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Abstract: In this paper, we address the challenge of digital camera identification within the realm of digital forensics.
While numerous algorithms leveraging camera fingerprints exist, few offer both speed and accuracy, particu-
larly in the context of modern high-resolution digital cameras. Moreover, the storage requirements for these
fingerprints, often represented as matrices corresponding to the original image dimensions, pose practical
challenges for forensic centers. To tackle these issues, we propose a novel approach utilizing a convolutional
autoencoder (AE) to generate compact representations of camera fingerprints. Our method aims to balance ac-
curacy with efficiency, facilitating rapid and reliable identification across a range of cameras and image types.
Extensive experimental evaluation demonstrates the effectiveness of our approach, showcasing its potential
for practical deployment in forensic scenarios. By providing a streamlined method for camera identification,
our work contributes to advancing the capabilities of digital forensic analysis.

1 INTRODUCTION

Digital forensics is a field that has attracted much at-
tention in recent years. One of the most popular top-
ics in digital forensics is the identification of imaging
sensors that are present in digital cameras. Nowadays,
digital cameras are in general accessible and afford-
able, which makes them very popular. Smartphones
and mobile devices are even more popular. Today’s
smartphones are equipped with built-in digital cam-
eras which encourage people to take photos and share
them on social media networks. However, the possi-
bility of establishing whether an image was taken by
a given camera may expose users’ privacy to a serious
threat. Hence, a number of papers in recent years are
dedicated to the study of imaging device artifacts that
may be used for digital camera identification.

Digital camera identification can be realized in
two approaches: individual source camera identifi-
cation (ISCI) and source model camera identification
(SCMI). The ISCI is capable of distinguishing a cer-
tain camera model among cameras of both the same
and different camera models. On the other hand, the
SCMI distinguishes a certain camera model among
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the different models but is not able to distinguish a
certain copy of a camera from other cameras of the
same model. For instance, if we have the following
cameras: Canon EOS R (0), Canon EOS R (1), ...,
Canon EOS R (n), Nikon D780 (0), Nikon D780 (1),
Sony A1 (0), Sony A1 (1), the ISCI will distinguish
all cameras as different. The SCMI would distinguish
only the general models, i.e. Canon EOS R, Nikon
D780, and Sony A1. Therefore, it is the limitation of
the SCMI approach. This motivates to develop such
methods and algorithms for camera identification that
they would work in terms of the ISCI aspect.

The state-of-the-art algorithm for the ISCI aspect
was proposed by Lukás et al.’s (Lukás et al., 2006).
This algorithm used a so-called photo response non-
uniformity (PRNU) that is present in images and al-
lows for camera identification. The PRNU N may
be calculated in the following manner: N = I−F(I),
where I is an input image and F is a denoising filter.
The PRNU serves as a unique camera’s fingerprint.
Many studies (Bruno et al., 2020; Mandelli et al.,
2020; Picetti et al., 2020) confirmed the high efficacy
of camera identification in such a way. However, this
approach shows some weaknesses. The greatest dis-
advantage is the representation of the camera’s finger-
print which is represented as a matrix in the original
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images’ dimensions. This may be problematic in the
aspect of storing a large number of PRNUs in some
forensic centers. This motivates to work out a method
that will minimize this problem.

1.1 Contribution

In this paper, we propose a method that uses a con-
volutional autoencoder (AE) to generate a compact
(compressed) representation of the camera’s finger-
print. This compact representation of the camera’s
fingerprint may be successfully used to perform in-
dividual source camera identification with compara-
ble accuracy to state-of-the-art methods. However,
our method solves the problem connected with stor-
ing large cameras’ fingerprints, since the representa-
tion of the fingerprint is not stored as a matrix, but
as a vector. We conduct experiments on a large set
of modern digital cameras which confirm the similar
accuracy with state-of-the-art methods.

1.2 Organization of the Paper

The paper is organized as follows. The next section
discusses previous and related works. In Section 3 the
problem is formulated and the proposed method is de-
scribed with a brief recall of state-of-the-art methods.
Section 4 presents results of classification compared
with literature methods. The final section concludes
this work.

2 PREVIOUS AND RELATED
WORK

In (Valsesia et al., 2015) there is presented an algo-
rithm for the camera’s fingerprint compact represen-
tation. For this purpose, a random projection ma-
trix whose dimensions will be matched to the cam-
era’s fingerprint matrix in terms of matrix multiplica-
tion must be generated. The random projected ma-
trix is then multiplied by the camera’s fingerprint ma-
trix which produces a new matrix. Such a new ma-
trix serves as a compact camera’s fingerprint repre-
sentation and is much lower than the original finger-
print. The accuracy of this method is similar to the
use of original fingerprints, which makes the consid-
ered method useful. However, such an approach re-
quires generating random matrix and matrix multipli-
cation, which may not be computationally optimal. A
linear discriminant analysis used to extract more dis-
criminant sensor pattern noise (SPN) features is dis-
cussed (Li et al., 2018). The compact representation
of the SPN is featured as a vector.

In (Liu et al., 2021) a patch-level camera identifi-
cation with the convolutional neural networks (CNN)
is described. The advantage of the method is also im-
age tampering detection. In (Cozzolino et al., 2021)
a generative adversarial network (GAN) for compro-
mising the PRNUs is presented. Considered GAN
produces synthetic images that are injected with other
cameras’ traces. Experiments confirmed that GAN-
generated images may successfully deceive state-of-
the-art algorithms for camera identification. In (Lai
et al., 2021) a Hierarchy Clustering method for the
camera’s fingerprint identification is discussed. Such
a novel approach allows for the classification without
training image datasets. In (Salazar et al., 2021) there
is proposed a method for clustering the cameras’ fin-
gerprints. The images are distinguished by applying
various denoising algorithms. In (Borole and Kolhe,
2021) a fuzzy min-max neural network is considered
for the identification of the camera’s digital finger-
print (PRNU). The PRNU patterns are represented
as Hu’s invariants and then passed into a neural net-
work for training and classification. The experimen-
tal evaluation confirmed the accuracy of the proposed
method. In (Rafi et al., 2021) a PRNU-based method
for camera identification is described. This is real-
ized with the use of a convolutional neural network
that is adopted to eliminate scenes in the images that
obscure the noise used to calculate the PRNU. Ex-
periments confirmed that considered methods achieve
high accuracy.

3 CAMERA’S FINGERPRINT
COMPACT REPRESENTATION
WITH CONVOLUTIONAL
AUTOENCODER

3.1 Problem Description

Many papers are focused only on high classification
accuracy methods for digital camera identification
and generally do not consider the aspect of compact
representation of cameras’ fingerprints. The identifi-
cation based on camera’s fingerprint N is calculated
with the formula presented as Eq. 1 (Lukás et al.,
2006; Tuama et al., 2016):

N = I−F(I) (1)

where I is the input image, F stands for a denoising
filter. It should be mentioned that the N is calculated
only for one image of a particular camera. This pro-
cedure should be repeated for a certain number of im-
ages (at least 45 (Lukás et al., 2006)) to calculate the
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final camera’s fingerprint. The procedure presented as
Eq. 1 denotes that the size of the fingerprint N is equal
to the size of the input image I. Worth mentioning
that for modern cameras producing large dimensions
images (for example 6000×4000 or 7000×5000 pix-
els) stored in forensics centres such fingerprints may
be problematic. Therefore, we propose a method uti-
lizing a convolutional autoencoder (AE) that may be
useful to fill this gap. Convolutional autoencoders
are widely used for different problems, including di-
mensionality reduction, anomaly detection, generat-
ing new features, recommender systems, and many
more. We propose to use the AE in terms of reduc-
ing dimensionality. In our approach, the fingerprint
N will be reduced into a much smaller representation
than an input image I.

To obtain the autoencoder learning the specificity
of the camera (not the content of the input image), it
is essential to denoise the cameras’ images. We use
the well-known formula presented as Eq. 1, utilized
in (Lukás et al., 2006; Tuama et al., 2016) to calcu-
late the residuum N. The N images are passed to the
input of the autoencoder with the label of the cameras
that a particular residuum comes from. Then, the au-
toencoder calculates the latent vector, which we find
as a compact representation of N. For the classifica-
tion purposes we are not interested with the typical
decoding part of the autoencoder. Therefore, such op-
eration provides us the compact representation of the
residuum N.

3.2 State-of-the-Art: Existing CNNs

For evaluation, we refer to some convolutional neu-
ral network-based methods which include: Mandelli
et al.’s (Mandelli et al., 2020) and Kirchner & John-
son (Kirchner and Johnson, 2020). Let us briefly re-
call the structure of Mandelli et al.’s convolutional
neural network (CNN):

(1) A first convolutional layer of kernel 3×3 produc-
ing feature maps of size 16×16 pixels with Leaky
ReLU as an activation method and max-pooling;

(2) A second convolutional layer of kernel 5×5 pro-
ducing feature maps of size 64× 64 pixels with
Leaky ReLU as an activation method and max-
pooling;

(3) A third convolutional layer of kernel 5×5 produc-
ing feature maps of size 64×64 pixels with Leaky
ReLU as an activation method and max-pooling;

(4) A pairwise correlation pooling layer;

(5) Fully connected layers.

For more details related to the structure of the net-
work, we refer to the authors’ paper, due to paper lim-
itations.

3.3 Proposed Method: Convolutional
Autoencoder

As mentioned, we propose to use the convolutional
autoencoder to reduce the dimensionality of cameras’
fingerprints. The method aims to take the residuum N
(calculated as Eq. 1) and produce its compact repre-
sentation by using the autoencoder. For this purpose,
we use only the encoding part of the autoencoder –
the decoding part may be skipped since we do not
need it. The structure of the proposed convolutional
autoencoder is defined as follows:

(1) A first convolutional layer of 64 filters of size 3×
3 (stride 2), with ReLU as an activation function,
followed by a Max-Pooling layer + padding 1;

(2) A second convolutional layer of 32 filters of
size 3 × 3 (stride 2), with ReLU as an activa-
tion function, followed by a Max-Pooling layer +
padding 1;

(3) A third convolutional layer of 16 filters of size 3×
3 (stride 2), with ReLU as an activation function,
followed by a Max-Pooling layer + padding 1;

The activation function for the autoencoder is sig-
moid. We assume to process images of size 128×
128. Therefore, the size of the latent vector, storing
the compact representation, may be calculated in the
following manner:

(1) After the first convolutional layer, the feature map
size is (128−3+2 ·1)/2+1 = 64×64;

(2) After the second convolutional layer, the feature
map size is (64−3+2 ·1)/2+1 = 32×32;

(3) After the third convolutional layer, the feature
map size is (32−3+2 ·1)/2+1 = 16×16.

Since the number of channels in the last feature map
is 16 and its spatial dimensions equal 16×16, the size
of the latent vector is 16 ·16 ·16 = 4096.

The latent vector obtained in the described proce-
dure is considered as a compressed camera’s finger-
print. It may be used for classification purposes both
for using CNN-based classifiers, as well as with clas-
sic machine learning algorithms. Worth mentioning
that the latent vector may be stored as a single text
file which is efficient in terms of disk and hardware
usage.

The Discriminator. To perform the classification,
we propose to use the discriminator. The idea of the
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discriminator is similar to the Generative Adversarial
Network (GAN) (Goodfellow et al., 2014). The use
of the discriminator is essential because the autoen-
coder’s latent vector containing the compact represen-
tation of the residuum N should be passed into the
classifier. The discriminator may be realized with the
standard convolutional neural network, however, one
may use well-known machine learning algorithms,
such as Support Vector Machine (SVM).
The structure of the sample discriminator is described
below:
(1) Latent vector of the autoencoder + camera ID (la-

bel);
(2) A first convolutional layer of 32 filters of size 3×

3 with ReLU as an activation function, stride 2,
followed by a max-pooling layer;

(3) A second convolutional layer of 64 filters of size
3× 3 with ReLU as an activation function, stride
2, followed by a max-pooling layer;

(4) A third convolutional layer of 128 filters of size
3× 3 with ReLU as an activation function, stride
2, followed by a max-pooling layer;

(5) Fully connected 512 + dropout 0.5 + ReLU;
(6) Fully connected 128 + dropout 0.5 + ReLU.
The activation function is softmax.

All meta-parameters both for the proposed autoen-
coder, as well the discriminator were determined ex-
perimentally.

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setup and
Preliminaries

We compare the efficacy of identification of particu-
lar cameras both by proposed convolutional autoen-
coder (AE) and the following state-of-the-art meth-
ods: by Mandelli et al.’s (more details about Man-
delli’s method are presented in Subsec. 3.2), CNN by
Kirchner & Johnson (Kirchner and Johnson, 2020),
Lukás et al.’s algorithm (Lukás et al., 2006), Valsesia
et al.’s algorithm (Valsesia et al., 2015) and Li et al.’s
algorithm (Li et al., 2018). Both proposed AE and
CNNs are learned by 100 epochs. Worth mention-
ing that methods presented by Valsesia and Li gener-
ate compressed camera fingerprint representations by
their procedures. Due to paper limitations, we refer to
the mentioned authors’ papers to get acquainted with
cited algorithms.

We use a set of more than 60 modern cam-
eras (Bernacki and Scherer, 2023). The used cameras

include (i.a.): Canon EOS 1D X Mark II (C1), Canon
EOS 5D Mark IV (C2), Canon EOS 90D (C3), Canon
EOS M5 (C4), Canon EOS M50 (C5), Canon EOS R
(C6), Canon EOS R6 (C7), Canon EOS RP (C8), Fu-
jifilm X-T200 (F1), Nikon D5 (N1), Nikon D6 (N2),
Nikon D500 (N3), Nikon D780 (N4), Nikon D850
(N5), Nikon Z6 (N6), Nikon Z6 II (N7), Nikon Z7
(N8), Nikon Z7 II (N9), Sony A1 (S1), Sony A9 (S2).
At least 40 images per camera are used for learning.

As evaluation, we use standard accuracy (ACC)
measure, defined as:

ACC =
TP+TN

TP+TN+FP+FN

where TP/TN denotes “true positive/true negative”;
FP/FN stands for “false positive/false negative”. TP
denotes the number of cases correctly classified to a
specific class; TN refers to instances that are correctly
rejected. FP denotes cases incorrectly classified to the
specific class; FN is cases incorrectly rejected.

Experiments are held on a notebook Gigabyte
Aero equipped with the Intel Core i7-13700H CPU
with 32 gigabytes of RAM and Nvidia GeForce RTX
4070 GPU with 8 gigabytes of video memory. Scripts
for the proposed convolutional autoencoder and state-
of-the-art CNNs are implemented in Python under the
PyTorch framework with Nvidia CUDA support.

4.2 Results of Classification

Due to paper limitations, we do not present the results
of the cameras’ classification as confusion matrices.

Results showed that identification reaches a sim-
ilar efficacy, in both of the proposed autoencoder
and state-of-the-art procedures. All methods obtain
the average identification accuracy at 91-95% which
we may find satisfactory. In detail, the classifica-
tion of the compressed representation of fingerprints
generated by the proposed AE obtains 95% accuracy.
CNNs presented by Mandelli et al.’s and Kirchner &
Johnson also achieve 95%. The Lukás et al.’s algo-
rithm also reaches 95%, while Valsesia and Li et al.’s
reach a bit lower results, 92% and 91%, respectively.
This means that camera identification based on the la-
tent vector of the proposed autoencoder is as accurate
as state-of-the-art methods.

One may assume that proposed AE and CNN-
based methods would produce higher classification
accuracy, if their structure was deeper. However, re-
sults indicate that the proposed AE does not stand out
from the literature’s methods.
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4.3 Time Performance

Speed of Learning. We have compared the time
needed for learning the proposed convolutional au-
toencoder and CNN-based methods. Results may be
seen in Fig. 1. Results indicate that learning the pro-

Figure 1: Comparison of time needed for learning 100
epochs.

posed convolutional autoencoder requires less time
per epoch than using state-of-the-art CNNs. One
epoch using the proposed AE is passed over 0.1 of
a minute while using CNN turns to about 0.3 of a
minute. Therefore, the overall time for passing 100
epochs requires about 8 minutes for the proposed AE
and at least 15 minutes for CNNs. Thus, it confirms
the twice advantages over the literature methods. The
number of 100 epochs is necessary to obtain the iden-
tification accuracy at the level about 95% per device.

Fingerprint Size. We have compared the finger-
print weight both of the proposed autoencoder and
Lukás et al.’s algorithm. Results indicated that the
latent vector generated by the proposed autoencoder
(which as mentioned before we treat as the camera’s
fingerprint) is much smaller in terms of file weight
than fingerprints generated with Lukás et al.’s algo-
rithm. A text file storing a latent vector requires about
3-4 megabytes, while Lukás file representing a matrix
may weigh even about 120 megabytes. Decreasing
fingerprint weight may play a crucial role for foren-
sics centers that store such materials.

Calculating Compact Representations. In Fig. 2
we describe the time that is required to generate com-

Figure 2: Comparison of time needed for generating com-
pressed fingerprint representations.

pressed representations of cameras’ fingerprints by
Valsesia and Li et al.’s algorithms.

Results point out that Valsesia and Li methods re-
quire more time to generate their compressed repre-
sentations of fingerprints. The proposed AE needs
about 8-9 minutes to generate a latent vector based on
40 images, while the Valsesia and Li methods require
44 and 20 minutes, respectively. Thus, the proposed
method obtains better time performance than the con-
sidered methods from the literature.

Number of Epochs. We have analyzed, how classi-
fication accuracy increases with the number of train-
ing epochs. Intuitively, the more number of epochs,
the more classification accuracy. Results are pre-
sented in Fig. 3.

Figure 3: Comparison of training accuracy.
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The proposed AE requires a similar number of
training epochs to obtain comparable classification
accuracy as state-of-the-art CNNs. To achieve 90%
training accuracy, all methods need to be learned by
at least 85 epochs. Such a number of epochs is suf-
ficient to obtain about 90% identification accuracy.
However, training further for 100 epochs allows for
identification accuracy, as presented in the previous
section. This means that our proposed architecture
does not suffer both from training and identification
accuracy, compared to existing methods.

5 CONCLUSION

In this paper, we have proposed a method for in-
dividual source camera identification based on cam-
eras’ fingerprints. The solution was based on a con-
volutional autoencoder which was used to produce a
compact representation of cameras’ fingerprints. Ex-
tensive experimental evaluation conducted on a large
number of modern imaging devices and enhanced
with a statistical analysis confirmed the reliability of
the proposed method. Convolutional autoencoder-
based digital camera identification was realized with
high identification accuracy. The great advantage of
the proposed method is the possibility of storing cam-
eras’ fingerprints in a compact representation, which
may aim forensic centers to save space for storing
such fingerprints.

As future work, we consider a solution utilizing
multiple convolutional autoencoders. One may con-
sider a scenario utilizing one convolutional autoen-
coder per each camera which would be a useful foun-
dation for anomaly detection.
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