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Abstract: Unmanned Aerial Vehicles (UAVs) have become a focal point in various fields, prompting the need for effec-
tive detection and classification methodologies. This paper presents a thorough investigation into UAV audio
signatures using Mel-Frequency Cepstral Coefficients (MFCCs). We meticulously explore the influence of
varying MFCC quantities on classification accuracy across diverse UAV categories. Our analysis demonstrates
that employing 30 MFCCs produces promising outcomes, characterized by reduced variance and heightened
discriminatory capability compared to alternative configurations. Moreover, we introduce a novel image-based
dataset derived from our existing audio dataset, encompassing waveform, spectrogram, Mel filter bank, and
MFCC plots for 26 UAV categories, each comprising 100 audio files. This dataset facilitates comprehensive
analysis and the development of multimodal UAV detection systems. Our research highlights the significance
of leveraging diverse datasets and identifies future paths for UAV detection and classification research.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly re-
ferred to as drones, have emerged as versatile tools
for various applications, including surveillance, en-
vironmental monitoring, and search and rescue op-
erations. In these applications, audio data captured
by UAV drones plays a crucial role in understanding
environmental conditions, detecting anomalies, and
monitoring acoustic events of interest. However, ana-
lyzing UAV drone audio data poses several challenges
due to its complex and dynamic nature, requiring so-
phisticated signal processing techniques for effective
interpretation and understanding.

One widely used technique for analyzing audio
signals is the extraction of Mel-Frequency Cepstral
Coefficients (MFCCs), which provide a compact and
informative representation of the spectral character-
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istics of the audio signal. MFCCs have been exten-
sively employed in speech recognition, music analy-
sis, and sound classification tasks due to their abil-
ity to capture key acoustic features while reducing
the dimensionality of the feature space (Muda et al.,
2010)(Zheng et al., 2001)(Wang et al., 2022b)(Wang
et al., 2024). In recent years, there has been grow-
ing interest in exploring the visualization and inter-
pretation of MFCCs for UAV drone audio data anal-
ysis. Visualizing MFCC features enables researchers
and practitioners to gain insights into the underlying
acoustic properties of the audio recordings, identify
distinct sound events, and understand the temporal
and spectral dynamics present in the data (Stylianou,
2001)(Le et al., 2021).

This paper presents a comprehensive exploration
of techniques for visualizing and interpreting MFCCs
in the context of UAV drone audio data analysis. We
investigate various visualization methods, including
spectrograms, feature distributions, time series plots,
and cluster analysis, to elucidate the acoustic char-
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acteristics captured by MFCC features. By leverag-
ing these visualization techniques, we aim to enhance
our understanding of UAV drone audio data and fa-
cilitate the development of more effective signal pro-
cessing algorithms and machine learning models for
audio event detection, classification, and environmen-
tal monitoring tasks.

The remainder of this paper is organized as fol-
lows: Section 2 provides an overview of related work
in the field of audio signal processing and MFCC
analysis. Section 3 describes the methodology used
for extracting, visualizing, and interpreting MFCC
features from UAV drone audio data. In Section 4,
we present experimental results and insights gained
from our analysis of MFCC visualizations. Finally,
Section 4 concludes the paper and outlines future re-
search directions in the field of UAV drone audio data
analysis and visualization.

2 LITERATURE REVIEW

The analysis of audio data captured by Unmanned
Aerial Vehicles (UAVs) has garnered significant at-
tention in recent years due to its relevance in vari-
ous fields such as surveillance, environmental mon-
itoring, and search and rescue operations. In this con-
text, Mel-Frequency Cepstral Coefficients (MFCCs)
have emerged as a popular choice for analyzing UAV
drone audio data. Previous research, such as that con-
ducted by (Stylianou, 2001), (Muda et al., 2010) and
(Wang et al., 2022b), has demonstrated the effective-
ness of MFCCs in capturing the spectral characteris-
tics of audio signals while reducing dimensionality.
These coefficients offer a compact representation of
audio signals, making them well-suited for process-
ing large volumes of data collected by UAV drones in
real-world scenarios.

In addition, recent studies by (Wang et al., 2022b)
and (Kim et al., 2022) have delved into the classifi-
cation of drones carrying payloads and the detection
of target drones using deep learning models, respec-
tively. These studies underscore the evolving land-
scape of UAV drone audio data analysis and the sig-
nificance of innovative methodologies in advancing
the field.

Visualization techniques, including spectrograms,
time series plots, and feature distributions, play a cru-
cial role in interpreting MFCC features and under-
standing the underlying acoustic properties of UAV
drone audio data. (Altes, 1980) have highlighted
the importance of spectrograms in providing a time-
frequency representation of audio signals, aiding in
the identification of distinct sound events. Addition-

ally, cluster analysis techniques, as discussed by (Le
et al., 2021), have been employed to group similar
MFCC feature vectors together, enabling the iden-
tification of common acoustic patterns and clusters
within UAV drone audio data.

In our prior work (Wang et al., 2024), we intro-
duced a novel approach for UAV drone detection and
classification using audio signals, leveraging MFCCs
as key features. However, a key challenge identi-
fied was the limited availability of publicly accessi-
ble datasets tailored for audio-based UAV detection
and classification systems. To address this gap, we
curated a comprehensive dataset comprising a diverse
range of UAVs and developed a convolutional neural
network (CNN) model for UAV classification tasks.
The results demonstrated impressive accuracy, high-
lighting the efficacy of the proposed methodology and
dataset. Building upon this foundation, our current
study aims to explore additional modalities and en-
hance classification accuracy, contributing to the ad-
vancement of audio-based UAV detection and classi-
fication systems.

In recent years, there has been growing inter-
est in exploring the visualization and interpretation
of MFCCs and other audio features for UAV drone
audio data analysis. While existing research has
demonstrated the effectiveness of MFCCs for analyz-
ing UAV drone audio data, there remains a need for
further exploration of visualization and interpretation
techniques to gain deeper insights into the acoustic
characteristics of the recordings. By leveraging ad-
vances in signal processing, machine learning, and
data visualization, researchers can develop novel ap-
proaches for analyzing and interpreting MFCC fea-
tures in the context of UAV drone audio data analysis.
Notably, recent studies by (Wang et al., 2022b) and
(Kim et al., 2022) have delved into the classification
of drones carrying payloads and the detection of tar-
get drones using deep learning models, respectively.
These studies underscore the evolving landscape of
UAV drone audio data analysis and the significance
of innovative methodologies in advancing the field.

In the subsequent sections, we outline the method-
ology employed for the extraction, visualization, and
interpretation of Mel-Frequency Cepstral Coefficients
(MFCCs) from UAV drone audio data. Additionally,
we introduce a novel dataset derived from the orig-
inal audio dataset and provide detailed insights into
the experimental outcomes and observations derived
from our analysis of MFCC features.
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Table 1: UAV Audio Dataset 26 Classes.

Manufacture Model Drone Type Number of Files Duration (sec)
Self-build David Tricopter Outdoor 102 510
Self-build PhenoBee Outdoor 116 580
Autel Evo 2 Pro Outdoor 100 500
DJI Avata Outdoor 117 585
DJI FPV Outdoor 121 605
DJI Matrice 200 Outdoor 100 500
DJI Matrice 200 V2 Outdoor 105 525
DJI Matrice 600p Outdoor 118 590
DJI Mavic Air 2 Outdoor 131 655
DJI Mavic Mini 1 Outdoor 120 600
DJI Mini 2 Outdoor 116 580
DJI Mavic 2 Pro Outdoor 100 500
DJI Mavic 2s Outdoor 115 575
DJI Phantom 2 Outdoor 106 530
DJI Phantom 4 Outdoor 100 500
DJI RoboMaster TT Tello Indorr 118 590
Hasakee Q11 Indoor 108 540
Syma X5SW Indoor 110 550
Syma X5UW Indoor 105 525
Syma X8SW Indoor 108 540
Syma X20 Indoor 112 560
Syma X20P Indoor 104 520
Syma X26 Indoor 138 690
Swellpro Splash 3 plus Outdoor 120 600
Yuneec Typhoon H Plus Outdoor 113 565
UDI RC U46 Outdoor 101 505
Total - - 2842 14210

3 METHODOLOGY

3.1 Audio Data Collection

In the data collection process, audio data was gath-
ered from 26 different UAVs, detailed in Table 1.
Each UAV contributed at least 100 audio entries, with
each entry consisting of 5 seconds of flying drone au-
dio data. In total, 2678 audio files were collected,
amounting to 13390 seconds. UAVs were sourced
from various manufacturers, including DJI, Autel,
Syma, Yuneec, UDI, Hasakee, and self-built models.
Of the 26 UAVs, 24 were quadcopters. DJI, Autel
Robotics, Yuneec, and self-built UAVs were operated
and recorded in outdoor environments, while Syma,
UDI, Hasakee, and one DJI UAV were used for in-
door recordings.

The dataset also includes 1 tricopter and 1 hex-
acopter. Additionally, two self-built UAVs are part
of the dataset: David Tricopter and PhenoBee (Chen,
2023). David Tricopter, designed and built by David
Windestal, is equipped with AfroFlight Naze32 flight
control, weighs 2.6 lbs with the battery, and has a di-
ameter of 34 inches. PhenoBee, constructed by Ziling
Chen, is the largest UAV in the dataset, weighing ap-
proximately 23kg, with a height and diameter of 1.35

meters. PhenoBee operates on Ardupilot framework
with Cubepilot Cube Orange hardware.

No post-processing was conducted on the orig-
inal data, resulting in the presence of background
noises like wind, birds, and traffic in the outdoor au-
dio recordings. These recordings were also influenced
by changing weather conditions, spanning from sunny
and cloudy days with low wind speeds to foggy and
windy days. Wind speeds varied between 5mph to
13mph, falling below the threshold of a ”Moderate
Breeze” as classified by the National Weather Ser-
vice (Service, 2023). Additional weather metrics, in-
cluding temperatures ranging from 39 to 79 degrees
Fahrenheit and humidity levels averaging around 64%
during recording days, were also documented.

3.2 Mel-Frequency Cepstral
Coefficients Extraction

Mel-Frequency Cepstral Coefficients (MFCCs) are
widely used in audio signal processing for capturing
the spectral characteristics of audio signals. MFCCs
are derived from the Short-Time Fourier Transform
(STFT) of the audio signal and provide a compact rep-
resentation of the spectral envelope.
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3.2.1 Preprocessing

Before extracting MFCCs, the audio signal is prepro-
cessed to enhance its suitability for analysis. Com-
mon preprocessing steps include noise reduction, nor-
malization, and windowing to improve the signal-to-
noise ratio and minimize artifacts introduced during
signal acquisition and processing.

3.2.2 Short-Time Fourier Transform (STFT)

The Short-Time Fourier Transform (STFT) is com-
puted to obtain a time-frequency representation of the
audio signal. The STFT decomposes the audio sig-
nal into short overlapping windows, each of which is
Fourier transformed to obtain the frequency content
of the signal within that window.

Mathematically, the STFT of a signal x(t) at time
t and frequency ω is given by:

X(ω, t) =
∫

∞

−∞

x(τ)w(τ− t)e− jωτdτ

where w(τ− t) is a window function centered at time
t.

3.2.3 Mel Filterbank

The Mel Filterbank is used to approximate the non-
linear human auditory system’s frequency response.
It divides the audio spectrum into a set of overlapping
triangular filters, each corresponding to a specific fre-
quency range.

The transformation from linear frequency scale
(Hz) to Mel scale is given by:

M( f ) = 2595log10(1+
f

700
)

where M( f ) is the frequency in Mel scale and f is the
frequency in Hz.

3.2.4 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is applied to
the logarithmically-scaled filterbank outputs to decor-
relate the filterbank energies and obtain a compact
representation of the spectral envelope.

The n-th MFCC coefficient cn is computed as:

cn =
N−1

∑
k=0

log(A(k))cos
[

πn(k+0.5)
N

]
where A(k) represents the magnitude spectrum ob-
tained after applying the Mel filterbank, and N is the
number of filterbanks.

3.2.5 MFCC Coefficients

After applying the DCT, the resulting coefficients
represent the Mel-Frequency Cepstral Coefficients
(MFCCs). Typically, a subset of these coefficients
is selected for further analysis and feature extraction,
depending on the specific application requirements.

In this study, we extract M MFCC coefficients
from each audio segment to capture the relevant spec-
tral characteristics and reduce the dimensionality of
the feature space.

3.3 MFCC Feature Visualization,
Interpretation, and Analysis

Figure 1: Visualization of DJI Mini 2 Audio Recording Il-
lustration.

Mel-Frequency Cepstral Coefficients (MFCCs) serve
as fundamental features in the analysis of UAV drone
audio data. In this subsection, we delve into the vi-
sualization, interpretation, and analysis of MFCCs to
unveil meaningful insights and patterns within the au-
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dio dataset.
We adopted a variety of visualization techniques

to explore the spectral characteristics and temporal
dynamics inherent in the audio signals represented
by MFCCs. Leveraging Python libraries such as li-
brosa and matplotlib, we utilized spectrograms and
heatmaps to visualize the intensity of MFCC coeffi-
cients across both time and frequency bins. These
visualizations provide a comprehensive overview of
the spectral content and temporal variations present
within the audio signals. Figure 1 showcases four dis-
tinct plots extracted from a 5-second audio record-
ing captured by a DJI Mini 2 drone, representing
the audio signal in waveform format, the correspond-
ing spectrogram, the Mel Filterbank analysis, and the
MFCC coefficients.

The interpretation of MFCC features involves un-
derstanding the acoustic properties embedded within
individual coefficients and their contextual signifi-
cance in diverse sound phenomena and environmental
settings. Through a meticulous analysis of MFCC co-
efficient distributions and magnitudes across an array
of audio samples and environmental contexts, our ob-
jective is to discern unique patterns and characteristic
signatures emblematic of distinct UAV drone activi-
ties and acoustic occurrences. To achieve this, we ex-
tracted 10, 20, 30, and 40 MFCCs, as well as 32, 64,
and 128 coefficients, from the audio data. We com-
puted statistical metrics including mean and variance
for MFCCs extracted from each audio file, storing the
computed statistics in a CSV file. This approach fa-
cilitates further analysis and visualization to unearth
deeper insights into the underlying characteristics of
the audio data.

4 EXPERIMENTS AND RESULTS

4.1 UAV Audio Data Visualization
Dataset

We have extracted and curated a new image-based
dataset derived from our existing audio dataset (Wang
et al., 2024)(Wang et al., 2022a), expanding the scope
and versatility of our research efforts in UAV de-
tection and classification. The new dataset repre-
sents a significant augmentation of our previous audio
dataset, encompassing waveform, spectrogram, Mel
filter bank, and MFCC plots of 26 distinct categories
of UAV drones. Each category comprises 100 audio
files, resulting in a total of 2600 audio recordings.
Each category comprises 100 audio files, resulting in
a total of 2600 images, allowing for a comprehensive
analysis of acoustic features across various UAV plat-

forms. The inclusion of multiple audio representa-
tions enables a deeper exploration of the spectral and
temporal characteristics of UAV audio signals, pro-
viding valuable insights into the underlying patterns
and nuances present in different drone types.

The importance of the new dataset lies in its
potential to enrich our understanding of UAV au-
dio signatures and enhance the capabilities of audio-
based UAV detection and classification systems. By
leveraging a more extensive and diverse dataset, re-
searchers and practitioners can develop more robust
algorithms and models for UAV detection, classifica-
tion, and tracking tasks. The expanded dataset also fa-
cilitates the exploration of advanced machine learning
techniques, such as deep learning and transfer learn-
ing, which can further improve the accuracy and re-
liability of UAV audio analysis systems. Moreover,
the availability of a comprehensive dataset fosters col-
laboration and knowledge sharing within the research
community, encouraging the development of stan-
dardized evaluation metrics and benchmark datasets
for UAV audio analysis. Ultimately, the new dataset
serves as a valuable resource for advancing research
in UAV acoustics and contributing to the development
of more efficient and reliable UAV monitoring and
surveillance technologies.

4.2 Experiment

In the process of analyzing UAV drone audio data,
we embarked on a systematic procedure to extract
distinct sets of Mel-Frequency Cepstral Coefficients
(MFCCs) tailored to each UAV drone category. Ini-
tially, we organized the audio data into catego-
rized folders, each representing a unique UAV drone
model. Subsequently, we meticulously traversed
through these folders, meticulously loading individ-
ual audio files utilizing the powerful librosa library.
Employing the librosa.feature.mfcc() function, we ex-
tracted MFCC features from the audio signals, afford-
ing us the flexibility to specify the number of coeffi-
cients to extract. Through this methodical approach,
we computed essential statistical descriptors such as
mean and variance across the audio files for each UAV
drone category and for varying numbers of MFCC co-
efficients. This meticulous analysis provided us with
valuable insights into the acoustic profiles of the dif-
ferent UAV drone models, aiding in discerning dis-
tinctive acoustic signatures pertinent to each model’s
operation and functionality.
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4.3 Statistical Analysis

In Figure 2 and Figure 3, we analyzed the mean
and variance of Mel-Frequency Cepstral Coefficients
(MFCCs) features extracted from various UAV drone
audio data categories. We calculated the mean ranges
for each number of MFCC using mean±variance and
plotted the ranges as bar plots. The results from
the same drone category are stacked in the same bar
with different colors representing different numbers
of MFCC. Figure 2 compares four different coeffi-
cient numbers: 10, 20, 30, and 40, represented by
bars in red, green, blue, and yellow, respectively.
Meanwhile, Figure 3 examines three distinct coeffi-
cient counts: 32, 64, and 128, depicted by bars in red,
green, and blue, respectively.

The plotted results from Figure 2 show that the
calculated mean ranges decrease as the number of
MFCC increases from 10 to 30. A narrower interval
of mean values and fewer overlaps among the com-
puted mean of different types of drones can more ac-
curately reflect the distinct categories. Therefore, us-
ing 30 coefficients appears to be the optimal choice
for representing the different drone categories in our
dataset. In the first plot, the mean range for 30
MFCCs tends to exhibit a balance between captur-
ing relevant information and mitigating the effects
of noise. The variance of MFCCs tends to decrease
as the number of coefficients increases, indicating
a more robust representation of the audio features.
This observation is further supported by the second
plot, where the mean and variance of MFCCs for 30
frames show a favorable performance compared to
other frame sizes.

Figure 3 plotted the calculated feature mean range
for 32, 64, and 128 MFCCs. Beyond 32 MFCCs,
there are minimal changes observed in the plotted
mean ranges for both 64 and 128 MFCCs. Hence, we
can infer that utilizing 30 MFCCs effectively conveys
comparable information to 64 and 128.

Thus, based on the plots’ observations, 30 coef-
ficients seem to offer a promising balance between
feature richness and noise resilience in capturing the
acoustic characteristics of UAV drone audio data.
This choice may facilitate more effective classifica-
tion or analysis tasks leveraging MFCC-based fea-
tures. However, further experimentation and valida-
tion could provide additional insights into the optimal
configuration for feature extraction in this context.

Figure 2: Range Comparison with 10, 20, 30, 40 Numbers
of MFCCs.

Figure 3: Range Comparison with 32, 64, 128 Numbers of
MFCCs.

5 CONCLUSION

In conclusion, our study has provided valuable in-
sights into the realm of UAV audio analysis, partic-
ularly focusing on the extraction of Mel-frequency
cepstral coefficients (MFCCs) with varying numbers
of coefficients. The comprehensive exploration of
multiple UAV categories, each represented by distinct
audio datasets, has offered a nuanced understanding
of the impact of different MFCC configurations on
mean and variance statistics. Our findings suggest
that the selection of 30 coefficients in the MFCC ex-
traction process may be a promising choice, exhibit-
ing smaller variances across various UAV categories
compared to configurations with fewer or more coef-
ficients.

The visual representation of these results through
plots showcasing mean MFCC values for different
UAV categories and coefficients further aids in un-
derstanding the trends and variations. Notably, the
use of sub-figures illustrates the impact of the number
of coefficients (10, 20, 30, and 40) and the number
of frames (32, 64, and 128) on mean MFCC values.
The identified trends and potential optimal configu-
rations contribute valuable knowledge for researchers
and practitioners engaged in UAV audio analysis.
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Looking ahead, future research directions include
delving into advanced machine learning techniques
for feature selection, exploring alternative audio fea-
ture extraction methods, and addressing real-time pro-
cessing capabilities for UAV audio systems. Collab-
oration between researchers, industry stakeholders,
and regulatory bodies is crucial to advancing the field
and translating these findings into practical applica-
tions. While our study presents a substantial foun-
dation, acknowledging the need for further validation
across diverse UAV platforms, environmental condi-
tions, and real-world deployment challenges is im-
perative for realizing the full potential of UAV audio
analysis.
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