous environments depends on the adopted placement strategy, posing a significant
challenge. This paper introduces Lapse, an innovative cost-based heuristic algorithm specifically crafted to
optimize the placement of DSP applications within edge computing environments. Lapse aims to concurrently
minimize latency SLA violations and curtail the overall power consumption of the underlying infrastructure.
Simulation-driven experiments indicate that Lapse outperforms baseline strategies, substantially reducing the
power consumption of the infrastructure by up to 24.42% and SLA violations by up to 75%.

1 INTRODUCTION

The emergence of the Internet of Things (IoT) led
to an explosion in the number of devices generat-
ing large amounts of data at the edge of the net-
work (Gubbi et al., 2013), enabling a new set of
low-latency applications in areas like fraud detec-
tion, marketing, advertising, and public safety (Satya-
narayanan et al., 2015). Take, for instance, a surveil-
lance video application tasked with analyzing footage
from multiple cameras across a metropolitan region
to detect an accident, manage a disaster, or locate a
missing person in real-time. While this process gen-
erates substantial data at the network edge, transmit-
ting the footage from numerous cameras to the cloud
for processing and analysis may be impractical, pri-
marily due to the immense network bandwidth re-
quired (Satyanarayanan et al., 2015).

Edge computing emerged as an alternative to over-
come these issues by enabling processing near where
the data is generated (Satyanarayanan, 2017). Data
Stream Processing (DSP) systems are popular in this
field given their distributed nature and ability to pro-
cess data as it is generated (Arkian et al., 2020)

a https://orcid.org/0000-0001-5459-2134
b https://orcid.org/0000-0002-4218-0260
c https://orcid.org/0000-0001-8485-529X

(Cardellini et al., 2019). However, scheduling DSP
applications on heterogeneous infrastructure is not a
trivial task, and doing so generally requires coping
with problems known to be NP-hard (Benoit et al.,
2013) (Cardellini et al., 2016).

Given the heterogeneous nature of edge comput-
ing infrastructures, where some hosts may consume
more energy than others and use intermittent and re-
newable energy sources, application placement be-
comes a critical decision with a dual role (Mater-
wala et al., 2022) (Souza et al., 2023a). Firstly, it
directly impacts the latency delivered to end-users
based on the network location and the performance
capabilities of edge servers. Secondly, it influences
the overall energy consumption of the edge infras-
tructure. Strategic application placement strategies
are necessary to balance latency and energy-saving
goals. Moreover, it is crucial to establish mechanisms
to ensure consistent performance of DSP applications
to meet user requirements. Failure to meet these ex-
pectations can be costly, resulting in Service Level
Agreement (SLA) violations and financial losses for
infrastructure providers (Xu et al., 2021).

Previous work on scheduling DSP applications
on edge computing considered mainly their end-to-
end processing latency (da Silva Veith et al., 2018)
(da Silva Veith et al., 2021) (Xu et al., 2022) or in-
frastructure power consumption (Loukopoulos et al.,
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Figure 1: Placement of a DSP application’s operators.

2018b) (Loukopoulos et al., 2018a). However, as far
as we know, no work jointly optimizes the SLA vi-
olations incurred by excessive end-to-end processing
latency and the infrastructure’s energy consumption.
This paper presents Lapse, a cost-based heuristic al-
gorithm that schedules DSP applications on edge in-
frastructure, jointly optimizing their end-to-end pro-
cessing latency SLA violations and overall infrastruc-
ture power consumption.

The rest of this paper is structured as follows. Sec-
tion 2 presents an overview of the main concepts con-
sidered in this work. Next, Section 3 discusses the re-
lated work and highlights our contributions. Section 4
and 5 present our system model and solution. Sec-
tion 6 presents our performance evaluation method-
ology and results. Finally, Section 7 concludes the
paper and delivers final remarks.

2 BACKGROUND

Edge computing (Satyanarayanan et al., 2009) is a
distributed computing paradigm that places comput-
ing resources physically closer to the end-user and
smart devices to improve the reliability, security, pri-
vacy, and latency of cloud-centric deployments (Shi
et al., 2016). In addition, edge computing minimizes
the amount of data uploaded to the cloud for process-
ing, allowing local data processing. This synergizes
with DSP, a distributed computing paradigm that al-
lows real-time, high-volume, heterogeneous, and con-
tinuous processing of data streams, enabling a large
set of applications such as intelligent traffic manage-
ment, real-time surveillance, and smart grids (An-
drade et al., 2014).

Existing DSP engines, such as Apache Storm1

and Apache Flink2 represent applications as Directed
Acyclic Graphs (DAGs), where the vertices repre-
sent operators that execute specific actions (e.g., fil-
ter, group by, count, etc) onto the incoming data, and
the edges represent how the data flows between op-
erators (Xu et al., 2022). The data streams enter the
application through a data source operator, flow to the
downstream operators for processing, and so on until
they reach a data sink, which can be a database or a
message system such as Apache Kafka3.

Most DSP applications are latency sensitive, re-
quiring a response as quickly as possible to satisfy
the performance requirements regarding latency and
throughput (Andrade et al., 2014). Latency repre-
sents the time spent processing the data from the data
source operator to the data sink operator. In contrast,
throughput refers to the rate at which the system pro-
cesses the data streams. Scheduling DSP applications
onto highly distributed environments such as edge
computing can be challenging (Arkian et al., 2020)
since network latency, available bandwidth, and com-
puting capacity can vary, impacting the application la-
tency and throughput.

Figure 1 illustrates the scheduling of a real-time
surveillance application with four operators process-
ing the data streams from a surveillance camera on an
edge computing infrastructure of nine servers, each in
a region represented by a hexagon. The application’s
sensor and sink locations are fixed within the infras-
tructure as the sensor monitors a specific geographical
area. In contrast, the sink represents the destination
for processed data, often decided a priori. The pro-
duced data is generally critical for systems that rely
on it for various purposes (Xu et al., 2022) (Cardellini
et al., 2016).

3 RELATED WORK

The problem of placing DSP applications onto com-
puting resources has been studied extensively in the
literature. (Cardellini et al., 2016) proposed an opti-
mal placement strategy, treating it as an Integer Linear
Programming (ILP) problem and optimizing Quality
of Service (QoS) metrics like latency and availabil-
ity, considering the heterogeneity of the edge com-
puting infrastructure. They integrated this model into
Apache Storm to place DSP application operators.
(Hiessl et al., 2019) argue that the approach neglected

1https://storm.apache.org/
2https://flink.apache.org/
3https://kafka.apache.org/
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leased resources and migration costs, introducing an
extended ILP formulation considering these factors.
However, neither work addresses the optimization of
power consumption on edge servers, a critical concern
in edge computing infrastructure (Materwala et al.,
2022).

The study conducted by (Loukopoulos et al.,
2018b) aims to reduce energy consumption and av-
erage delay for end-users deploying DSP applications
at the edge of the Internet. They introduce two al-
gorithms: one prioritizes minimizing delay, while the
other addresses both delay and energy consumption.
Additionally, (Loukopoulos et al., 2018a) presents
another contribution, namely Pareto-Efficient Algo-
rithm (PEA), which tackles the same problem.

In (da Silva Veith et al., 2018), strategies were
proposed to optimize the placement of DSP appli-
cations, across cloud and edge computing infras-
tructures. The goal was to enhance application re-
sponse time by considering pre-defined data source
and sink locations within the infrastructure. Simi-
larly, (da Silva Veith et al., 2021) argued that exist-
ing approaches lack scalability for extensive cloud-
edge infrastructure with numerous IoT devices. Con-
sequently, the authors introduced three scalable place-
ment strategies for DSP applications, prioritizing end-
to-end latency minimization.

In another study, (Xu et al., 2022), Amnis was
introduced as a solution to minimize end-to-end la-
tency for DSP applications in edge computing envi-
ronments. Their approach incorporates data locality
awareness and resource constraints to improve phys-
ical plan generation and operator placement. Previ-
ous investigations have examined the placement prob-
lem considering several factors, such as end-to-end
latency, power consumption, and availability. How-
ever, to our knowledge, no prior work has proposed
placement solutions that simultaneously address end-
to-end processing latency SLA violations while mini-
mizing power consumption in edge servers.

4 SYSTEM MODEL

This section presents the system model for the DSP
application operator placement problem in edge com-
puting environments. First, we describe the main at-
tributes and behavior of each entity, covering the op-
erator placement process and the application perfor-
mance computation. Then, we introduce our opti-
mization objectives. Table 1 summarizes the notation
used in the rest of this work.

We consider an edge computing infrastructure that
extends the cellular network (Klas, 2017), providing

Table 1: Summary of the notation used in this paper.

Notation Description

E Set of edge servers
B Set of base stations
L Set of network links
S Set of sensors
A Set of applications
O Set of operators
N Set of network switches
e f L f ’s communication latency (ms)
b f L f ’s bandwidth (Gbps)
ci Ei’s CPU capacity (MIPS)
ri Ei’s RAM capacity (GB)
qi Ei’s static power consumption (watts)
mi Ei’s max power consumption (watts)
u j A j’s operator chain
g j A j’s processing latency SLA by event (ms)
t j A j’s sensor
hk Ok’s MIPS demand to process one event
dk Ok’s RAM demand (MB)
λk Ok’s input event rate
πk Ok’s input event size (bytes)
xi,k Operator placement matrix
µ(Ei) Ei’s utilization percentage
ξ(Ei) Ei’s power consumption (watts)
ρ(A j,Ok) Returns the previous operator or data source
τ(ρ(A j,Ok),Ok) Time to transfer the data stream to operator Ok (sec.)
σ(Ok,Ei) Ok’s processing rate at edge server Ei
ϒ(Ok,Ei) Time to operator Ok process data at Ei (sec.)
P(A j) A j’s end-to-end processing latency (sec. )
Θ(u j,k−1,u j,k) Cumulative delay between elements (ms)
Ω(Ei−1, Ei) The bandwidth available between elements (Gbps)

access to a set of edge servers E through base sta-
tions B . A group of hexagonal cells represents the in-
frastructure topology as in (Aral et al., 2021), where
each cell provides wireless access to users through a
radio base station. In each hexagonal cell, there is a
network switch (N ) that interconnects the base sta-
tions and edge servers to the neighboring hexagons
via a set of network links L . Hence, L f = {e f ,b f }
represents a network link, where e f is the network
latency (expressed in milliseconds), and b f is the net-
work link bandwidth capacity depicted as gigabits per
second (Gbps).

An edge server is represented as Ei =
{ci,ri,qi,mi}, where ci and ri represent the CPU ca-
pacity in Millions of Instructions per Second (MIPS)
and RAM capacity in gigabytes (GB). In addition,
qi and mi are the static power consumption (i.e.,
the amount of power the machine consumes in idle)
and maximum power consumption of edge server Ei
defined in watts. We consider a set of devices S , such
as sensors and cameras, strategically positioned at
the edge infrastructure. They produce data streams
processed by a set of DSP applications A composed
of a set of operators O. Each DSP application is
a DAG, where the nodes represent the operators,
and the edges represent the data flow between them.
An application is represented as A j = {u j,g j, t j},
where u j represents a list of operator chain, for
example u j = {O1,O2 O3}. Let g j be the application
end-to-end processing latency SLA by event (i.e.,
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application’s latency threshold), and t j the application
data source Sl .

An operator Ok = {hk,dk,λk,πk}, poses a demand
of hk MIPS to process one event, and requires dk of
RAM capacity expressed as megabytes (MB). Ok’s
input event rate and input event size (bytes) are given
by, respectively, λk and πk. The applications’ sinks –
i.e., the last downstream operator(s) – are pinned to
the infrastructure as detailed in Section 2. As edge
servers host the operators, we represent the operator
placement scheme through a matrix xi,k, where:

xi,k =

{
1 if edge server Ei hosts operator Ok

0 otherwise.
(1)

The edge server Ei’s utilization percentage is
computed considering the operators Ok demand and
the edge server Ei capacity ci, according to Equation 2
as in (Loukopoulos et al., 2018b) (Loukopoulos et al.,
2018a). We also consider that the edge server’s power
consumption, denoted by the function ξ(Ei), is deter-
mined by the ratio of MIPS capacity utilization and
demand (Equation 3), as per the same references.

µ(Ei) =
∑
|O|
k=1 xi,k ·hk ·λk

ci
(2)

ξ(Ei) = qi +µ(Ei) · (mi−qi) (3)
Equation 5 determines how much time in seconds

is needed to transfer the data stream from the data
source (e.g., a previous operator Ok−1 or a sensor
Sl indicated by Equation 4) to operator Ok. More
precisely, the transfer time mainly depends on the
amount of data stream (λk ·πk), and Ω(ρ(A j,Ok),Ok)
which denotes the available bandwidth between them.

The bandwidth available to transfer the data
streams between edge servers (e.g., E1, E2) is given
by Ω(E1, E2), that is the minimum bandwidth avail-
able between the network links L that interconnect
E1 and E2. We also consider an equal share pol-
icy to schedule the data streams in the network in-
frastructure (i.e., the network link bandwidth capacity
is divided equally between the data streams). Fur-
thermore, the network delay between edge servers
(e.g., E1, E2) or operators (e.g., O1, O2) is given by
Θ(Ok−1,Ok). Both functions use Dijkstra’s Shortest
Path Algorithm (Dijkstra et al., 1959) with the net-
work links latency e f as weight.

ρ(A j,Ok) =

{
t j if Ok = A j,0

Ok−1 otherwise.
(4)

τ(ρ(A j,Ok),Ok) =
λk ·πk

Ω(ρ(A j,Ok),Ok)

+Θ(ρ(A j,Ok),Ok)∗λk (5)

The processing rate of an operator Ok placed on an
edge server Ei is represented by σ(Ok,Ei), according
to Equation 6. With that, we can determine how much
time in seconds is needed for the operator Ok to pro-
cess the data streams on the edge server Ei, which is
denoted by the function ϒ(Ok,Ei) (Eq. 7). We assume
that the edge server Ei MIPS capacity ci is divided
equally between the operators hosted. With that, we
can simulate the impact of consolidating many opera-
tors on the same host.

σ(Ok,Ei) =
ci

hk ·∑
|O|
k=1 xi,k

(6)

ϒ(Ok,Ei) =
λk

σ(Ok,Ei)
(7)

The end-to-end processing latency is the sum of
network latency, data transmission, and processing
time required by the operators to process the data
streams on the host edge server. More formally, the
end-to-end processing latency is denoted by the func-
tion P(A j) (Eq. 8). For each operator u j,k of an
application A j, we compute the time to transfer the
data stream between it and the previous operator with
τ(ρ(A j,u j,k),u j,k). Furthermore, we compute the pro-
cessing time for all edge servers Ei with an operator
u j,k. Then, we divide the results by λk, the operator
u j,k input event rate to obtain the latency processing
per event. We consider the transfer cost between op-
erators hosted on the same edge server negligible.

P(A j) =
|u j |

∑
k=1

(τ(ρ(A j,u j,k),u j,k)+∑
|xi,k|
i=1 ϒ(u j,k,Ei))

λk
(8)

This work aims to establish the placement of DSP
applications’ operators to minimize the applications’
end-to-end processing latency SLA violations and
overall power consumption of edge servers. More
formally, Equation 9 represents the objective func-
tion, subject to three constraints. The first constraint,
Equation 10, guarantees that each operator is placed
in just one edge server. Since edge servers do not
have unlimited capacity, Equation 11 guarantees that
the placement of operators respects the edge server
MIPS capacity, and Equation 12, ensures that the op-
erators’ demands do not exceed the edge server RAM
capacity, as in (da Silva Veith et al., 2021).

Minimize
|A |

∑
j=1

[
P(A j)> g j

]
+
|E |

∑
i=1

ξ(Ei) (9)

Subject to:
|E |

∑
i=1

xi,k = 1,∀k ∈ {1, ..., |O|} (10)
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|O|

∑
k=1

hk ·λk · xi,k ≤ ci,∀i ∈ {1, ..., |E |} (11)

|O|

∑
k=1

(dk +(λk ·πk)) · xi,k ≤ ri,∀i ∈ {1, ..., |E |} (12)

5 PROPOSED STRATEGY

This section presents Lapse, our strategy to place DSP
applications on edge computing environments, mini-
mizing their end-to-end processing latency SLA vio-
lations and the edge servers’ power consumption.

Lapse places DSP applications’ operators using a
Depth First Search (DFS) approach, i.e., it deploys all
application operators before proceeding to the next
application. It does that by prioritizing applications
with greater demand (e.g., the sum of the demand of
all its operators) and with lower end-to-end process-
ing latency SLA (Alg. 2, line 2). Then, for each ap-
plication A j ∈ A ′, Lapse identifies the location of the
application’s sensor ϕ and sink η (Alg. 2, lines 4-5),
and finds the edge servers between them through Al-
gorithm 1. To do so, Algorithm 1 starts by finding the
shortest paths between the sensor and sink locations
(Alg. 1, line 3). Then, for each path, the algorithm
iterates over each network switch and its neighbors’
network switches searching for edge servers (Alg. 1,
lines 3-8). Finally, the algorithm returns the edge
servers discovered along the path with the greatest
number of such servers.

Lapse iterates over the list of application’s oper-
ators u j once the set of suitable edge servers E ′ has
been found. First, it checks whether an operator Ok
is already assigned to a resource, as we consider that
the placement of sink operators is determined before-
hand. After that, Lapse sorts the set of edge servers
E ′ as per Equation 13, which considers the sum of
the min-max normalization of i) aggregated network
latency between ϕ and E ′; ii) aggregated network la-
tency between η and E ′; and iii) E ′ max power con-
sumption (mi) (Alg. 2, line 11). Then, Lapse iter-
ates over edge servers, checking for each if it can
host the operator Ok. Upon finding a server, we up-
date ϕ with the edge server E ′. Finally, regarding the
case where not enough resources to host the opera-
tor Ok are available, we repeat the process consider-
ing all edge servers until the operator Ok is scheduled
(Alg. 2, lines 17-18).

norm(Θ(ϕ,Ei))+norm(Θ(η,Ei))+norm(mi) (13)

Algorithm 1: Find possible edge servers.
Input: ϕ (Application’s sensor location)
Input: η (Application’s sink location)
Output: E ′ (Set of edge servers)

1 ε← 0
2 δ← null
3 ζ← shortest paths between ϕ and η

4 foreach path ζ′ ∈ ζ do
5 E ′← /0

6 foreach network switch Nv ∈ ζ′ do
7 if network switch Nv has an edge server

Ei then
8 E ′← E ′∪{Ei}
9 foreach neighbor network switch N ′v of

Nv do
10 if network switch N ′v has an edge

server Ei then
11 E ′← E ′∪{Ei}
12 if |E ′|> ε then
13 ε← |E ′|
14 δ← E ′
15 return δ

6 PERFORMANCE EVALUATION

This section presents the methodology used to evalu-
ate Lapse’s effectiveness in placing DSP applications
on edge computing infrastructures.

6.1 Experiments Description

Our simulated edge computing infrastructure com-
prises 25 edge servers positioned at specific positions
on the map defined by the K-means algorithm (Mac-
Queen, 1967). To configure our set of edge servers,
we consider three server specifications from (Ismail
and Materwala, 2021), as shown in Table 2. The edge
servers are interconnected by a partially connected
hexagonal mesh network topology (Aral et al., 2021)
with 208 network links L , where each of them has 10
or 20 milliseconds of latency and 0.1 Gbps of band-
width. All parameter values presented in this section
are uniformly distributed unless otherwise indicated.

The scenario has 8 sensors, denoted as S , respon-
sible for generating data streams. A corresponding
set of 8 applications, represented as A , should pro-
cess these data streams. We employ the K-means al-
gorithm to uniformly position the sensors throughout
the entire area and prevent scenarios where all sensors
cluster around one location. Each application is asso-
ciated with a distinct sensor, serving as its primary
data source. We consider a linear application topol-
ogy (that is, an application that does not have parallel
operators), where each application may have several
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Algorithm 2: Lapse algorithm.

1 xi,k← /0

2 A ′← Applications sorted by ∑
|u j |
k=1 hk ∗λk and g j

(desc.)
3 foreach application A j ∈ A ′ do
4 ϕ← location of application’s sensor
5 η← location of application’s sink
6 E ′← find edge servers(ϕ,η)
7 foreach operator Ok ∈ u j do
8 if operator Ok is already placed then
9 continue

10 while operator Ok is not placed do
11 E ′← edge servers sorted by Eq. 13

(desc.)
12 foreach Ei ∈ E ′ do
13 if Ei has capacity to host Ok

(Eq. 11-12) then
14 xi,k← 1
15 ϕ← Ei
16 break
17 if operator Ok could not be placed

then
18 E ′← E

19 return xi,k

Table 2: Specifications of edge servers (Ismail and Mater-
wala, 2021).

Model CPU RAM Power Idle Power Max.

Model 1 2750 MIPS 32 GB 265 W 1387 W
Model 2 3500 MIPS 64 GB 127 W 559 W
Model 3 3000 MIPS 64 GB 45 W 276 W

operators varying from {8,12,16} operators, and an
end-to-end processing latency SLA according to the
specifications established by the 3rd Generation Part-
nership Project (3GPP) (3GPP, 2022), varying from
80 and 100 milliseconds to process a single event. Re-
garding the operators’ specifications, the amounts of

Model 1 Model 2 Model 3 Sensors Sinks

Figure 2: Edge computing infrastructure.

CPU and RAM resources are uniformly selected from
the values listed in Table 3.

Furthermore, Algorithm 3 also randomly posi-
tions the applications’ sink on the infrastructure. The
sink placement algorithm randomly chooses an edge
server to place the applications’ sink by considering
the edge servers around the sensor location. More
precisely, the edge servers considered for the random
choice are from one to three hops away from the ap-
plication’s sensor location (Algorithm 3, lines 7-8) to
avoid placing applications’ sinks too far from the sen-
sor, which could cause SLA violations due to the dis-
tance.

Algorithm 3: Sink placement algorithm.

1 foreach application A j ∈ A ′ do
2 ϕ← location of application’s sensor
3 E ′← /0

4 foreach Ei ∈ E do
5 if ϕ is at same location of Ei then
6 continue
7 if Ei is at least 1 hop and no more than 3

hops away from ϕ then
8 E ′← E ′∪{Ei}
9 E ′i ← pick an edge server at random from E ′

10 xi,|u j |−1← 1

We consider multiple event sizes to simulate dis-
tinct types of data streams (e.g., text, image frames,
voice recording (da Silva Veith et al., 2018)) that
range from 10 KB, 50 KB, and 200 KB. In addition,
the operators’ input event rate is 5000 events per sec-
ond. All operators within the same application have
the same input event specification. Figure 2 illustrates
the final scenario with an occupation level of approx-
imately 50%.

Table 3: Operator demand configurations.

Configuration MIPS Demand RAM Demand

Spec. 1 0.03 70 MB
Spec. 2 0.06 80 MB
Spec. 3 0.09 90 MB
Spec. 4 0.1 100 MB

To evaluate the performance of the proposed solu-
tion, Lapse, we extend the EdgeSimPy (Souza et al.,
2023b) simulator by adding the system model pre-
sented in Section 4. EdgeSimPy is a simulation toolkit
that enables modeling and evaluating resource man-
agement policies, such as placement and migration,
in edge computing infrastructures.

We have compared Lapse with
AELS (da Silva Veith et al., 2021), and Apache
Storm’s default resource-aware scheduler (Storm),
which resembles a round-robin algorithm. Storm
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Figure 3: Final application placement of the various algorithms.
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starts by randomly selecting an edge server and
placing as many operators as possible until the
computational resources reach their limits. After
saturation, it randomly chooses another server (Xu
et al., 2022). Since Storm does not consider the
edge server latency during the edge server selection,
we have created a latency-aware version called
Storm-LA, which selects the edge server with the
lowest latency instead of randomly choosing an edge
server.

In addition, since none of these algorithms con-
sider infrastructure power consumption as an objec-
tive, we expand the AELS algorithm by introducing
a power-aware version called AELS-PA, which con-
siders both latency and edge servers’ power consump-
tion. Next, we compare and analyze the results re-
garding end-to-end processing SLA violations, and
overall power consumption. To support reproducible
research, we have made our source code public on our
GitHub repository4.

6.2 Latency SLA Violations

Figure 3a shows the instances of end-to-end process-
ing latency SLA violations across different applica-
tion lengths, denoted by the number of operators, for
each strategy used. As expected, the Storm strat-
egy exhibited consistent SLA violations, as Storm
does not account for application latency requirements.
Consequently, it generates placements with lengthy
application paths (Figure 4). This resulted in high net-
work latency due to multiple inter-edge server com-
munication. Furthermore, Figure 5 revealed that the
data flows experienced a decrease in bandwidth due
to competing resource allocation, leading to increased
latency and incidence of SLA violations.

Despite Storm-LA considers the latency associ-
ated with the application’s sensors, it could only mit-
igate a single SLA violation. In particular, Storm-
LA exhibited a pronounced preference for Model 1
servers, as shown in Figure 3c. These servers, char-
acterized by their superior processing capabilities (as
detailed in Table 2), facilitate the co-location of mul-
tiple operators on a single server, which reduces the
amount of inter-node communication (Figure 4), ef-
fectively mitigating network traffic (Figure 5).

AELS strategy led to violations in four applica-
tions. In addition to selecting edge servers to de-
ploy application operators based on latency estima-
tion, which may yield suboptimal results due to the
potential impact of unforeseen unprovisioned applica-
tions on network bandwidth availability, AELS also
searches greedily for the best edge server to deploy
the operator of each downstream application without
considering the location of the sink, which could un-
expectedly increase latency.

Contrarily, AELS-PA produced less favorable re-
sults when compared to the standard AELS algo-

4https://github.com/carloshkayser/lapse
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rithm, violating six applications, due to the conflicting
objective of minimizing power consumption. As a re-
sult, AELS-PA preferred Model 3 servers (Figure 3c),
leading to an increase in the size of application paths
(Figure 4).

On the contrary, Lapse achieved a notable reduc-
tion in SLA violations, with only two applications ex-
periencing breaches. This result can be attributed, in
part, to Lapse effectively minimizing the size of the
application paths (Figure 4). This was possible due
to consideration of the application’s sink position and
the granular selection of edge servers between the ap-
plication’s data source and sink. Furthermore, the al-
location decisions made by Lapse proved to be highly
efficient in terms of network utilization (Figure 5).

6.3 Overall Power Consumption

Figure 3b provides an overview of the power con-
sumption in different edge server models. In contrast,
Figure 3c illustrates the occupation of edge servers
categorized by their respective models. Among the
algorithms evaluated, Storm exhibited one of the
highest power consumption levels, surpassing 10,000
watts, by not considering the power consumption of
the edge servers.

In particular, Storm-LA further intensified power
consumption, reaching 12,000 watts, due to the prior-
itization of low-latency edge servers, which led to the
selection of Model 1 edge servers instead of Model
3, as observed in Figure 3c compared to the baseline
Storm algorithm.

Similarly, AELS approached a power consump-
tion level of approximately 11,000 watts. Neverthe-
less, its power-aware version, AELS-PA, successfully
reduced it to less than 8,000 watts. However, this im-
provement in power efficiency had repercussions on
allocation decisions, particularly in terms of latency
SLA violations.

Lapse, in contrast, achieved a significant reduc-
tion in power consumption, reducing it to approx-

imately 9,100 watts while minimizing the number
of applications experiencing SLA violations. This
achievement is due to Lapse’s preference for using
edge servers belonging to Model 2 and Model 3.
These edge server models present a lower power con-
sumption profile, a choice driven by the well-balanced
cost function used by Lapse, which considers both la-
tency and power consumption.

7 CONCLUSIONS

DSP systems have emerged in edge computing envi-
ronments to process data streams in real-time close
to the data sources, but their placement is not trivial
due to its impact on user satisfaction, affecting end-
to-end processing latency SLA violations and infras-
tructure power consumption. This paper introduces
Lapse, a cost-based heuristic algorithm designed to
address this problem by optimizing DSP application
placement in heterogeneous edge computing infras-
tructures. Simulation-driven experiments showed that
Lapse can reduce the power consumption of the in-
frastructure by up to 24.42% and SLA violations by
up to 75%. In future work, we intend to evaluate
Lapse in diverse scenarios and levels of occupancy,
as well as explore a recursive algorithm inspired by
the branch and bound technique (Levitin, 2005).
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