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InspectorLog is a novel tool for offline analysis of HTTP logs. The tool processes web server logs to identify

attacks using diverse rule sets, focusing primarily on the URI field. It is compatible with standard rule formats
from systems such as Snort, Nemesida, and ModSecurity. This paper describes InspectorLog functionalities,
architecture and applications to the scientific community. We also experimentally validate InspectorLog by
comparing its detection power with that of the IDS from which rules are taken. Inspector log fills a gap in
available tools in cybersecurity practices in forensic analysis, dataset sanitization, and signature tuning. Future
enhancements are planned to support additional Web Application Firewalls (WAFs), new rule types, and HTTP
protocol methods, aiming to broaden its scope and utility in the ever-evolving domain of network security.

1 INTRODUCTION

Web traffic is critical in today’s digital era due to
increased online activity, remote work, e-commerce,
and Internet access. Many vulnerable web servers
support web services and websites, attracting attack-
ers. Recently, there’s been a significant rise in web
server attacks, heightening risks for organizations,
as compromised servers can initiate sophisticated at-
tacks (Husak, 2021). This trend highlights the rising
interest in detecting web server attacks in both aca-
demic and commercial sectors.

Traditionally, the detection of web attacks has pri-
marily been based on Intrusion Detection Systems
(IDS) (Agarwal, 2018) and Web Application Fire-
walls (WAFs) (Palka, 2011). IDSs are broader in
their detection capabilities, examining both network
and host data for attacks, while WAFs are specifically
designed to analyze requests sent to a web server and
typically include filtering and blocking features. An
advantage of WAFs is their ability to function without
decrypting HTTPS traffic, especially when they are
co-located within the Web server module.
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Common IDSs (e.g., Snort) and WAFs (such as
Modsecurity or Nemesida) operate primarily on sig-
nature detection (S-IDS), seeking known attack pat-
terns through specific rules. Because this approach
falls short against zero-day attacks, these systems of-
ten integrate anomaly detection (A-IDS), which helps
identify unusual activities, thus bolstering defenses
against new threats (Betarte, 2018), (Hajji, 2021).

These systems detect in real time potential at-
tacks by looking for anomalies or matching against
a database of known attack signatures, referred to as
rules This online operation is the standard practice for
detecting web attacks. However, other tasks related to
web cybersecurity are conducted offline such as:

* Forensic analysis: Following an incident, server
logs are scrutinized to find attacks unnoticed by
existing protections systems (if any). The pre-
cision of this forensic analysis improves with
the size and quality of the rule sets used (Diaz-
Verdejo, 2022).

* Signature tuning for S-IDS: The rule set used by
S-IDS needs to be adjusted for a site to mini-
mize false positives. This tuning process is crucial
when employing free signatures —more prone to
false positives— (Diaz-Verdejo, 2022), (Neminath,
2014), (Aldweesh, 2020). This task entails link-
ing requests to the alerts produced (SIDS) across
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a sufficiently period to ensure meaningful results
for the website. Conducting this offline adjust-
ment using gathered logs streamlines the process
and cuts down on the time required.

Adjustment A-IDSs operational point: Anomaly
detection depends on models or profiles, usu-
ally derived from statistical or Al-based meth-
ods, which require careful tuning. Effective ad-
justment requires collecting attack-free, represen-
tative website traffic and significant attack data
(Tavallaee, 2010). In this process, offline sanitiza-
tion of the HTTP server log file is needed (Diaz-
Verdejo, 2020). This process includes an initial
phase using various IDS and signature sets, fol-
lowed by a semi-automatic phase handled by the
operator.

These activities are carried out off-line and require
web-related log data accumulated over time, typically
recorded in text format in the server log. However,
many web security testing tools (e.g., AppScan, Burp-
Suite, ZAP, ModSecurity) function as an HTTP Proxy,
while IDS and WAF tools directly analyze live or
captured traffic. Consequently, these online tools re-
quire the reconstruction of traffic from the server log,
which involves emulating the entire client-server in-
teraction. This can introduce inaccuracies due to fac-
tors like encoding issues, missing values not captured
in the log (such as cookies and referrer), and re-
sults in significant time consumption. While some
online tools can import a pcap traffic file to stream-
line iterative analysis, this still doesn’t circumvent the
need to recreate traffic from the log files.

It is also essential to associate each alert with its
corresponding web request by analyzing the applica-
tion’s output log. For traffic sanitization and foren-
sics, employing multiple rule sets similar to Google’s
VirtusTotal, which uses various virus engines, can im-
prove detection reliability. However, this approach
faces challenges such as processing diverse log for-
mats, increased CPU usage, and the need to match
web requests with alerts uniquely across different
software components.

This paper presents InspectorLog(IL, 2024), a
novel tool written in C for offline analysis of (Apache)
web server logs to identify attacks using a set of rules
available. Inspectorlog focuses primarily on the URI
field, which is included in over 85% of HTTP at-
tack signatures by prominent WAF/IDS like Snort and
ModSecurity. InspectorLog analyzes the HTTP log,
applying rule sets from various IDS and WAF to the
URI field, aiding in attack detection. This enables
the use of Inspectorlog as an off-line substitute for
those on-line tools just by applying the correspond-
ing rulesets. Its applications include, among others,
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Figure 1: InspectorLog workflow.

forensic analysis, dataset sanitization, and signature
tuning. To our knowledge, no other tool exists nowa-
days for these specific tasks. Past attempts include
tools as Scapl! (Scalp, 2013), and PHPIDS (PH-
PIDS,2012), both discontinued in 2013 and currently
outdated. Nowadays, only Modsecurity version 3 is
available to provide an API that can be used to de-
velop tools for log file analysis but is restricted to use
the ModSecurity SecRules format.

The paper is organized as follows. Section 2 de-
scribes InspectorLog’s functionality and architecture.
Section 3 shows our experimental validation of the
tool. Section 4 presents practical use cases and high-
lights the tool’s limitations. Finally, Section 5 con-
cludes the paper with a summary of findings and sug-
gestions for future research and development.

2 DESCRIPTION AND
ARCHITECTURE

InspectorLog uses string comparison and regular ex-
pressions to find rule-associated signatures in URIs.
It processes log trace files in various formats and rule
sets from S-IDS tools (Figure 1). The output of In-
spectorLog includes lists of log records that either
trigger rules (with rule details) or don’t trigger any,
indicating likely legitimate requests. This process fa-
cilitates the creation of lists of clean and attack re-
quests and the pairing between alerts and associated
log registers.

The latest release of InspectorLog, version 3.6,
available at (IL, 2024), comprises two main programs:
inspectorlog and ms-inspectorlog. The former applies
signatures akin to Snort and Nemesida, while the lat-
ter is compatible with ModSecurity rules.

InspectorLog, in its current version, is compatible
with the following rule formats:

e Standard Snort rules: Rules written in the lan-
guage originally defined by Snort related to
HTTP. Both content and regular expression based
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Table 1: Example of output file (U2URI format).

# inspectorlog v3.6.0.1

#--- Initializing Rules (SNORT) ---------=----

# Rules directory : «/data/uri-data/biblio-ds/tmp/reglas»

# Opening SNORT rule file ./http_uri-er-20220224-m2.rules... done

# Rules: read [5918], erroneous [8], URI [5910]

#--- Statistics (SNORT) —---===—————---—--—m

# Read [9514] Snort rules, [9500] http-related, [13] with errors
#--- RAnalysis results ————-——————————————

# Alerts & signatures generated from: ...

Packet [62][A06] Uri [/day.css?08r51f] Nattacks [1] Signatures [882]
Packet [73][A09] Uri [/w.m.x/05-16.jpg] Nattacks [1] Signatures [882]
Packet [85][A13] Uri [/c_m.css?o086dyb] Nattacks [1] Signatures [882]

# N. packets [35934], [44] with alerts, N. Alerts [49]

fields for search patterns are supported. This cov-
ers rules from trusted sources as Talos, VRT, Suri-
cata and ET.

* Nemesida rules (https://rlinfo.nemesida-
security.com/). The Nemesida Community
Edition rules file is supported. This file includes
white lists and black lists for fixed strings
and regular expressions, which are properly
supported.

* ModSecurity SecRules format: ModSecurity stan-
dard format for configuration and rules. The for-
mat for ModSecurity rules is standard and is man-
aged through the corresponding configuration file.

InspectorLog processes various input log file for-
mats (Fig. 1), including raw uri lists (/ist), selected
fields (elist
telist) and Apache standard log (Apache), among oth-
ers.

Each line in these formats represents one record.
An optional tag, enclosed in ’ []’, can be used at the
start of each line for indexing and reference purposes.

The attack-related output is directed to a file (Ta-
ble 1) and contains information about the loaded
rules, statistics and a list of URIs identified as attacks,
presented one record per line.

The log format for each attack register, named as
U2URI format, contains information about the de-
tected attacks and the URI triggering the detection
as well as indexing information to match output-input
registers.

The clean registers are optionally written to a file
’as-is’, that is, the clean output file is a filtered version
of the input one.

InspectorLog distribution includes several auxil-
iary tools to handle/convert labels and extract selected
fields from input and output formats.

Further information about usage, parameters and
file formats can be found in (IL, 2024). Additionally,
sample trace and rule files for testing are available un-
der the tests directory of the distribution.
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Figure 2: InspectorLog building blocks and architecture.

2.1 Building Blocks and Architecture

InspectorLog is structured using a modular architec-
ture, as depicted in Figure 2, with the central com-
ponent being the detection module. This module’s
role involves methodically applying a chosen group
of rules to every request present in the traces.

The operational steps of InspectorLog are:

* Initialization: In this phase, the tool reads the
rules from the files specified sequentially. It ex-
tracts various fields from each rule (using a rules
parser module), focusing on those relevant to the
HTTP service (through a rules filtering module).
Non-relevant methods based on the trace format
are also excluded. A signatures database is then
created, including extracted patterns and search
conditions (pattern extraction module).

e Analysis: Post initialization, the tool reads the in-
put records in the trace file individually, extracting
pertinent fields based on the input format (trace
parser module). Request filtering is optionally
done by response code (CR<300 or CR<400) —
CR filtering module—. URIs undergo normal-
ization (URI normalization module), particularly
concerning percent encoding. This is done it-
eratively, to account for multiple percent encod-
ing evasion techniques, with the first iteration un-
changed and subsequent iterations decoding per-
cent encoding sequences. This continues until all
encoded characters are decoded or up to a preset
fixed number of iterations. Each iteration pro-
duces a request for the detection module, which
applies signatures in use to identify patterns. De-
tection at any stage results in an attack log, op-
tionally including detailed detection information.
If no detection occurs, the record is marked legit-
imate and added to the legitimate list.
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Despite the standard format outlined in RFC 3986,
URI normalization regarding percent encoding is es-
sential, as many systems overlook strict adherence to
this standard. Some attacks also exploit percent en-
coding as a disguise, typically using $25 to encode the
"%’ symbol or embedding one percent encoding into
another (e.g. $%341 to encode ‘A’ ). Multiple encod-
ing with more than 3 levels, like using %252525 for
a single final %’ symbol, has been observed during
the tool usage. Additionaly, inconsistencies in per-
cent encoding usage in Talos and ETOpen rules led
to an optional process that applies, decodes, and re-
applies rules to URIs with percent encoding until all
encoding is resolved. Additionally, InspectorLog in-
cludes an option for handling case sensitivity in rules
and character encoding, converting all characters to
lowercase when activated. In its current implementa-
tion, the detection is based on the set of all the loaded
rules, i.e., an OR operation is applied regarding the
rules from different sources. This can be easyly mod-
ified to allow for other operations as done in (Diaz-
Verdejo, 2022).

3 EXPERIMENTAL VALIDATION

In order to ascertain the reliability of the outcomes
provided by the tool, this section will undertake a
comparative analysis of the results obtained with a
real dataset using rulesets with the original Intrusion
Detection Systems (IDS) or WAF vs applying these
rules with InspectorLog. The objective is to validate
the tool and its usability.

3.1 Methodology Used

The methodology employed to conduct this study is
depicted in Figure 3. The dataset used is Biblio-US17
(Biblio-US17, 2023), comprising 47,402,907 HTTP
traffic requests, both attack-related and legitimate,

captured in a real-world environment. Biblio-US17 is
a public dataset with selected fields of HTTP requests,
collected from the web server traces of the University
of Seville (Spain) Library, covering the period from
January 1, 2017, to July 17, 2017. The server, de-
veloped using Drupal CMS (v7.96) and operating on
Apache web server (v2.2), delivers a highly dynamic
service focusing on HTTP requests related to avail-
able bibliographic resources. The dataset includes la-
bels that establish a ground truth, distinguishing be-
tween legitimate requests (42,473,128) and attacks
(327,906) based on URI.

Each experiment involves the comparison of the
output (detections) of IL with a ruleset for one of the
IDS tools —i.e. IL-Snort, IL-Nem and IL-MS— with
those from the tool itself. Thus, the configurations for
the experiments are:

¢ Snort validation: IL-Snort vs Snort (v2.9). Rule-
sets Talos Community (24/03/2022) and ETOpen
(open version, 24/02/2022) were used.

* ModSecurity validation: IL-MS vs ModSecurity
(v3.0). OWASP CRS 3.2.0 rule set was used with
different paranoia levels (PL).

¢ Nemesida validation: IL-Nem vs. Nemesida WAF
CE (v1.18). The Nemesida Community Edition
rules published as of 09/01/2022 were used.

Given that Snort and Nemesida WAF only have the
capability to analyze live HTTP traffic (online mode),
it was necessary to employ a client/server web archi-
tecture for transmitting URIs carried in HTTP mes-
sages with minimal alterations compared to the orig-
inal dataset (as shown in Figure 3). To circumvent
modifications typically applied by web clients, such
as character encoding or path interpretation, the web
client curl was chosen for its ability to respect the
original encoding. Nginx version 1.18 was used as
the web server. On the other hand, since ModSecu-
rity version 3 offers an API for direct reception, this
option was utilized to avoid generating network traf-
fic and potential artifacts introduced by the web client
and server in the comparison.

3.2 Results and Discussion

Table 2 presents the results of the attacks detected
by each software using the specified rules. For Mod-
Security, all four existing Paranoia Levels (PL) have
been used. As we aim to compare the outcomes be-
tween the rules interpreted by InspectorLog (IL) and
the rules interpreted by the original software upon re-
ceiving a request, the table does not account for re-
peated requests (all attacks are distinct). In column
Total (P%), we show the number of requests identi-
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Table 2: Attack detection results.

S-IDS # Attacks
Tool [ PL Total (P%) [ Unique (P%)
TLSnort | - T84 (08.72) | 24 (10.83)
Snort | - 768 (99.35) 8 (75.00)
PLI | 1223 (96.89) 0
PL2 | 1990 (38.03) 0
IL-MS - 3122161 8757) 0
PL4 | 147083 (34.77) 0
PLI | 1223 (96.89) 0
PL2 | 1990 (38.04) 0
ModSec. | —5r=—1T13161 8757 0
PL4 | 147083 (34.77) 0
TL-Nem | - 8843 (95.24) | 7903 (91.70)
Nem. - 971 (75.08) 31 @.12)

fied as attacks by each software, with the (P)recision
—tp/(tp+ fp), being ¢ p the number of true positives
and fp the number of false positives— in percentage
indicated in parentheses. Column Unique (P%) in-
cludes the count of URIs detected by each IL module
but not by its equivalent Intrusion Detection System
(IDS), and vice versa, such as attacks detected by IL-
Snort but not by Snort (including Precision in paren-
theses). It should be noted that precision is primarily
related to rules’ quality, that is, it is not a measure of
the performance of the tools.

Overall, InspectorLog demonstrates to perform
notably precise. After more than 47 million requests
have been analyzed and the error rate in classification,
IL’s behavior is very similar to that of the equivalent
Intrusion Detection System (IDS). In the case of IL-
ModSec and Modsecurity (both offline), no discrepan-
cies are observed between the results, which perfectly
validates the functioning of IL across various modes
(PL1 to PL4).

In the cases of Snort and Nemesida, slight differ-
ences are observed between the detections of the IL-
Snort and IL-Nem modules and their respective base-
line SIDS. These discrepancies are primarily due to
their different modes of operation, offline or online,
which results in variations in the set of URIs effec-
tively subjected to the signatures.

Most of the discrepancies between IL and their
counterpart IDS can be attributed to:

» IL iteratively remove percent encoding from in-
coming URISs, a process not present in Snort and
Nemesida.

» Before the application of signatures, Snort
and Nemesida employ pre-processors (e.g.
http_inspect in Snort) to network messages.
This preprocessing may result in the blocking or
modification of messages.

* The necessity of encapsulating URIs within an
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HTTP message in online mode inevitably leads
to minimal URISs alterations (URI Normalization).
These changes may cause a URI to be no longer
considered an attack or conversely.

In the case of Snort, the validation results vary
slightly. Out of over 47 million requests, both sys-
tems identified the same 760 attacks, though IL de-
tected an additional 24 and Snort an extra 8. In both
instances, the accuracy of detection is similar, and it
is postulated that this may be attributed to the han-
dling of percent encoding. The following example il-
lustrates a discrepancy arising from the treatment of
percent-encoding in IL. Consider the URI

/shell?%$75%6E%$61%6D%65%20%2D%61

in IL, the preprocessing involves the substitution
of percent-encoding, resulting in /shell?uname-a,
whereas IDS Snort does not perform such substitu-
tion, consequently failing to detect this attack. The
remaining cases are similar, leading to the conclusion
that IL’s interpretation of Snort’s rules is appropriate.

Regarding the outcomes from Nemesida, the pri-
mary discrepancy lies in 7,903 attacks identified by IL
but not by Nemesida. Intriguingly, most of these at-
tacks have been accurately detected, with a precision
of 91.7%. On the other hand, the 31 attacks detected
exclusively by Nemesida predominantly correspond
to false positives. We have analyzed three relevant
cases among the 7,903 attacks detected solely by IL
that aid in elucidating the results:

* There are 6,907 requests identified as buffer over-
flow attacks with double encoding, i.e. % is en-
coded as %25. An example is

---:translateBUS (' es%252525---2525¢cen’)
These requests have been recognized solely by /L.
Either it is because the web server’s processing of
the request discarded it due to excessive length,
or it is attributable to the preprocessing of percent
encoding that was performed.

* Other requests not detected by Nemesida are those
where the URI contains ’/../’. This scenario
impacts 433 attacks only identified by IL. This
might also be attributable to the preprocessing
carried out by the Web server.

* A final case type not detected by Nemesida, poten-
tially due to preprocessing and percent-encoding,
would be:

/xup.php?x=...&login=go%21&H=
It should be noted that in this case, the rule SID
1145 is triggered when ' go!’ is encountered (as
with IL, thanks to preprocessing). This case ac-
counts for 128 attacks.
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These three cases analyzed explain 7,468 out of
the 7,903 attacks recognized by IL-Nem but not by
Nemesida. The remaining cases are similar, and are
presumably due also to artifacts introduced by the
web client or by processing on the web server. There-
fore, it can be asserted that the reliability of Inspec-
torLog tool’s interpretation of Nemesida’s rules is ac-
ceptable.

4 LIMITATIONS

Given the nature of the input (log files), the tool ex-
hibits some notable limitations:

* Inspectorlog operates on a per-request basis. This
means that rules that take into consideration the
relationship between packets (e.g., flows, number
of packets in a connection, connection state con-
ditions) cannot be applied. This limitation may
result in false positives and is insurmountable.

¢ In the current version, rule fields that determine
relative positions between different rule compo-
nents (e.g., distance) are disregarded. This can
also lead to FPs.

* Challenges have been identified in rules contain-
ing %00 due to the line-by-line reading of files.

* Only the most commonly used methods incor-
porating URIs are considered in the current
version: GET, POST, HEAD, PROPFIND, PUT,
OPTIONS.

S CONCLUSIONS AND FURTHER
WORK

We have developed and validated a mew tool for of-
fline analysis of HTTP logs. To the best of our knowl-
edge, there are no other tools currently available that
are similar to Inspectorlog. The availability of this
tool can significantly facilitate the tasks of cyberse-
curity officers and researchers by enabling the analy-
sis of web service traces without the need to replicate
the associated traffic. This tool exhibits acceptable
accuracy and can be utilized for tasks such as saniti-
zation, tuning of Anomaly-based Intrusion Detection
Systems (AIDS), optimization of rulesets for a given
scenario or forensic analysis.

We intend to make it available to the scien-
tific community to further enhance its functionali-
ties. Specifically, we aim to eventually support other
WAFs, new types of rules and fields, and additional
methods of the HTTP protocol.
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