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Abstract: This study introduces a novel recommendation system aimed at enhancing university career counseling by 
adapting it to more accurately align with students' interests and career trajectories. Recognizing the challenges 
students face in selecting courses that complement their career goals, our research explores the efficacy of 
employing both collaborative filtering and a hybrid model approach in the development of this system. 
Uniquely, this system utilizes a company-course recommendation method, diverging from the traditional 
student-course paradigm, to generalize company-course relationships, thereby enhancing the system's 
recommendation precision. Through meticulous feature engineering, we improved the performance of the 
NeuMF model. Our experiments demonstrate that the proposed method outperforms other models by 10% to 
79% based on the mAP metric, suggesting that the proposed model can effectively recommend courses for 
employment.

1 INTRODUCTION 

University education plays a pivotal role in equipping 
students with major-related knowledge and guiding 
their career paths. Within the South Korean 
educational framework, from elementary through 
high school, students are mandated to enroll in 
school-prescribed courses. However, at the university 
level, while certain credits are mandatory, students 
have the autonomy to select their liberal arts and 
major-specific courses. This transition introduces 
complexity, as students must choose courses each 
semester that align with their interests and 
prospective career trajectories. The challenge is 
compounded by the vast array of available courses, 
making informed decision-making daunting, 
especially for courses previously unattended. This 
dilemma is particularly pronounced during open 
enrollment periods (Chung et al., 2015), where 
students curate their curriculum within set 
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requirements, traditionally relying on advisors and 
senior students for guidance. 

The reliance on experience-based decision-
making through direct human interaction, a norm 
prior to the pandemic (Lee, 2020), has diminished as 
students increasingly turn to the internet and social 
media for information. This shift underscores the 
need for a revamped approach in university education 
guidance. Addressing this need requires universities 
to develop structured support systems (Baek et al., 
2021) to alleviate the confusion and challenges faced 
by students in course selection. 

This paper proposes the development of a course 
recommendation system aimed at assisting 
contemporary university students, who are adept at 
using the internet yet face difficulties accessing 
course information through traditional means. Our 
study compares and analyzes the efficacy of Neural 
Matrix Factorization (NeuMF) (He et al., 2017), a 
collaborative filtering technique (Schafer et al., 
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2007), and the Hybrid Model (Huang et al., 2019), a 
click-through rate (CTR) method (Yang et al., 2022), 
in implementing this recommendation system. We 
also explore feature engineering (Turner et al., 1999) 
to enhance the accuracy of the NeuMF model. 
Furthermore, our approach innovates by 
recommending courses not merely on the student-
course axis but also in terms of aligning courses with 
potential career paths in specific companies, 
diverging from traditional recommendation practices. 
This system aims to broaden students' career 
perspectives, enabling them to make informed course 
selections that reflect their career ambitions and 
interests, thereby elevating the quality of university 
education and facilitating better job placement 
outcomes. 

The contributions of this study are summarized as 
follows. 
 Introduction of a Company-Centric 

Recommendation Framework: Shifted the 
focus from traditional student-centric models to a 
company-centric approach, aligning educational 
outcomes with the specific needs and preferences 
of potential employers. 

 Development and Enhancement of the NeuMF 
Model: Employed and enhanced Neural Matrix 
Factorization (NeuMF) through feature 
engineering to capture non-linear user-item 
interactions and improve recommendation 
accuracy. 

 Comparison with Hybrid Models: Conducted a 
comparative analysis between NeuMF and 
various hybrid models (DeepFM, xDeepFM, 
DCNv2, AFN+, and EulerNet) to evaluate their 
efficacy in course recommendation. 

2 RECOMMENDER SYSTEM 
FRAMEWORK 

This section explores the methodology employed in 
assembling the necessary datasets, integrating these 
datasets into a unified database, and subsequently 
training our recommendation model. 

2.1 Data Collection & Integration 

In the development of our course recommendation 
system aimed at enhancing employment prospects for 
students, we undertook a comprehensive data 
collection and processing approach, as illustrated in 
Figure 1. 

 
Figure 1: Overview of the proposed recommendation 
system framework. 

Course History Data: Leveraging the university’s 
server, we accessed and extracted students' historical 
course data. This dataset provides invaluable insights 
into the academic trajectories and preferences of 
students, serving as a foundational element for our 
recommendation algorithm. 

Employment Information: Recognizing the 
importance of aligning course recommendations with 
market demand, we systematically collected 
employment-related data through APIs from the 
WorkNet (2024) and JobKorea (2024) websites. 
WorkNet is a South Korean employment information 
site operated by the Ministry of Employment and 
Labor and the Korea Employment Information 
Service, providing job search and recruitment 
information as well as career guidance since 1998. 
JobKorea is South Korea's leading job portal, offering 
real-time job listings, company analysis, and various 
employment services. This data collection process 
helped us identify job trends, skill requirements, and 
job openings across different industries. 

Company Information: To enrich our dataset with a 
broader understanding of the employment 
environment, we collected data from the KoDATA 
(2024) site via FTP and integrated it with company 
information. KoDATA is Korea's premier 
comprehensive credit research and evaluation agency, 
leading the credit rating market with a database of 
about 12 million companies and a nationwide 
network. Established to promote credit lending and 
healthy credit commerce by providing reliable credit 
information, KoDATA's dataset includes company 
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details such as name, type, size, form, status, and 
industry code in Korea. 

Unified Database: Upon completing the data 
collection process, we integrated the disparate 
datasets into a coherent, unified database. This 
integrated database is designed to facilitate efficient 
data retrieval, manipulation, and analysis, serving as 
the backbone for training our recommendation model. 
The integration process involved normalizing data 
formats, resolving data inconsistencies, and 
establishing relational links between the datasets. 

2.2 NeuMF 

The Neural Matrix Factorization (NeuMF) (He et al., 
2017) model represents an innovative approach in 
collaborative filtering by leveraging deep neural 
networks to encapsulate the intricate interrelations 
within data, specifically enabling the modeling of 
non-linear associations. At its core, NeuMF 
introduces a hybrid architecture that seamlessly 
integrates aspects of Generalized Matrix 
Factorization (GMF) and Multilayer Perceptron 
(MLP), each employing an embedding layer critical 
for transforming sparse input vectors into dense 
representations. These representations, denoted as 𝑝 = 𝑝 𝑥  for GMF and 𝑞 = 𝑄 𝑥  for MLP, 
facilitate the mapping where 𝑝  and  𝑞  represent the 
embedding vectors for user 𝑢  and item 𝑖 , 
respectively. 

The GMF component of the model enhances 
interaction scoring between users and items by 
conducting an element-wise multiplication of their 
latent vectors, further refined through an activation 
function and weight adjustments. This mechanism is 
augmented by incorporating a non-linear sigmoid 
function, offering a broader expressive capacity 
compared to traditional linear Matrix Factorization 
techniques. 

On the other hand, the MLP component 
introduces a higher degree of flexibility and non-
linearity by processing the concatenated user-item 
vector through multiple hidden layers. This process, 
symbolized as ℎ 𝑖 = 𝑝 ⊙ 𝑞 , where ⊙  denotes 
element-wise multiplication, allows the MLP to 
adeptly navigate through the layers using various 
activation functions to determine the interaction 
score. 

By amalgamating the linear characteristics of MF 
with the non-linear dynamism of MLP, the NeuMF 
model achieves a delicate balance, enhancing user-
item interaction representation while preserving the 
essence of collaborative filtering—the modeling of 
user-item interplay. This blend, where MLP spans 

from representations 𝑧( ) = 𝑓( )(𝑝 ⊕ 𝑞 ) to 𝑧( ) =𝑓( ) 𝑧( ) , culminates in a combined GMF and 
MLP structure, represented as 𝑦 = 𝜎 𝑎 ℎ ⊕𝑧( ) + 𝑏 . Here, 𝜎 signifies the sigmoid activation 
function, 𝑎  the weight vector, and 𝑏  the bias, 
collectively refining the performance of collaborative 
filtering without compromising its fundamental 
principles. 

2.3 DeepFM 

The DeepFM (Guo et al., 2017) model stands at the 
confluence of deep learning and factorization 
techniques, uniquely structured to dissect and learn 
from the interplay among diverse attributes through 
an integrated framework of linear and non-linear 
methodologies. At its foundational level, the model 
initiates with an input layer responsible for generating 
embedding vectors that encapsulate the distinctive 
features of both users and items. This process 
transforms each attribute, initially represented as a 
one-hot encoded categorical variable, into a compact, 
low-dimensional vector via the embedding layer, 
formalized as 𝑣 = 𝐸𝑚𝑏𝑒𝑑(𝑥 ), where 𝑣  symbolizes 
the embedding vector for attribute 𝑥 . 

Central to the DeepFM model is the Factorization 
Machine (FM) component, adept at modelling both 
simple and complex feature interactions. By 
embracing linear and second-order quadratic 
interactions, the FM part efficiently uncovers patterns 
instrumental for refining recommendations, 
represented as FM = ∑ 𝑣 ⋅ 𝑥 , where 𝑛 
indicates the count of features and the dot product is 
utilized to quantify interactions among them.  

Complementing the FM's process, the Deep 
Neural Network (DNN) segment of DeepFM delves 
into the realm of nonlinear interactions. This 
nonlinear exploration is denoted as DNN =𝜎(𝑊 ⋅ 𝑐𝑜𝑛𝑐𝑎𝑡(𝑣 ,⋯ , 𝑣 ) + 𝑏 ) , where 𝜎 
embodies the activation function, and 𝑊  and 𝑏  correspond to the weights and biases intrinsic to 
the DNN layers, respectively. 

The culmination of this model is a sophisticated 
predictive output, derived from the synergistic 
combination of FM and DNN outputs, denoted by 𝑦 = 𝜎(FM + DNN ), where a sigmoid function 𝜎 is applied to ensure the final prediction seamlessly 
integrates the linear and non-linear insights drawn 
from the user-item matrix. This hybrid approach 
enables DeepFM to achieve a nuanced understanding 
of feature interactions, significantly enhancing the 
precision of recommendations provided. 
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2.4 xDeepFM 

The xDeepFM (Lian et al., 2018) model synergizes 
the foundational strengths of matrix factorization 
with the advanced representational capabilities of 
deep learning to enhance overall model performance. 
At the heart of xDeepFM lies the innovative Cross 
Network structure, designed to meticulously capture 
feature interactions along the cross dimension, 
thereby augmenting the model's representational 
efficacy. The Input Layer initiates this process by 
constructing embedding vectors for user and item 
attributes, transforming each attribute into a high-
dimensional space for the model to effectively learn 
from. This transformation is succinctly encapsulated 
as 𝑣 = 𝐸𝑚𝑏𝑒𝑑(𝑥 ) , where 𝑣  represents the 
embedding vector corresponding to attribute 𝑥 . The 
Cross Network uniquely computes cross terms 
between input features, facilitating a nuanced 
representation of interactions and modelling 
complex, non-linear relationships between attributes. 
These interactions are mathematically expressed as 𝑧 = 𝑧 + ∑ ∑ 𝑣 ⊙ 𝑣 ⋅ 𝑤( ) , where 𝑘 
denotes the order of the cross term, ⊙ symbolizes 
element-wise multiplication, and 𝑤( )  refers to the 
weight associated with the second cross term. 
Complementing this, the Deep Neural Network 
(DNN) component of xDeepFM delves into modeling 
the non-linear dynamics of input characteristics, 
employing an activation function denoted by 𝜎 . 
Within this framework, ℎ = 𝜎 𝑊 ⋅ 𝑣 +𝑏  signifies the activation function output, 𝑣   
represents the collective stack of all embedding 
vectors, and 𝑊  and 𝑏  are the respective 
weights and biases of the deep network. 

The culmination of the xDeepFM model's 
operation is the integration of insights from both the 
Cross Network and DNN, yielding the final 
predictive output. This integration is denoted by 𝑦 =𝜎 𝑧 + ℎ ⋅ 𝑊 + 𝑏 , where 𝑧    
encapsulates the Cross Network's ultimate output, 
and 𝑊  and 𝑏  stand as the weights and biases of 
the output layer, ensuring a cohesive and powerful 
representation of user-item interactions through both 
linear and non-linear lenses. 

2.5 DCNv2 

The Deep & Cross Network version 2 (DCNv2) 
(Wang et al., 2021) is an advanced model tailored for 
enhancing ranking systems through deep learning, 
ingeniously integrating both a cross network for 

capturing explicit feature interactions and a stacked 
neural network for unveiling implicit feature 
interactions. At the foundation of DCNv2 lies the 
embedding layer, tasked with processing both 
categorical and dense inputs, encapsulated as 𝑥 =𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑥), serving as the initial step in feature 
interaction exploration. 

Within the cross network, situated at each cross 
layer, DCNv2 meticulously extracts explicit feature 
interactions across multiple layers. The process is 
mathematically represented as 𝑥 = 𝑥 ⊙ (𝑊𝑥 +𝑏 ) + 𝑥  , where 𝑥   and 𝑥  denote the input and 
output vectors of a given layer, respectively. These 
vectors undergo linear computations using layer-
specific weights 𝑊  and biases 𝑏 , facilitating the 
extraction of feature interactions through iterative 
element-wise products of the output from the 
embedding layer 𝑥 . Notably, the first cross layer 
incorporates a unique mechanism where the 
interaction information among features is encoded 
through the element-wise product of 𝑥  and its 
updated weight. 

Complementing the explicit interaction mapping 
by the cross network, the Deep Network operates as a 
conventional feed-forward neural network. It 
leverages linear computations followed by activation 
functions, succinctly described as ℎ = 𝑓(𝑊ℎ +𝑏 ), where ℎ   and 𝑏   represent the weights and biases 
of the deep network, respectively. 

DCNv2 distinguishes itself with two structural 
variants in combining the cross and deep networks: 
the Stacked Structure and the Parallel Structure. In the 
Stacked Structure, the initial input 𝑥  first traverses 
the cross network before being processed by the deep 
network. Conversely, the Parallel Structure 
concurrently feeds 𝑥  into both the cross and deep 
networks, with the final output layer synthesizing the 
outputs from both networks 𝑥  from the cross 
network and ℎ   from the deep network) to form the 
final prediction. This prediction is articulated as 𝑦 =𝜎 𝑤 ⋅ 𝑙𝑜𝑔𝑦 𝑥 , where 𝑤  is a dedicated 
weight vector for the logit, and 𝜎 denotes the sigmoid 
function, illustrating DCNv2's holistic approach to 
modeling feature interactions for improved ranking 
performance. 

2.6 AFN+ 

Adaptive Feature Networks (AFN) (Cheng et al., 
2020) models utilize a dynamic approach to learn the 
intersection of features of any order directly from the 
dataset, leveraging a logarithmic transformation 
layer. This innovative layer translates the influence of 
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each feature within a feature combination into a 
learnable coefficient, enhancing the model's ability to 
understand complex relationships. The architecture of 
AFN is structured into several key components: an 
Input Layer and an Embedding Layer, a Logarithmic 
Transformation Layer for cross-feature learning, 
multiple Feed-forward Hidden Layers for integrating 
learned cross features, and an Ensemble mechanism 
that merges AFNs with Deep Neural Networks 
(DNNs) to create a comprehensive ensemble model. 

The process begins in the Input Layer, where both 
sparse categorical and numerical inputs are collected. 
These inputs are then transformed into a series of 
embedding vectors, 𝐸 = (𝑒 , 𝑒 , … , 𝑒 ) , in the 
Embedding Layer. This is followed by the 
Logarithmic Transformation Layer, which employs 
specialized logarithmic neurons tailored to each 
vector. These neurons are designed to ascertain the 
significance (or order) of each attribute within the 
cross-attributes, 𝑦 = exp ∑ 𝑤 ln , where 𝑤  
is the weight allocated to the logarithmic neuron. The 
output of this layer is symbolized by 𝑌 =(𝑦 ,𝑦 , … ,𝑦 ), indicating a nuanced understanding of 
feature interrelations. 

Subsequent to the logarithmic transformation, the 
architecture advances to the Feed-forward Hidden 
Layers. Here, a sequence of fully connected layers is 
employed to amalgamate the cross features identified 
earlier. This operation is mathematically expressed as 𝑧 = 𝑅𝑒𝐿𝑈(𝑊𝑧 + 𝑏 ), 𝑙 = 1, 2, … , 𝐿 , where 𝑧 =𝑌, 𝑊  symbolizing the weight matrix of the 𝑙-th layer, 𝑏  representing the bias vector, and 𝐿  marking the 
total number of hidden layers. The culmination of this 
process is the prediction layer 𝑦 = 𝑤 𝑧 + 𝑏 , where  𝑤  and 𝑏  stand for the prediction layer's weight 
vector and bias, respectively. 

In the final stage, Ensemble with DNN, the AFNs 
are amalgamated in a fashion akin to DNNs, yielding 
an ensemble model denoted by 𝑦 = 𝑤 𝑦 +𝑤 𝑦 + 𝑏 . This ensemble model incorporates 
predictions from both AFN and DNN components 
(𝑦  and 𝑦 ), balanced by corresponding weights 𝑤  and 𝑤 , with 𝑏  acting as the bias. This holistic 
approach not only enhances the model's predictive 
capabilities by combining the strengths of AFNs and 
DNNs but also offers a more nuanced understanding 
of feature interactions, setting a new benchmark in the 
field of machine learning for handling complex data 
relationships. 

2.7 EulerNet 

EulerNet (Tian et al., 2023) introduces an innovative 
approach for learning attribute interactions 

adaptively, capable of autonomously discerning 
interactions of any order directly from data. 
Distinguished by its unified architectural framework, 
EulerNet adeptly handles both explicit and implicit 
feature interactions by situating these interactions 
within a complex vector space, as inspired by Euler's 
formula. The structure of EulerNet encompasses an 
Embedding Layer for input embeddings, an Euler 
Interaction Layer for deciphering explicit feature 
interactions, and a predictive output segment 
specifically designed for Click-Through Rate (CTR) 
estimations, derived from the interaction layer's 
outcomes. 

The core of EulerNet begins with the Embedding 
Layer, which translates input features into a series of 
feature embeddings (𝑒 , 𝑒 , … , 𝑒 ) . Progressing to 
the Euler Interaction Layer, it introduces a Complex 
Space Mapping technique to transition feature 
embeddings from the conventional real vector space 
to a complex vector space. Utilizing Euler's formula, 
it transforms these embeddings into complex 
numbers represented in polar coordinates, where 𝑒 =𝜇 cos 𝑒 + 𝑖𝜇 sin 𝑒 , with 𝜇  being a modifiable 
coefficient parameter. The Generalized Multi-order 
Transformation, another pivotal component, 
facilitates the conversion of complex feature 
representations from Cartesian to polar coordinates, 
expressed through exp ∑ 𝑎 log 𝜆  exp(𝑖 ∑ 𝑎 𝜃 ) , where 𝜆 = 𝑟 + 𝑝  (inherently 

non-negative) and 𝜃 = 𝑎𝑡𝑎𝑛2 𝑝 , 𝑟  denote the 
coefficient and phase vectors of the complex feature 
in polar form. 

Within the framework of EulerNet, the 
Generalized Multi-order Transformation is pivotal, 
facilitating the delineation of interactions in the 
complex domain induced by the Euler transformation. 
This transformation is quantitatively expressed 
through Δ𝑒 = ∑ 𝑙 𝑒  and Λ𝑘 , which 
respectively signify the explicit interaction and its 
complex representation within the Euler transform 
framework. The process extends to encompass 
Implicit Interaction Integration, capturing the 
nuances of implicit interactions. These interactions 
are mathematically represented by 𝑟′𝑘 =𝑅𝑒𝐿𝑈(𝑤 𝑟 + 𝑏 )  and 𝑝′𝑘 = 𝑅𝑒𝐿𝑈(𝑤 𝑝 + 𝑏 ) , 
where 𝑟  and 𝑝  denote the real and imaginary 
components, respectively, offering a comprehensive 
view of feature interrelations. 

To amalgamate the explicit and implicit facets of 
feature interactions, EulerNet strategically combines 
these representations by aligning their real and 
imaginary components, encapsulated in the output 
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vector (𝑜 ) = (�̂� + 𝑟′ ) + 𝑖(�̂� + 𝑝′ ) . 
This synthesis is instrumental in constructing a robust 
model that appreciates the depth of feature 
interactions. 

In the phase dedicated to Click-Through Rate 
(CTR) predictions, EulerNet undertakes a linear 
regression analysis to deduce a scalar output, 
symbolized by 𝑧 = 𝑤 �̂� + 𝑖(𝑤 �̂�) = 𝑧 + 𝑖𝑧 . 
This output, 𝑧 , is dissected into its real 𝑧  and 
imaginary 𝑧  components, offering a dual 
perspective on the predictive analysis. Culminating 
the process, EulerNet intricately weaves together the 
explicit and implicit interaction insights, employing a 
sigmoid function, denoted as 𝜎, to calculate the CTR 
value, represented by 𝑦 = 𝜎(𝑧 + 𝑧 ) . This 
approach not only exemplifies EulerNet's adeptness 
in harnessing complex feature interplay but also 
showcases its proficiency in translating these 
interactions into accurate predictive insights, 
underpinning its utility in the domain of CTR 
prediction. 

3 PROPOSED METHOD 

Contrary to the traditional focus on predicting and 
recommending academic courses to students for 
upcoming semesters, as highlighted in previous 
research (Lee et al., 2021), this paper introduces a 
novel paradigm by exploring course recommendation 
from the perspective of potential employers. This 
innovative approach aims to align educational 
outcomes with the specific needs and preferences of 
companies where students aspire to work post-
graduation. By analyzing data from graduates and 
their subsequent employment destinations, this study 
diverges from the prevalent student-centric models of 
course recommendation, proposing instead a 
company-centric framework. 

This paradigm shift entails a significant 
realignment of the course recommendation process, 
with the primary criterion being the skill sets and 
knowledge areas valued by employers, rather than the 
academic or career interests of the students alone. 
Essentially, the study redefines the target user from 
the individual student to the company, advocating for 
a model where courses are recommended to 
companies based on the competencies they seek in 
their future employees. This approach underscores a 
strategic pivot towards enhancing the employability 
of graduates by directly addressing the demand-
driven requirements of the job market, thereby 
fostering a more effective and pragmatic connection 

between educational institutions and the business 
sector. 

3.1 Feature Engineering 

This study utilizes a comprehensive dataset spanning 
two decades, from 2000 to 2020, encompassing 
student enrollment records. Given the sensitive nature 
of students' course records, these data are de-
identified to ensure privacy. Central to our analysis is 
the incorporation of company information, a novel 
approach in our research. We use a dataset of 887,996 
course records from students who are employed and 
have firm information. The dataset includes 16,695 
students, 314 colleges, 16,995 courses, and 925 firms. 
It is important to acknowledge potential variances in 
students' course loads and interruptions in their 
academic journeys, which may introduce noise during 
model training. To align with our company-centric 
recommendation framework, the dataset underwent a 
transformation to focus on organizational attributes 
rather than individual student or course data. 

In adapting to this new dataset configuration, we 
employ the Neural Matrix Factorization (NeuMF) 
technique, leveraging a user-item matrix devoid of 
specific features. This method involves creating a 
company-course matrix based on the 925 identified 
companies. For our hybrid model, which allows for 
the inclusion of additional features, companies are 
further categorized by incorporating college and 
gender information, forming a (company, gender, 
college) × subjects matrix. This stratification 
enhances the model's granularity, treating entities 
with differing gender and college affiliations as 
distinct, thereby refining our recommendation 
process. 

Notably, the NeuMF framework, in its subsequent 
applications, does not incorporate explicit features. 
However, by classifying companies along with 
gender and college dimensions, we achieve a nuanced 
segmentation akin to that of the hybrid model. This 
approach effectively replicates feature engineering 
methods, albeit indirectly, for the NeuMF model, 
thereby aligning it more closely with the hybrid 
model's methodology. 

In our experimental setup, the conventional 
student user base is redefined to reflect company-
oriented course data, as detailed in Table 1. This 
transformation allows the hybrid model to categorize 
companies by college and gender, enriching the user 
profile with more descriptive attributes. Furthermore, 
to maintain consistency across models, the dataset is 
modified to attribute these additional characteristics 
to users, leveraging gender and college as categorical 
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variables for feature engineering. This adjustment 
ensures that both NeuMF and hybrid models operate 
under a similar user definition framework. 

Table 1: Kangwon National University Enrollment Dataset 
Description. 

Model NeuMF Hybrid NeuMF (with 
Feature Eng.) 

User (Company) 925 9600 9600 

Item (Course) 15,763 15,763 15,763 

Average Item 287 27 27 

Sparsity 0.9746 0.9962 0.9962 
 
Regarding course data representation, the NeuMF 

model initially aggregates courses at the company 
level without additional attributes, resulting in a 
higher average number of courses per company. 
However, when employing the hybrid model's feature 
engineering approach, the average number of subjects 
per company drops significantly due to the division 
by college and gender, indicating a more focused and 
tailored recommendation system compared to the 
broader aggregation of the traditional NeuMF model. 

4 EXPERIMENTS 

4.1 Dataset & Hyperparameters 

In this study, we analyze student enrollment records 
from Kangwon National University, covering a 
comprehensive span of 20 years from 2000 to 2020. 
The dataset incorporates essential student data such 
as student ID (anonymized), gender, college 
affiliation, graduation year, academic grade, course 
codes, employer details, and company identification 
codes. To adhere to privacy concerns, all personally 
identifiable information was removed, with unique ID 
values substituting for class numbers. This 
preprocessing step enabled us to forge a de-identified 
dataset that links student profiles with their respective 
course enrollments, facilitating the model's 
development and validation phases. The resultant 
dataset encompasses records from 16,695 students 
across 16,995 distinct courses. 

For model training and evaluation, the dataset was 
partitioned into training and test sets, following a 
70:30 split. This allocation ensures a robust 
framework for assessing the model's predictive 
accuracy while providing ample data for training. The 
model's hyperparameters were meticulously 

optimized to enhance performance, with Binary Cross 
Entropy (BCE) selected as the loss function, the 
Adam optimizer for gradient descent, a batch size of 
128, a learning rate of 1e-4, and an extensive training 
duration of 500 epochs. This configuration was 
determined to offer the best compromise between 
computational efficiency and predictive accuracy, 
laying the groundwork for a rigorous evaluation of 
the proposed course recommendation system. 

4.2 Evaluation Metrics 

To assess our model's performance, we utilized a suite 
of evaluation metrics commonly employed in the 
analysis of recommendation systems. These metrics 
include Precision, Recall, F1-Score, and Mean 
Average Precision (mAP), each offering unique 
insights into the efficacy of our model across different 
dimensions of performance. 

Precision: This metric calculates the ratio of 
correctly recommended courses (those actually taken 
by students) to the total number of courses 
recommended by the model. A higher Precision 
indicates that a greater proportion of the courses 
recommended by the model are relevant and useful to 
the students. Precision calculates the ratio of correctly 
recommended courses (true positives, 𝑇𝑃) to the total 
number of courses recommended by the model (true 
positives 𝑇𝑃 + false positives 𝐹𝑃). Precision = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 

Recall: Recall measures the fraction of courses 
actually taken by students that are successfully 
recommended by the model out of all possible 
relevant courses. It assesses the model's ability to 
capture all pertinent recommendations. Recall 
measures the fraction of courses actually taken by 
students (true positives, TP) that are successfully 
recommended by the model out of all possible 
relevant courses (true positives TP + false negatives 
FN). Recall = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 

F1-Score: Serving as the harmonic mean of 
Precision and Recall, the F1-Score provides a single 
metric that balances both the precision of the 
recommendations and their completeness. It is 
particularly valuable when seeking a measure that 
accounts for both aspects of the model's performance, 
with higher values indicating a more balanced and 
effective recommendation system. F1-Score = 2 × Precision × RecallPrecision + Recall 
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Mean Average Precision (mAP): Mean Average 
Precision (mAP) evaluates the quality of the entire 
ranking of recommendations produced by the model. 
It is the mean of the Average Precision (AP) scores 
for each query. This metric penalizes incorrect 
recommendations more severely when they appear 
higher in the list of recommendations, thereby 
emphasizing the importance of not only the accuracy 
but also the ranking of the proposed courses. Average 
Precision is calculated as the average of the precision 
values at the ranks where relevant items are found, 
accounting for the ranking order. AP = ∑ (𝑃(𝑘) × rel(𝑘))number of relevant items 
Where 𝑃(𝑘) is the precision at cut-off k and rel(𝑘) is 
a binary indicator function that is 1 if the item at rank 
k is relevant, 0 otherwise.  
Mean Average Precision (mAP) is then calculated as: mAP = 1|𝑄| AP(𝑞)∈  

Where 𝑄  is the set of all queries and AP(𝑞) is the 
Average Precision for query 𝑞. 

These metrics collectively enable a 
comprehensive evaluation of the recommendation 
model, scrutinizing its ability to not only identify 
relevant courses for recommendation but also 
prioritize them in a manner that aligns with actual 
student course selection patterns. Through this 
multidimensional analysis, we aim to ensure the 
development of a robust and effective course 
recommendation system that accurately reflects the 
needs and preferences of the target user base. 

4.3 Evaluating Model Performance 

In our research, we undertake a comparative analysis 
between the Neural Matrix Factorization (NeuMF) 
model and a Hybrid model to assess their efficacy 
within the context of a course recommendation 
system tailored for enterprises. The NeuMF model, 
grounded in deep learning methodologies, operates 
on the principle of utilizing implicit data derived from 
users' past behaviors to rank items, notably without 
the integration of explicit features. This approach 
distinguishes the NeuMF model as a pure 
collaborative filtering method, emphasizing the 
prediction of user preferences based on historical 
interaction patterns alone. 

Conversely, the Hybrid model represents a more 
integrated approach, combining elements of 
collaborative filtering with the incorporation of 
additional data features to enhance recommendation 
accuracy. This juxtaposition of the NeuMF and 

Hybrid models in our study aims to elucidate the 
relative strengths and limitations of employing a 
solely behavior-based recommendation system 
against one that leverages a broader dataset 
encompassing explicit feature information. 

By systematically comparing these models, our 
study contributes to a deeper understanding of the 
dynamics between collaborative filtering techniques 
and hybrid methodologies in the domain of 
enterprise-level course recommendations. This 
comparison not only serves to highlight the potential 
for improved recommendation precision and 
relevance through the inclusion of auxiliary data but 
also provides insights into the adaptability and 
scalability of these models in addressing the complex 
needs of enterprise environments. 

In our experimental setup, to ensure consistency 
and control for variability, the division between the 
training and testing datasets was uniformly 
maintained across trials, with a split ratio consistently 
applied. To address the stochastic nature of negative 
sampling, we averaged the results over three 
iterations for each configuration. Typically, a student 
can sign up for 21 to 24 credits in a semester, and if 
they take a typical three-credit class, they take seven 
to eight courses each semester, so they take about 56 
to 60 courses over the course of four years. However, 
there are also two-credit liberal arts courses, so we 
experimented with recommending courses in the 
range of 10 to 100. The models were assessed based 
on their ability to recommend the top 10, 25, 50, and 
100 subjects, allowing for a comprehensive 
evaluation across varying scopes of recommendation 
breadth. 

The performance of our models across varying 
recommendation sizes is summarized in four tables: 
Table 2 for the top 10, Table 3 for the top 25, Table 4 
for the top 50, and Table 5 for the top 100 
recommendations. Each table highlights key metrics 
such as Precision, Recall, F1-Score, and Mean 
Average Precision (mAP), offering insights into the 
models' effectiveness at different scales. In the results  

Table 2: Metric results by model for the top 10. 

Model P R F1 mAP 
DeepFM 0.16758 0.09438 0.12117 0.33515 

xDeepFM 0.18488 0.10346 0.13654 0.34861 
DCNv2 0.19331 0.10769 0.13857 0.35573 
AFN+ 0.19498 0.10946 0.14020 0.35256 

EulerNet 0.19812 0.11083 0.14214 0.36322 
NeuMF 0.33286 0.07552 0.12265 0.50585 

NeuMF with 
FE 0.36612 0.20352 0.26161 0.55461 
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table, the highest-performing outcomes are 
highlighted with both bold and underline, the second-
highest outcomes are emphasized in bold, and the 
third-highest outcomes are denoted by underline. 

Table 3: Metric results by model for the top 25. 

Model P R F1 mAP 
DeepFM 0.13389 0.18840 0.15979 0.28713 

xDeepFM 0.14671 0.20444 0.17082 0.29901 
DCNv2 0.15440 0.21497 0.17971 0.30423 
AFN+ 0.15333 0.21572 0.17925 0.30434 

EulerNet 0.15697 0.21944 0.18302 0.30966 
NeuMF 0.27844 0.14547 0.19247 0.42953 
NeuMF 
with FE 0.27112 0.37464 0.31458 0.47042 

Table 4: Metric results by model for the top 50. 

Model P R F1 mAP 
DeepFM 0.10655 0.29734 0.18250 0.24413 

xDeepFM 0.11504 0.31834 0.16900 0.25338 
DCNv2 0.12157 0.33680 0.17865 0.25865 
AFN+ 0.11806 0.33135 0.17409 0.26033 

EulerNet 0.12179 0.33814 0.17907 0.26351 
NeuMF 0.23137 0.21915 0.22389 0.37450 
NeuMF 
with FE 0.19051 0.51893 0.27870 0.41277 

Table 5: Metric results by model for the top 100. 

Model P R F1 mAP 
DeepFM 0.07972 0.44053 0.13946 0.20595 

xDeepFM 0.08438 0.46379 0.14278 0.21371 
DCNv2 0.08877 0.48891 0.15097 0.21824 
AFN+ 0.08549 0.47821 0.14504 0.22110 

EulerNet 0.08920 0.49104 0.15025 0.22320 
NeuMF 0.18336 0.30793 0.22985 0.32576 
NeuMF 
with FE 0.12078 0.64714 0.20356 0.36793 

4.3.1 NeuMF vs. Hybrid 

The outcomes of our experiments reveal distinct 
performance characteristics between the models. The 
Neural Matrix Factorization (NeuMF) model 
exhibited superior performance in terms of Precision, 
indicating its effectiveness in accurately 
recommending relevant subjects. Conversely, the 
Hybrid model demonstrated a stronger Recall metric, 
suggesting its proficiency in capturing a broader array 
of relevant recommendations. Notably, within the 
Hybrid category, the DeepFM model, despite 
registering the lowest Precision, surpassed the 
NeuMF model in Recall, highlighting the trade-offs 
between Precision and Recall across different model 
architectures. 

Precision in our context is calculated by 
considering the actual number of recommendations 
made and affirming their relevance if they match the 
subjects in the test set. Given our shift in focus to 
company-oriented recommendations, the NeuMF 
model's lack of reliance on individual-specific 
features for training may contribute to its heightened 
Precision, as it operates on a more generalized basis. 
For Recall, which measures the proportion of relevant 
subjects in the test set that are successfully 
recommended, the performance is independent of the 
recommendation volume. Here, the NeuMF model 
tends to lag in Recall due to the larger denominator 
reflecting the grouped learning approach, whereas the 
Hybrid model, by incorporating user-specific 
features, demonstrates enhanced Recall owing to a 
more defined and smaller denominator. 

The F1-Score, serving as the harmonic mean of 
Precision and Recall, offers a balanced measure of a 
model's performance, rewarding scenarios where 
Precision and Recall are closely matched. In the 
initial recommendation set of the top 10 subjects, the 
Hybrid model, particularly EulerNet, showcases 
superior performance due to its balanced Precision 
and Recall. However, as the recommendation list 
expands beyond the top 10, the NeuMF model's 
relative improvement in Recall, coupled with its 
strong Precision, positions it favorably in terms of F1-
Score. 

Regarding Mean Average Precision (mAP), 
which assesses the weighted order of 
recommendations, NeuMF continues to outperform, 
benefiting from its Precision advantage. This metric's 
emphasis on the sequencing of recommendations 
underscores NeuMF's ability to prioritize the most 
relevant subjects effectively, even when the 
evaluation incorporates the order of 
recommendations. This nuanced analysis of model 
performance across multiple metrics and 
recommendation depths provides valuable insights 
into the strengths and limitations of each approach 
within the specific context of company-oriented 
course recommendations. 

4.3.2 NeuMF with Feature Engineering 

In this study, we sought to augment the Recall 
performance of the Neural Matrix Factorization 
(NeuMF) model, which already exhibited 
commendable Precision, by incorporating feature 
engineering into the dataset. Initially, the model 
treated users as aggregated entities representing a 
single company. However, by applying feature 
engineering, we disaggregated these entities based on 
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gender and college attributes, aiming to refine user 
segmentation and enhance the model's ability to 
capture user nuances. 

This tailored approach led to a notable 
improvement in Precision, with an increase of 
approximately 3% to a Precision score of 0.03 in the 
top 10 recommendations compared to the baseline 
NeuMF model without feature engineering. Although 
a slight decrease in Precision was observed in 
subsequent recommendations, this variance can be 
attributed to the differentiated number of average 
items per user, as detailed in Table 1. The model 
incorporating feature engineering demonstrated 
increased interactivity, albeit with a lower average 
item count per user, potentially impacting 
performance in top_k recommendations due to a 
diminished item pool. 

The enhancements in Mean Average Precision 
(mAP) across top_k recommendations underscore the 
enriched interaction dynamics post-feature 
engineering, surpassing the prior iteration of the 
NeuMF model. Moreover, the recalibrated approach 
yielded substantial gains in Recall, outperforming 
both the original NeuMF and the Hybrid model 
known for its strong Recall capabilities. This 
improvement is ascribed to the refined calculation of 
Recall, where the lower average item count and the 
expanded user base due to feature engineering 
contributed to a more favorable denominator, thereby 
elevating Recall performance. 

Conclusively, the introduction of feature 
engineering not only preserved the Precision levels 
comparable to the NeuMF model's prior performance 
but also significantly enhanced interaction quality (as 
indicated by mAP) and Recall metrics, surpassing the 
Hybrid model's Recall efficacy. Additionally, the 
harmonized balance between Precision and Recall, 
reflected in the elevated F1-Score, attests to the 
comprehensive performance uplift achieved through 
this methodological refinement. This dual 
enhancement in both Precision and Recall dimensions 
underscores the effectiveness of integrating feature 
engineering into the NeuMF model, presenting a 
compelling case for its application in enhancing user-
specific recommendation systems. 

5 LIMITATIONS & FUTURE 
WORK 

The NeuMF model, despite its strengths, exhibited 
limitations due to its inability to utilize features, 
necessitating a workaround by representing users as 

companies. This approach posed challenges in 
making personalized recommendations within a 
company, given the varied job roles and preferences 
across departments and genders. The feature 
engineering enhancements in this study, while 
improving performance, were constrained by the 
minimal use of features (college, gender, company) 
and were not applicable to continuous data with more 
extensive features. 

Our exploration of hybrid models—DeepFM, 
xDeepFM, DCNv2, AFN+, and EulerNet—utilized 
previously unexplored user and item information 
such as gender and college, marking a significant 
stride in offering students broader options. However, 
the hybrid models' potential was not fully realized due 
to limited metadata on students, restricting us to only 
three features and excluding critical information like 
detailed course attributes. The absence of 
comprehensive course features, such as major 
requirements and electives, limits our ability to guide 
students in course selection aligned with their career 
aspirations. 

Future research aims to refine these 
recommendation systems by incorporating 
comprehensive course information, enabling 
personalized course recommendations based on 
students' career interests and academic history. This 
enhancement will facilitate a more detailed and 
personalized recommendation framework, better 
aligning educational outcomes with career 
aspirations. 

6 CONCLUSIONS 

In this study, we transitioned from traditional 
counseling methods to a student career 
recommendation system utilizing advanced 
recommendation algorithms. We employed the 
NeuMF model to recommend business-oriented 
subjects to students, leveraging a neural network to 
capture non-linear user-item interactions and 
recognizing more intricate patterns than linear 
models. Despite the challenges associated with 
feature utilization and user representation, our 
enhancements through feature engineering and 
exploration of hybrid models demonstrated 
significant strides in enriching recommendation 
systems. 

Our investigation into incorporating nuanced 
features like gender and college in hybrid models 
highlighted both the progress and the limitations of 
our current approach. This study lays the groundwork 
for advanced recommendation systems that not only 
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predict future dynamics of commercial districts but 
also assist students in navigating their educational and 
career paths more effectively. By addressing the 
identified limitations and focusing on comprehensive 
feature integration in future research, we aim to 
develop a more robust and effective course 
recommendation system tailored to students' career 
aspirations. 
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