
Optical Character Recognition Based-On System for Automated
Software Testing

D. Abbas and J. I. Olszewska
School of Computing and Engineering, University of the West of Scotland, U.K.

Keywords: Intelligent Systems, Autonomous Systems, Trustworthy Artificial Intelligence, Expert Systems, Software
Robots, Automated Software Testing, Machine Learning, Optical Character Recognition, Computer Vision.

Abstract: The paper presents the development and deployment of an artificial intelligence (AI) test automation frame-
work that allows testers to more fluidly develop scripts and carry out their day-to-day tasks. In particular, the
framework aims to speed up the test automation process by enabling its users to locate elements on a webpage
through the use of template-matching-based image recognition as well as optical character recognition (OCR).
Indeed, test automation specialists spend much of their time creating page-object models (POMs), where they
capture elements on the screen via complex locators such as cascading style sheet (CSS) or XPath. How-
ever, when webpages are updated or elements are moved around, locators become void, eventually pointing
to nothing unless written in such a dynamic way as to prevent this. This heavily relies on developers provid-
ing meaningful tags to elements that they can then be located by, whereas with the introduction of an image
recognition engine in our AI framework, this tedious and long-winded approach has been be shortened.

1 INTRODUCTION

As advancements are made in technology, the ap-
proaches and methodologies to accurately test such
technologies must also evolve (Black et al., 2022).
Indeed, reliable software testing is required to allow
trustworthy autonomous systems, multi-agent sys-
tems, and/or robotic systems to evolve close by and/or
interact with humans such as companion robots in
assistive-living environments; autonomous vehicles
in smart cities; or cloud robotics systems in smart
manufacturing (Olszewska, 2020).

While the goal of testing is mainly to verify the
quality, performance, or reliability of whatever is
tested, testing in the modern age is a complex and
nuanced field that is comprised of over a dozen of
different types of testing (IEEE, 2021). These ones
can be broadly split in functional testing, such as re-
gression testing (Long, 1993) to catch a large class of
bugs quickly and efficiently, and non-functional test-
ing such as usability testing, and especially pattern-
based usability testing (Dias and Paiva, 2017) to test
usability guidelines (or best practices) by defining
generic test strategies (i.e. test patterns) in order to
allow testing usability aspects on web applications.

Even though manual testing is an integral part of
the testing process and includes the development of

a test strategy, test plan, test cases and test scripts
(Alferidah and Ahmed, 2020), automated testing is
required to cope with the pace of the software’s con-
tinuously integrated/continuously developed (CI/CD)
pipeline that streamlines the development and test-
ing process within a software development life-cycle
(SDLC) and aims to automatically fire off automated
regression tests upon deployment (Chowdhury, A. R.,
2023).

Whilst the idea of test automation is straightfor-
ward, the implementation and integration of auto-
mated software testing into an SDLC can be an in-
tricate process.

So to overcome this aspect, a test automation
framework provides rules, guidelines, and tools that
the user can utilise to write test scripts (Celik et al.,
2017). It can also be seen as a structure that pro-
vides an environment where automated test scripts
can be executed (Chowdhury, A. R., 2023). Some
of the major components of test automation frame-
works usually consist of the test data management and
testing libraries, including unit testing, integration
testing and behaviour-driven development (Chowd-
hury, A. R., 2023). It is worth noting that there are
many types of test automation frameworks (Chowd-
hury, A. R., 2023), e.g. modular testing-, data-driven
testing-, keywords-driven testing-, hybrid testing-,

894
Abbas, D. and Olszewska, J.
Optical Character Recognition Based-On System for Automated Software Testing.
DOI: 10.5220/0012740000003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 894-906
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



or behaviour-driven development (BDD) framework.
Hence, test automation can ultimately be imple-
mented in a variety of ways via different techniques,
ranging from simple capture and replace and finish-
ing with more sophisticated ones such as keyword-
and process-driven approaches (Gafurov et al., 2018).

In particular, the behaviour-driven development
(BDD) framework (Knight, A., 2017), which extends
the test-driven development (TDD) approach (She-
shasaayee and Banumathi, 2018) by focusing on user
requirements and expectations as well as enabling
collaboration and automation, can be integrated into
DevOps (Gohil et al., 2011) and further software qual-
ity verification (Cavalcante and Sales, 2018). For
this purpose, BDD consists in writing requirements
in a structured and testable format (i.e. feature files
which are used to describe test scenario in a struc-
tured natural language (Yang et al., 2019) and step
definitions which are abstractions representing the el-
ements in a scenario such as contexts, events, and ac-
tions (Solis and Wang, 2011), with each step in the
scenario associated with a corresponding step imple-
mentation function in the underlying programming
language (Storer and Bob, 2019)) that can be evalu-
ated to ensure compliance with the expected behavior
(Farooq et al., 2023).

On the other hand, several tools have been devel-
oped for the test automation with old ones such as
QuickTest Professional (QTP) (Wang and He, 2014)
with keyword-driven methodology, which is a script-
ing technique that uses data files to contain the key-
word related to the system under test (SUT) (Hamil-
ton, T., 2023), used for the functional testing and re-
gression testing (Lenka et al., 2018). Newer tools
include the development of solutions like Selenium,
which is an open-source, highly customisable, cross-
Browser, web-testing automation framework (Ramya
et al., 2017). The most recent tools are AI-assisted
and AI-driven tools like Applitools (Calantonio, J.,
2023) and may involve visual graphical user inter-
face (GUI) testing capabilities (Alferidah and Ahmed,
2020).

It is worth noting that the decision to automate
is the first step in the automation testing life cycle
methodology (ATLM), and not all projects will re-
quire automation nor will meet the correct criteria
for automation (Borjesson, 2012). Actually, test au-
tomation is the automation of tests that have already
been run and verified to be working correctly. It is
a step out of the typical software testing life cycle
(STLC) (Hourani et al., 2019). So, test automation
is carried out after the STLC has completed, and can
only be considered if pre-requisites such as product
owner (PO) interest and return on investment (ROI)

on test automation have been achieved, because test
automation requires a substantial initial investment
and the benefits of the seeds of automation only be-
gin to sprout after several weeks and months.

Therefore, test automation can go from no au-
tomation (i.e. manual testing), to automated test-
ing and beyond, i.e. to self-managed, self-optimized
testing, or even to autonomous testing such as self-
testing, self-healing or self-repair (Eldh, 2020). For
these latter stages of automation, using AI for soft-
ware testing has a lot of potential and may improve
quality assurance (Hourani et al., 2019).

In particular, AI-assisted test automation, which
is also referred to as AI-driven testing, is concerned
with the use of AI/ML technologies in the perfor-
mance of automated testing activities (King et al.,
2019), and implementing AI/ML can help among oth-
ers to streamline the test automation process and offer
functionalities such as test case creation models, mak-
ing the software testing even more efficient and bugs
easier to catch (Drugeot, C., 2020). Furthermore,
machine learning (ML) classifiers can aid to predict
defective software modules, most notably in safety-
critical systems (Moreira Nascimento et al., 2019).

Moreover, the use of computer-vision-based tech-
niques can lead to robotic process automation (RPA)
(Yatskiv et al., 2020) or software robots for test au-
tomation (Gao et al., 2019).

Indeed, since automated software testing needs
data (Zhu, 2018), and considering that ‘the source
code is data, and the screens, websites, databases, in-
put and output are just data’ (Hourani et al., 2019),
machine learning and computer vision techniques
such as template matching and optical character
recognition (OCR) (Olszewska, 2015) can help col-
lect data in the form of images for application screens
(Yu et al., 2019) and widgets (Qian et al., 2023) and
manage such data (Amershi et al., 2019) in context
of test automation (King et al., 2019). In particu-
lar, template matching is a technique in digital im-
age processing for finding small parts of an image
which match a template image (Kalina and Golo-
vanov, 2019), while OCR is a study of digital im-
age processing for extracting alphanumeric data from
images through pre-processing, segmentation, feature
extraction, and recognition (Hananto et al., 2023).

Thence, testing with visual GUI testing (Borjes-
son, 2012), which is also known as visually validation
testing (Borjesson and Feldt, 2012), is conducted with
tool support that uses such image recognition algo-
rithms and automated scripts to perform tests through
GUI interaction. GUI interaction works on the highest
level of system abstraction and allows the technique to
emulate end-user behaviour to automate complex user

Optical Character Recognition Based-On System for Automated Software Testing

895



scenarios (Wheeler and Olszewska, 2022). User sce-
narios can therefore, with this technique, perceivably
be executed faster, with higher frequency, at lower
cost, with gained quality, etc. (Leotta et al., 2013).

So in this study, we utilise BDD techniques to or-
ganise test suites, develop readable test scenarios, and
configure and run test runs. This is designed to work
in tandem with the AI/ML aspect of the framework
enhanced by computer-vision techniques for the OCR
and template matching algorithms, in order to provide
an automation engineer with a complete experience.

Hence, this work aims to deliver an AI-assisted
test automation framework that leverages such tech-
nologies to enhance the test automation experience,
and our framework goal being to minimise the effort
of building a test automation framework and collect-
ing data.

On the other hand, robust test execution is another
goal the developed framework in this work has sought
to achieve; the framework provides this level of test
robustness using a two-fold approach. This mixes tra-
ditional as well as visual GUI testing elements to pro-
vide a more full-bodied experience capable of discov-
ering bugs at the GUI level as well as at the document-
object-model (DOM) level.

Besides, the AI-based automated testing frame-
work has been developed following the D7-R4 ap-
proach (Olszewska, 2019).

The paper is structured as follows. In Section 2,
we present the developed AI-based automated test-
ing framework, while Section 3 compares productiv-
ity across various test automation scenarios most ex-
perienced by software testers. Conclusions are drawn
up in Section 4.

2 PROPOSED APPROACH

This section covers the various technologies and soft-
ware (Section 2.1) along with the testing methods and
features (Sections 2.2-2.3) at play within the devel-
oped framework (see Fig. 1) as well as the setting up
of the visual validation algorithms and testing (Sec-
tions 2.4-2.5).

2.1 Test Environment

In order to deliver the proposed framework (see
Fig. 1) in a working capacity, our framework has
been coded in Python (TechVidVan, 2023), using Py-
Charm integrated development environment (IDE),
along with Python’s built-in libraries and NumPy li-
brary supporting large, multi-dimensional arrays and
matrices and a large collection of high-level mathe-

Figure 1: Developed framework architecture.

matical functions to operate on these arrays. The de-
velopment of our open-source system also involved
the use of test suite core librairies such as PyTest,
PyTest-BDD, and Selenium as well as a series of
computer-vision librairies such as PyTesseract and
OpenCV, as explained further in this section.

2.1.1 Selenium

Selenium is an open-source test automation library
that utilises a WebDriver to interact with browsers
in context of web-based application testing and that
has seen widespread popularity within the industry in
recent years (Tanaka et al., 2020). The library pro-
vides basic functions such as clicking on an element
or selecting by index from a drop-down list among
others, allowing testers to simulate common activities
performed by end-users and to build regression packs
(Selenium, 2022).

In this work, it has been specifically chosen for
this reason, since it allows us to utilize the Selenium
WebDriver, which is as the name suggests what will
drive the tests. Indeed, the WebDriver communicates
directly with a browser and uses its native support
for automating the execution process of the test cases
(Ramya et al., 2017). Much like Selenium itself, Se-
lenium WebDriver can work on any browser given
that the respective driver has been developed, with all
major browsers being supported. It is worth adding
that for this project, the main web browser that all the
carried-out tests take place on is Google Chrome due
to its popularity and widespread use.

2.1.2 PyTest

PyTest is a Python testing framework that can be used
for various levels of testing, including unit tests, in-
tegration tests, end-to-end tests, and functional tests.
Its features include parametrized testing, fixtures, and
assert re-writing (Hunt, 2023).

In the case of our system, PyTest is primarily used
for its fixtures which are used to instantiate and yield
the various test managers that are used throughout the
framework. The reasoning for this is so that the user

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

896



does not ever need to instantiate the managers them-
selves and that all of them will work in alongside the
logging module to deliver seamless test logging and
aid reporting.

PyTest is also used to run and organise the tests,
which is done so via starting the function’s name with
‘test’, this later integrates with PyTest-BDD to help
us locate our feature file, containing our scenarios
(tests); pull the steps from the scenario; locate the as-
sociated code; and run the code.

2.1.3 PyTest-BDD

PyTest-BDD is a PyTest add-on that implements
a subset of the Gherkin language for automating
project requirements testing and that enables be-
haviour driven development (BDD) within the frame-
work (Santos et al., 2022). Hence, it allows an engi-
neer to take a behaviour-centric approach to the de-
velopment of their scripts.

This approach has been taken primarily for two
reasons, namely, complexity abstraction (i.e. keep-
ing the complex code that carries out the tasks sepa-
rate from the steps of the test, enhancing readability
and understanding of the system as a whole) and ad-
vanced structuring (i.e. structuring the test suite in
such a way that complexity and code is modular and
relevant, which aids compartmentalisation and under-
standing of the framework).

The BDD element of the framework enables the
user to organise their tests via feature files, step def-
initions, and page-object models (POM) (i.e. helper
files that are a way of implementing and abstracting
the code that will run within the step definitions, by
modeling the web pages involved in the test process
as ‘objects’) (Leotta et al., 2013).

2.1.4 PyTesseract

PyTesseract is the Python library derived from Tesser-
act (Zelic, F. and Sable, A., 2023) which is a very
well-known optical character recognition (OCR) tool
(Bugayong et al., 2022).

Indeed, Tesseract is an open-source project that
provides an OCR engine capable of advanced image
recognition in a variety of formats (Smith, 2007). The
steps in which Tesseract takes to optically recognize
characters are, namely, word finding, line finding, and
character classification. Word and line finding at-
tempts to locate the rough areas of text, which are then
organized into blobs (Zelic, F. and Sable, A., 2023).
These blobs are then broken down into words and
characters which the engine attempts to sequentially
recognize. Having successfully recognized a word or
set of words, this then further trains the model (Zelic,

F. and Sable, A., 2023). Tesseract itself is capable
of recognizing more than 100 languages and can be
trained to recognize and interpret many more (Google
Open Source, 2021).

The reason for its choice for our work specifically
is that it is the most robust and popular OCR library
available. Moreover, it is open-source, meaning its
use and extension comes with no charge.

In the case of our framework, the text is read from
the input image which is the screenshot of web ele-
ments that are provided by the Selenium WebDriver.
Actually, the screenshot is first processed, then fed
to the OCR engine, processed once more, and finally
text is then output. It is precisely this text that is com-
pared to the ‘text’ or ‘value’ attribute of that element.

2.1.5 OpenCV

OpenCV is a comprehensive and open-source com-
puter vision and machine learning software library. It
contains more than 2,500 optimized algorithms and is
one of the most robust and popular options available
on the market (Zelic, F. and Sable, A., 2023).

The library provides several methods and func-
tionalities surrounding computer vision, which is the
basis of our visual validation testing and facilitates a
lot of the image handling, pre-processing, template
matching, and post-processing required for visual val-
idation testing.

In particular, OpenCV is used in the following
ways within our framework to deliver visual valida-
tion testing:

• Decoding images - this is necessary as part of
the pre-processing of images needed for template
matching;

• Colour conversion - this is another step in pre-
processing images for template matching;

• Reading files - OpenCV allows us to read images
and store them as variables and objects;

• Template matching - this allows us to pinpoint the
location of our template within a source image us-
ing various matching algorithms.

Hence, the use of OpenCV in our framework con-
tributes to provide added security and robustness to
the automated testing delivered by our system.

2.2 Test Managers

What the framework essentially provides an automa-
tion engineer is the necessary methods and tools from
which they can choose and utilise to carry out their
test automation efforts. However, to properly abstract
complexity within the framework so that the process

Optical Character Recognition Based-On System for Automated Software Testing

897



Figure 2: Test manager class diagram.

of utilising, it is necessary to develop the test man-
agers.

The test managers work in harmony to provide the
testers with what they might need; this is done by
splitting various functional areas into the managers
themselves. The test managers each deal with an inte-
gral area of test automation and were developed in the
following order: (1) manager base, (2) logging man-
ager, (3) input manager, (4) validation manager, and
(5) visual manager, as detailed in the remaining part
of this section.

The class diagram in Fig. 2 showcases the rela-
tionships between the test managers which are essen-
tially classes revolving around a certain layer of test
automation. The visual, input, and validation man-
agers inherit from the manager base which gives them
access to not only the parent methods but the driver
and logger that are used throughout the testing pro-
cess.

2.2.1 Manager Base

Manager Base acts as the base class for the test man-
agers. This allows them to all have access to the same
instance of the driver and logger that are both inte-
gral to the test automation. The Selenium WebDriver
is what is used to create the browser instance upon
which all the respective code is run, and the logger
simply gives access to the active logger object to en-
sure the output remains consistent.

As well as providing access to the driver and log-
ger objects, it provides the user with two basic meth-
ods, namely, getElement, which attempts to find and
return the element that is passed in by using an XPath
locator and check frame, which checks the current
frame and whether or not we are in the correct frame
before switching back to default. This is important for
when we are working with iframes which are essen-
tially windows inside windows that must be navigated
to before work can be done on the elements inside.

2.2.2 Logging Manager

Logging Manager has no association whatsoever to
any of the other test manager classes, as it can be seen

in the class diagram displayed in Fig. 2. This is purely
because the purpose of the logging manager class is
to initialise the logger object and apply the necessary
settings for the console output.

To properly output to the console on top of the
logger’s baseline capabilities, we need to set the
formatting and logging levels. Thence, the ini-
tialiseLogger() method first creates the new logger
object, followed by setting the level, the name and
path of the eventual .log file as well as the for-
matting of the output. Once the logger has been
initialised once, we can reference it by utilising
logging.getLogger(NameOfLogger). This references
Python’s internal logging library, which allows us to
access the same instance of the logger throughout
the project and various classes and files. The above
method is in the manager base, which as aforemen-
tioned is used as the base class for all the test man-
agers - excluding the logging manager. This is pre-
cisely how each of the managers can utilize the same
logger object for logging and reporting.

2.2.3 Input Manager

Input Manager facilitates all the input commands that
are used to interact with the web browser. These
methods enable the user to interact with a webpage
using the most common and popular types of interac-
tion such as clickViaWebElement, selectText, select-
Value, submitElement, clickElement, checkboxClick,
enterData, and clearData. Each of these methods
provided by the input manager enables the automation
engineer to interact with the webpage. The purpose
for abstracting these functions through a test manager
is for primarily two reasons: to access to the same log-
ging output and same driver. This essentially allows
the engineer to write code without having to worry
about reporting and logging, which are automatically
taken care of as long as they use the provided func-
tionality from the test managers.

So, of the three core test managers that will be
used by the automation engineer (i.e. input, valida-
tion, visual), the input manager will undoubtedly see
the most use.

2.2.4 Validation Manager

Validation Manager is undeniably the most important
to the testing process, whilst not used as frequently as
the input or validation managers. The validation man-
ager essentially allows the engineer to validate vari-
ous kinds of information and data, via assertions and
other means, and is the primary way for the engineer
to ensure robustness in functionality.

The validation manager enables the user to use

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

898



the following methods: containsText (which checks
that the text within an element matches contains what
we want it to, i.e. a word from a sentence or para-
graph); validateText (which validates that the text
within the element is a 1:1 match for what we are
looking for); containsTitle (which checks that the ti-
tle of the webpage - shown in the tab near the top - is
as we expect); assertIsTrue (which asserts that some-
thing equals true); and assertIsFalse (which asserts
that something equals to false). These five methods
are what the validation manager has to offer an engi-
neer that is using the framework. While it does pro-
vide the majority of the validation methods that may
be used in web testing, it also lends itself to extension
for further development and expansion, as do all the
managers and the framework as a whole.

2.2.5 Visual Manager

Visual Manager, which as the name suggests, handles
the visual validation testing and provides to the engi-
neer operations such as optical character recognition
(OCR) and template matching for image recognition-
based testing. The purpose for this manager on top
of the existing managers is to provide another layer
of testing that can further confirm the robustness and
integrity of the system under test (SUT). By doing
this, we are better achieving the goal of automa-
tion which is to (ideally) be run upon new deploy-
ments to gain an understanding of the overall sys-
tem status. The methods provided by this manager
are as follows: enterDataViaTemplate (which uses a
template image parameter to locate the area on the
screen that we want to interact with, then clicks on
this area if found and enters in the parameterized
data); clickViaTemplate (which clicks at the x/y co-
ordinates of our located template); getElementCoor-
dinates (which returns a Numpy array with the x
and y coordinates of the located template); valida-
teElementText (which uses the PyTesseract library to
implement OCR, takes a screenshot of the element
and simultaneously grabs the text attribute of said
element and compares them); saveScreenshotToFile
(which saves a screenshot to file, most typically will
be used for web element screenshot library); and
getElementScreenshotAsBytes (which returns both the
screenshot of a web element in byte form and the
text of the web element and is used by other methods
within the class).

The visual manager is the most complex of the
managers and provides a breadth of visual validation
testing in tandem with the other managers to aid in
providing a well-rounded and robust testing experi-
ence.

2.3 Test Logging and Reporting

Test reporting and logging were implemented after
the core test suite functionality was in place. This
was primarily done to deliver a more coherent envi-
ronment for an engineer to develop their tests in, as
described below.

2.3.1 Test Logging

The logging of tests and the events that take place dur-
ing a test was one of the first developments as part of
the framework. Being able to keep track of what is
happening during the test and afterwards is crucial,
not only from a testing point of view but also from a
debugging angle.

At every stage of development for a test script, it
is re-run to ensure what has been developed is work-
ing, and to better facilitate this commonality among
automation engineers, test logging was deemed an in-
tegral part of the framework. This allows for monitor-
ing of the testing and debugging, but also for easily
indicating whether a test has passed or failed and ex-
actly at what step of the test.

The PyTest-BDD library allows for the configura-
tion of the output using Gherkin syntax. This allows
us to output formatted code, showcasing the scenario
and steps that were executed, alongside whether the
test as a whole passed or failed. The end product of
the logging is the .log file, which includes all the logs
that fired during the test run. Unlike reports which
need to be generated manually, the .log files are au-
tomatically generated and easy to handle due to their
generally small size.

2.3.2 Test Reporting

Reporting must be run manually via the command
line. At first, a JavaScript Object Notation (JSON)
object must be generated from the test run, and then
the report itself can be generated from this. The deci-
sion to make this process manual is based on the fact
that - of a hundred test runs, only maybe one report
will be sent to the stakeholders - it is not something
that needs to be constantly generated as it can quickly
begin to take up a lot of disk space.

For this reason and to reduce post-processing
times, the reporting was made to be a manual process
via the command-line interface (CLI). The reporting
itself is powered using PyTest-HTML (a built-in li-
brary that is coupled with PyTest) that allows us to
provide basic reporting that gives an overview of what
has passed and failed in a Hyper Text Mark-up Lan-
guage (.html) format.

Optical Character Recognition Based-On System for Automated Software Testing

899



2.4 Template Matching

Template Matching is one of the two ways that vi-
sual validation testing is provided by the framework
and is one of the latter areas that were developed once
the core and aforementioned managers were imple-
mented. The framework provides this functionality to
the automation engineer by utilising several libraries
in tandem.

Template matching essentially consists in finding
an image within an image. Traditionally, template
matching has been used in image recognition applica-
tions. Our framework utilises template matching by
detecting a template image within a source image. In
the case of this work, the source image is a screenshot
of the webpage that is taken using the WebDriver; this
source image being the basis of the template match-
ing algorithm. Soon after, a template - or image we
want to find within the source image - must be de-
fined. Once these two key components have been de-
fined and pre-processed, we can execute the template
matching.

Figure 3: Matched template example.

An example of template matching in action can be
seen in Fig. 3, which showcases the Google home-
page search bar being found by the template match-
ing algorithm. For demonstration, the detected area
is surrounded by a yellow rectangle when utilising
OpenCV. Indeed, this entire window is generated us-
ing OpenCV, which opens a prompt window showcas-
ing the matched region. In this scenario, the template
is the search bar element screenshot, whilst the source
image is the entirety of the Google homepage.

So the process flow for the getElementCoordi-
nates method within the visual manager class can be
described as follows. A screenshot of the webpage is
taken using the Selenium WebDriver - this acts as the
source image. Then, the source image is decoded and
converted to grayscale (as part of the pre-processing).
Next, the template is read from the file path pro-
vided by the engineer and parameterized as part of the
getElementCoordinates method. Then, the width and
height of the template are stored as variables. Next,
using OpenCV, we run the template matching algo-

rithm and capture the result which is then converted
into a one-dimensional array using NumPy. Next,
the one-dimensional array is unravelled and converted
into a multi-dimensional NumPy array - this is what
is returned from the getElementCoordinates method,
the multi-dimensional array holds the x and y coor-
dinates that are passed to the Selenium ActionChains
library later on to offset the cursor to the correct x and
y coordinates on the screen to interact with the web-
page. Next, the multi-dimensional array (i.e. the x
and y coordinates) are returned from the method. Fi-
nally, once the x and y coordinates are returned from
the getElementCoordinates method, we click on the
centre of the matched region by multiplying the width
and height of the template by 0.5 (i.e. template width
× 0.5). Now that we have interacted with the element
and brought it to focus, we can continue with what-
ever operations the automation engineer would like to
do such as entering data.

2.5 Optical Character Recognition

Optical Character Recognition (OCR) is the second
way in which visual validation testing is provided by
the framework. This is done by utilising PyTesser-
act which allows the use of the Tesseract.exe image
recognition engine. The path to this .exe will differ
depending on the machine and must be updated in the
OCR method called validateElementText.

OCR sees widespread use in a variety of applica-
tions in the modern-day, such as automatic number
plate recognition, QR code scanning, language trans-
lation (Kalina and Golovanov, 2019) to name a few. It
is an integral aspect of many computer-vision-related
applications and software. In its purest form, OCR is
a subset of pattern recognition problems, which forms
its basis from several processes including but not lim-
ited to input data pre-processing, segmentation, and
feature extraction (Kalina and Golovanov, 2019).

Furthermore, the use of OCR within the test au-
tomation framework is a crucial step in implement-
ing visual validation testing on top of more tradi-
tional methods, where elements are accessed at the
document object model (DOM) level. This approach,
when coupled with traditional test automation meth-
ods provides a two-fold layer of robustness, where we
are not only verifying the contents of the element at
the DOM level but also from a visual perspective.

The main benefit of this is that it is closer to how a
human would interact with the application, ergo mak-
ing it more realistic. When manually testing, testers
will not inspect elements to ensure that the values,
tags, and attributes are correct - it is a test that re-
lies heavily on the tester’s vision. Thus, by utilising

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

900



both methods of test automation, the test automation
framework provides greater levels of confidence to an
engineer, as well as test reliability and test integrity.
This in turn gives the business confidence in what they
have developed and in certain cases, can even boost
morale and productivity within the team.

Figure 4: validateElementText method utilising OCR en-
gine.

Figure 4 is an extract from the code behind the
framework, that employs the use of OCR to validate
the text of an element. At first, it utilizes the Se-
lenium WebDriver to capture two variables, namely,
screenshot bytes (this is a screenshot of the web el-
ement taken by using the WebDriver, which is later
fed to the OCR engine) and element text (this is the
string from the text attribute of the element that is
passed in). Next, it uses the OpenCV library to de-
code the image so that it can run the OCR engine on
it to capture the text. Once it has captured the text, it
manipulates the string to get only the text we are inter-
ested in - this is a solution to an issue with PyTesser-
act where it occasionally adds trailing spaces or other
special characters. Finally, it asserts that the text held
in the element’s text attribute is equal to the string that
has been captured from the screenshot of the web el-
ement. So this is how OCR has been implemented
within the framework, with its main aim being to pro-
vide a heightened level of robustness to the testing
process.

3 APPLICATION AND
DISCUSSION

In this section, we will describe the application of
our AI-assisted automated testing framework in real-
world context (in Section 3.1) and its evaluation (in
Section 3.2) in terms of processing time and success
rate of the computer vision algorithms which are em-
bedded in our framework.

3.1 Application

Our developed framework for automated testing can
aid the test building process in three domains, as fol-
lows: (i) writing the feature file (test scenario); (ii)
coding the page-object model (POM), and (iii) attach-
ing the code via the step definition, as explained in the
remaining part of this section.

3.1.1 Writing the Feature File

The feature file is what holds one to many test sce-
narios, which are our tests. A feature file is written in
Gherkin syntax, which is practically identical to the
English language.

As a running example shown in Fig. 5, we create
a .feature file under the ‘features’ module with a de-
scriptive name. Now that the .feature file is created,
we have to name the feature. The name of the feature
should be identical to the name of the file for ease of
understanding, as highlighted in red in Fig. 5.

Then, we should give the feature a description -
this can be in plain English and acts as a way for any
user that reads this feature file to get an understanding
of what kind of tests are within the file.

Once the name of the feature file and a description
are established, we can begin to write a test scenario,
starting by naming the scenario something descriptive
that makes sense to a human tester.

Next, when writing a test scenario in Gherkin syn-
tax, we must prefix each step with the following oper-
ators ‘Given’, ‘When’ or ‘Then’. These serve no real
purpose besides enhanced readability, but a common
rule is to use ‘Given’ steps as the setup for the rest of
the test; ‘When’ steps as actions (e.g., ‘When I search
for Amazon’); and ‘Then’ steps as verifications or as-
sertions.

3.1.2 Coding the Page-Object Model

The Page-Object Model (POM) is where all the cod-
ing within the framework is done primarily. Each
POM will refer to a webpage (i.e. Google Home-
page), and on each website, there will be various ac-
tions one can do such as search, select, enter, etc. -
these will be the methods.

To continue with the running example, a .py file
should be created under the page object models mod-
ule in the project, naming it in a relevant way to the
intended test. It is worth noting that if the test inter-
acts with multiple websites/webpages, there is a need
for many POMs. Then, within the POM, we should
start by implementing the imports to access the meth-
ods made available by the test managers.

Optical Character Recognition Based-On System for Automated Software Testing

901



Figure 5: Example of ‘Writing the Feature File’ operation.

Once we have the POM class, it is best practice to
capture locators and store them as private variables at
the top of the class, as illustrated in Fig. 6.

Figure 6: Example of locators.

It is worth noting that any managers that one
wishes to use also need to be referenced, ideally as
protected attributes.

Next, methods (i.e. operations) for the respective
webpage/website can be written, as shown in Fig. 7.

Figure 7: Example of methods.

We can create as many or as few methods as we
like, as long as all the functionality necessary to cover
the test scenario that we wrote earlier has been ful-

filled.

3.1.3 Attaching the Code via the Step Definition

Now that we have written the feature file as well as
the POM, we are ready to ‘glue the code’ together to
run our test.

For that purpose, under the step defs module, we
create a .py file with a name that is almost identical
to the name of our scenario - this allows to keep track
of what we have worked on. After creating such .py
file, under the same module step defs, the imports are
copied and pasted in the ‘Imports’ text into the new
step definitions file.

Now that we have the step definition file setup, we
can generate the step definition code via a command
using the terminal, as follows (see Fig. 8).

Figure 8: Example of step definition template code genera-
tion.

Next, at the top of the step definition file above all
the generated methods, we can write a method using
the @scenario decorator, with the path to our feature
file and the name of our scenario, as displayed in Fig.
9. When we prefix the method with ‘test’, this allows
PyTest to find it.

Figure 9: Example of method using the @scenario decora-
tor.

Then, we add in all the respective methods calls
for our operations and in the conftest.py file, we add
a method that will yield the class object so that one
can use the respective methods, as illustrated in Figs
10 and 11, respectively.

Finally, we can right-click on the step definition
file and run the test by clinking ‘Run PyTest’.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

902



Figure 10: Example of operation calls.

Figure 11: Example of method that yields the class object.

3.2 Discussion

This section look at quantifying and evaluating the
performance of the computer vision algorithms em-
bedded in our developed framework. Thus, the com-
putational speed of these algorithms is quantified us-
ing the logging from the system output that is gener-
ated through the test managers.

3.2.1 Template Matching Evaluation

As aforementioned in Section 2.4, template matching
is one of two ways that visual validation testing aided
by AI/ML has been implemented into the framework.

Traditional methods although more time-
consuming in their setup are typically faster as they
access the DOM layer of the webpage. Whereas
visual validation methods such as OCR and template
matching take more time as the algorithm needs to
work to match the region, it does this pixel by pixel
until a satisfactory match is found in the case of
template matching.

Due to how the algorithm works by starting at x(0)
and y(0), it will take longer or shorter depending on
the position of the element, because of this, the com-
putational time in order to match the element can vary
heavily. These variations in the processing time can
be seen in Fig. 12 for the running example.

In the first instance where the clickAtCoordinates
method is called (which utilises template matching),
we can see in Fig. 12 that it takes approximately 7
seconds for this to take place, whilst the second in-
stance takes less than 1 second. Both instances start

Figure 12: Sample of template matching processing time
measures.

from the x and y coordinates 0, however the process-
ing time varies depending on how far away the first
element is from the starting point.

3.2.2 Optical Character Recognition Evaluation

As outlined in Section 2.5, OCR within the dimen-
sion of our framework provides a two-fold approach
to error detection in the form of a dual check. This
functionality is aimed at ensuring that tests are reli-
able and that if a step passes, there are no unforeseen
issues.

Traditionally, one interact with the webpage via
the DOM layer, however in contrast to this, normal
users and manual testers will not test the system un-
der test (SUT) like this. This means that there needs
to be a way for the visual element of a webpage to be
verified alongside the DOM layer, and that is exactly
what OCR within our framework provides. This im-
proves not only error detection, but results in finding
errors sooner rather than later, all while using a more
realistic approach to that of a normal user.

Due to the nature of the characters we are work-
ing with, in that they are clearly typed words and sen-
tences, the OCR engine works very quickly, taking
only a couple of hundred milliseconds in order to be
completed. Again, using the logging output from tests
that have run, we can observe in Fig. 13 that the OCR
takes 310ms for the running example.

Figure 13: Sample of optical character recognition (OCR)
processing time measures.

Overall, from this we can see that the computa-
tional speed for the OCR is reasonably fast. OCR is
also reliable, since for all the instances where it was
used, all 100% of those instances successfully recog-
nized the characters from the screenshot of the web
element. The reason that the OCR algorithm within

Optical Character Recognition Based-On System for Automated Software Testing

903



the framework is so reliable is because the charac-
ters are easy enough for the engine to recognise. This
in comparison to attempting to recognise text from a
news paper or handwriting means the accuracy of the
optical character recognition in our AI-assisted auto-
mated testing framework is working flawlessly across
the board.

4 CONCLUSIONS

This work has successfully developed an AI-assisted
test automation framework that has shone a light on
the potential of artificial intelligence (AI), machine
learning (ML), and computer vision (CV) within the
software testing industry, specifically automation.

Indeed, our AI-assisted test automation frame-
work, that leverages visual and traditional testing
methods, minimises the effort of automating tests and
collecting data. Moreover, the use of computer vision
techniques provide a two-fold layer that adds security
and robustness to the automated testing delivered by
our framework, with the contents of the element be-
ing not only verified at the DOM level but also from a
visual perspective. Therefore, this AI-assisted test au-
tomation framework with embedded computer-vision
capabilities and in tandem with BDD offers a com-
plete automated software testing solution, usable for
reliable testing in mission-critical applications.

REFERENCES

Alferidah, S. K. and Ahmed, S. (2020). Automated soft-
ware testing tools. In Proceedings of the IEEE Inter-
national Conference on Computing and Information
Technology, pages 1–4.

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Ka-
mar, E., Nagappan, N., Nushi, B., and Zimmermann,
T. (2019). Software engineering for machine learning:
A case study. In Proceedings of the IEEE/ACM Inter-
national Conference on Software Engineering (ICSE),
pages 291–300.

Black, R., Davenport, J. H., Olszewska, J. I., Roessler, J.,
Smith, A. L., and Wright, J. (2022). Artificial Intelli-
gence and Software Testing: Building systems you can
trust. BCS Press.

Borjesson, E. (2012). Industrial applicability of visual GUI
testing for system and acceptance test automation. In
Proceedings of the IEEE International Conference on
Software Testing, Verification and Validation, pages
475–478.

Borjesson, E. and Feldt, R. (2012). Automated system test-
ing using visual GUI testing tools: A comparative
study in industry. In Proceedings of the IEEE Inter-

national Conference on Software Testing, Verification
and Validation, pages 350–359.

Bugayong, V. E., Flores Villaverde, J., and Linsangan, N. B.
(2022). Google tesseract: Optical character recogni-
tion (ocr) on hdd / ssd labels using machine vision. In
Proceedings of the IEEE International Conference on
Computer and Automation Engineering, pages 56–60.

Calantonio, J. (2023). 7 Innovative AI Test Automation
Tools. Available at: https://testguild.com/7- innov
ative-ai-test-automation-tools-future-third-wave/.

Cavalcante, M. G. and Sales, J. I. (2018). The behavior
driven development applied to the software quality
test. In Proceedings of the IEEE Iberian Conference
on Information Systems and Technologies, pages 1–4.

Celik, E., Eren, S., Cini, E., and Keles, O. (2017). Software
test automation and a sample practice for an enterprise
business software. In Proceedings of the IEEE Inter-
national Conference on Computer Science and Engi-
neering, pages 141–144.

Chowdhury, A. R. (2023). Testim. Your Complete Guide
to Test Automation Frameworks. Available at: https:
//www.testim.io/blog/test-automation-frameworks/.

Dias, F. and Paiva, A. C. R. (2017). Pattern-based usabil-
ity testing. In Proceedings of the IEEE International
Conference on Software Testing, Verification and Val-
idation Workshops, pages 366–371.

Drugeot, C. (2020). Software Testing News. How is AI
Transforming Software Testing?

Eldh, S. (2020). Test automation improvement model -
TAIM 2.0. In Proceedings of the IEEE International
Conference on Software Testing, Verification and Val-
idation Workshops, pages 334–337.

Farooq, M. S., Omer, U., Ramzan, A., Rasheed, M. A.,
and Atal, Z. (2023). Behavior driven development: A
systematic literature review. IEEE Access, 11:88008–
88024.

Gafurov, D., Hurum, A. E., and Markman, M. (2018).
Achieving test automation with testers without cod-
ing skills: An industrial report. In Proceedings of the
IEEE/ACM International Conference on Automated
Software Engineering, pages 749–756.

Gao, J., Tao, C., Jie, D., and Lu, S. (2019). What is ai soft-
ware testing? and why. In Proceedings of the IEEE
International Conference on Service-Oriented System
Engineering, pages 1–9.

Gohil, K., Alapati, N., and Joglekar, S. (2011). Towards
behavior driven operations (bdops). In Proceedings
of the IEEE International Conference on Advances in
Recent Technologies in Communication and Comput-
ing, pages 262–264.

Google Open Source (2021). Tesseract OCR. Available at:
https://github.com/tesseract-ocr/tesseract.

Hamilton, T. (2023). Keyword Driven Testing Framework
with Example. Available at: https://www.guru99.com
/keyword-driven-testing.html.

Hananto, A., Abdul Rahman, T. K., Brotosaputro, G., Fauzi,
A., Hananto, A. L., and Priyatna, B. (2023). Param-
eters monitoring automation kiln manufacture based
optical character recognition (OCR) with the template
matching method. International Journal of Intelligent

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

904



Systems and Applications in Engineering, 11(6):621–
635.

Hourani, H., Hammad, A., and Lafi, M. (2019). The im-
pact of artificial intelligence on software testing. In
Proceedings of the IEEE Jordan International Joint
Conference on Electrical Engineering and Informa-
tion Technology, pages 565–570.

Hunt, J. (2023). PyTest Testing Framework. In Advanced
Guide to Python 3 Programming. Springer.

IEEE (2021). IEEE/ISO/IEC 29119-4-2021 - Interna-
tional Standard - Software and systems engineering–
Software testing–Part 4: Test techniques.

Kalina, D. and Golovanov, R. (2019). Application of tem-
plate matching for optical character recognition. In
Proceedings of the IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering,
pages 2213–2217.

King, T. M., Arbon, J., Santiago, D., Adamo, D., Chin, W.,
and Shanmugam, R. (2019). Ai for testing today and
tomorrow: Industry perspectives. In Proceedings of
the IEEE International Conference on Artificial Intel-
ligence Testing, pages 81–88.

Knight, A. (2017). 12 Awesome Benefits of BDD. Available
at: https://automationpanda.com/2017/02/13/12-awe
some-benefits-of-bdd/.

Lenka, R. K., Nayak, K. M., and Padhi, S. (2018). Auto-
mated testing tool: QTP. In Proceedings of the IEEE
International Conference on Advances in Computing,
Communication Control and Networking, pages 526–
532.

Leotta, M., Clerissi, D., Ricca, F., and Spadaro, C. (2013).
Repairing Selenium test cases: An industrial case
study about web page element localization. In Pro-
ceedings of the IEEE International Conference on
Software Testing, Verification and Validation, pages
487–488.

Long, M. A. (1993). Software regression testing success
story. In Proceedings of the IEEE International Test
Conference, pages 271–272.

Moreira Nascimento, A., Vismari, L. F., Cugnasca, P. S.,
Camargo Jr, J. B., and Rady de Almeira Jr, J. (2019).
A cost-sensitive approach to enhance the use of ML
classifiers in software testing efforts. In Proceed-
ings of the IEEE International Conference on Ma-
chine Learning and Applications, pages 1806–1813.

Olszewska, J. I. (2015). Active contour based optical char-
acter recognition for automated scene understanding.
Neurocomputing, 161(C):65–71.

Olszewska, J. I. (2019). D7-R4: Software development life-
cycle for intelligent vision systems. In Proceedings of
the International Joint Conference on Knowledge Dis-
covery, Knowledge Engineering and Knowledge Man-
agement (KEOD), pages 435–441.

Olszewska, J. I. (2020). AI-T: Software testing ontology
for AI-based systems. In Proceedings of the Inter-
national Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management
(KEOD), pages 291–298.

Qian, J., Ma, Y., Lin, C., and Chen, L. (2023). Accelerating
OCR-Based widget localization for test automation of

GUI applications. In Proceedings of the IEEE/ACM
International Conference on Automated Software En-
gineering, pages 1–13.

Ramya, P., Sindhura, V., and Sagar, P. V. (2017). Testing
using Selenium web driver. In Proceedings of the
IEEE International Conference on Electrical, Com-
puter and Communication Technologies, pages 1–7.

Santos, M. G. D., Petrillo, F., Halle, S., and Gueheneuc,
Y.-G. (2022). An approach to apply automated ac-
ceptance testing for industrial robotic systems. In
Proceedings of the IEEE International Conference on
Robotic Computing, pages 336–337.

Selenium (2022). The Selenium project and tools. Available
at: https://www.selenium.dev/documentation/en/intr
oduction/the selenium project and tools/.

Sheshasaayee, A. and Banumathi, P. (2018). Impacts of
behavioral driven development in the improvement of
quality software deliverables. In Proceedings of the
IEEE International Conference on Inventive Compu-
tation Technologies, pages 228–230.

Smith, R. (2007). An overview of the Tesseract OCR en-
gine. In Proceedings of the IEEE International Con-
ference on Document Analysis and Recognition (IC-
DAR), pages 629–633.

Solis, C. and Wang, X. (2011). A study of the characteristics
of behaviour driven development. In Proceedings of
the EUROMICRO Conference on Software Engineer-
ing and Advanced Applications, pages 383–387.

Storer, T. and Bob, R. (2019). Behave nicely! automatic
generation of code for behaviour driven development
test suites. In Proceedings of the IEEE International
Working Conference on Source Code Analysis and
Manipulation, pages 228–237.

Tanaka, T., Niibori, H., Shiyingxue, L., Nomura, S., Nakao,
T., and Tsuda, K. (2020). Selenium based testing sys-
tems for analytical data generation of website user be-
havior. In Proceedings of the IEEE International Con-
ference on Software Testing, Verification and Valida-
tion Workshops, pages 216–221.

TechVidVan (2023). Python Advantages and Disadvantages
- Step in the right direction. Available at: https://tech
vidvan.com/tutorials/python-advantages-and-disadva
ntages/.

Wang, X. and He, G. (2014). The research of data-driven
testing based on QTP. In Proceedings of the IEEE
Iberian Conference on Computer Science and Educa-
tion, pages 1063–1066.

Wheeler, D. and Olszewska, J. I. (2022). Cross-platform
mobile application development for smart services.
In Proceedings of the IEEE Joint 22nd International
Symposium on Computational Intelligence and Infor-
matics and 8th International Conference on Recent
Achievements in Mechatronics, Automation, Com-
puter Science and Robotics, pages 203–208.

Yang, A. Z. H., Alencar da Costa, D., and Zou, Y. (2019).
Predicting co-changes between functionality specifi-
cations and source code in behavior driven develop-
ment. In Proceedings of the IEEE/ACM International
Conference on Mining Software Repositories, pages
534–544.

Optical Character Recognition Based-On System for Automated Software Testing

905



Yatskiv, N., Yatskiv, S., and Vasylyk, A. (2020). Method
of robotic process automation in software testing us-
ing artificial intelligence. In Proceedings of the IEEE
International Conference on Advanced Computer In-
formation Technologies, pages 501–504.

Yu, S., Fang, C., Feng, Y., Zhao, W., and Chen, Z. (2019).
Lirat: Layout and image recognition driving auto-
mated mobile testing of cross-platform. In Proceed-
ings of the IEEE/ACM International Conference on
Automated Software Engineering, pages 1066–1069.

Zelic, F. and Sable, A. (2023). OCR Unlocked: A Guide
to Tesseract in Python with Pytesseract and OpenCV.
Available at: https://nanonets.com/blog/ocr-with-tes
seract/#technologyhowitworks#.

Zhu, H. (2018). Software testing as a problem of machine
learning: Towards a foundation on computational
learning theory. In Proceedings of the IEEE/ACM In-
ternational Workshop on Automation of Software Test,
pages 1–1.

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

906


