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Abstract: Handling nested data collections in large-scale distributed data structures poses considerable challenges in 
query processing, often resulting in substantial costs and error susceptibility. These challenges are exacerbated 
in scenarios involving skewed, nested data with irregular inner data collections. Processing such data demands 
costly operations, leading to extensive data duplication and imposing challenges in ensuring balanced 
distribution across partitions—consequently impeding performance and scalability. This work introduces an 
index bucketing framework that amalgamates upfront computations with data manipulation techniques, 
specifically focusing on flattening procedures. The framework resembles principles from the bucket spreading 
strategy, a parallel hash join method that aims to mitigate adverse implications of data duplication and 
information loss, while effectively addressing both skewed and irregularly nested structures. The efficacy of 
the proposed framework is assessed through evaluations conducted on prominent question-answering datasets 
such as QuAC and NewsQA, comparing its performance against the Pandas Python API and recursive, 
iterative flattening implementations. 

1 INTRODUCTION 

The widespread rise in big data analytics has spurred 
interest in query processing systems that allow for 
performing complex analytical tasks over distributed 
data structures of arbitrary data types—including 
nested data collections. Implementations of 
languages integrated with query systems are 
evidenced in large-scale distributed data processing 
platforms (Apache Flink. http://flink.apache.org/; 
Apache Spark, http://spark.apache.org/; Pandas 
Python, https://pandas.pydata.org/). Despite their 
vaunted support of nested data, these systems provide 
no direct processing for nested data manipulation 
over different distributed collections, whose values 
may themselves be collections.  

To stave off this penalty, declarative querying 
APIs have been employed for integrating data query 
languages with host programming languages’ data 
processing features using higher-order operations—
i.e., Google’s F1 query (Samwel et al., 2018). 

Apart from their intricate and computational 
challenges, unnesting and manipulating data 
collections inherently entail the generation of large 
amounts of duplicated data and redundant 
computations that significantly degrade the run-time 

performance of these techniques. These challenges are 
exacerbated for skewed nested data with irregular inner 
data collections – where loading unnecessarily large 
amounts of data to enforce balancing across partitions 
can lead to performance deficiency and error 
susceptibility (Diestelkämper et al., 2021; Smith, 
2021).  

To illustrate these challenges, consider the 
reading comprehension question-answering dataset. 
The dataset consists of questions where the answer to 
every question is a segment of text, or span, from the 
corresponding reading passage, or the question might 
be unanswerable with an indeterminant plausible 
answer (Fig. 1). 

The dataset articulates a schema that can be 
structured within the following relational database 
tables: Sources (src), Questions (qst), Answers (ans), 
and Plausible Answers (pls). For the sake of clarity 
and brevity, the number of records within a table is 
denoted as n. Table 1 comprises source records 
featuring id and context fields. The id field 
encompasses incremental integers (INC), i = 1, …, n, 
while context (ctx) stores textual excerpts (STR), 
extracted from source document paragraphs. Table 2 
incorporates id, text (txt), and i fields. The id field 
embodies incremental integers (INC), j = 1, …, n, 
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Figure 1: Question-answering dataset structure of 
answerable and unanswerable plausible answers. 

housing textual representations (STR) of questions. 
The i field functions as a foreign key (FK) referencing 
records in Table 1. Table 3 encompasses the id, 
answer start (srt), answer end, and j fields. The id 
field spans incremental integers (INC), k = 1, …, n, 
while start (srt) and end signify the index positions of 
answers within the context of the related resource 
dataset. The j field acts as a foreign key (FK) referring 
to records in Table 2. Table 4 accommodates 
plausible yet indeterminate answers to questions, 
acknowledging instances, where a definitive answer 
might be unattainable. Table 4 augments the dataset 
by mirroring fields akin to those in Table 3, with 
incremental integers (INC), l = 1, …, n, representing 
its incremental id. The j field acts as a foreign key 
(FK) referring to records in Table 2.  

Table 1: Sources (src).   Table 2: Questions (qst). 
id (i) Context (ctx) 
INC STR 

 

id (j) text (txt) i
INC STR FK

 

Table 3: Answers (ans).  Table 4: Plausible Answers  
        (pls). 

 id (k) start (srt) end j  id (l) Start (srt) end j
 INC INT INT FK  INC INT INT FK

These interconnected tables establish a nested 
relationship structure, delineating diverse data 
distribution patterns, while exemplifying irregular 
schema through the inclusion of Table 4. To further 
visualize the nested data structure portrayed by the 
relational Tables 1, 2, 3, and 4, consider the tree 
representations in Fig. 2 of an irregular nested 
structure with a given source (src), i of a context (ctx), 
and j questions (qst). A given question (qst), j of a text 
(txt) may have k answers (ans) or l plausible answers 
(pls) or both, where each answer (ans), k or plausible 
answer (pls), l has a start (srt) and end.  

 
Figure 2: Irregular question answering nested structure. 

With the tree-based representations, it becomes 
evident that sources might lack associated questions, 
and questions might encompass answers, plausible 
answers, both, or neither. This variability extends to 
the varying counts of answers and plausible answers 
within each question, along with fluctuations in the 
number of questions within each source. Such 
variability typifies an irregular nested structure 
marked by skewed data distribution. Next, we present 
the challenges associated with manipulating and 
information extraction of these nested data structures. 

2 CHALLENGES 

2.1 Duplication Explosion 

Duplication explosion is a phenomenon characterized 
by an overwhelming proliferation of duplicated data 
during the flattening process. As the term implies, this 
explosion also known as a data avalanche or data 
storm results in an excessive replication of data, aka 
N + 1 query problems or avalanches (Grust et al., 
2010). This often leads to severe memory utilization 
issues and potential system failures, especially when 
handling extensive datasets. Current flattening 
solutions, primarily relying on recursion, fail to 
mitigate the adverse effects of this rampant data 
duplication. 

2.2 Skewed Distribution 

Another hurdle to overcome in nested data collections 
is unbalanced distributions of information. When 
flattening such data, ensuring that each flattened 

Context: {" The Normans (Norman: Nourmands; French: 
Normands; Latin: Normanni) were the people who in 
the 10th and 11th centuries gave their name to 
Normandy, a region in France. They were descended 
from Norse ("Norman" comes from "Norseman") 
raiders and pirates from Denmark, Iceland and 
Norway who, under their leader Rollo, agreed to 
swear fealty to King Charles III of West Francia." 
} 
Answerable question: {"question": "In what country is 
Normandy located?", "id": 
"56ddde6b9a695914005b9628", "answers": [ {"text": 
"France", "answer_start": 159 } ], 
"is_impossible": false 
}  
Unanswerable question: {"plausible_answers": [ { "text": 
"Normans", "answer_start": 4 }c ], "question": 
"Who gave their name to Normandy in the 1000's and 
1100's", "id": "5ad39d53604f3c001a3fe8d1", 
"answers": [], "is_impossible": true  
} 
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instance contains all requisite keys introduces a 
problem akin to duplication explosion. However, in 
this case, missing keys necessitate filling with null 
values, requiring comprehensive parsing of the 
dataset to gather all keys. The challenge lies in 
distributing these missing keys throughout the 
flattened data. Strategies may involve parsing before 
flattening, allowing simultaneous filling, or 
conducting a secondary traversal after flattening, 
although the former, while superior, present 
implementation complexities (Smith et al., 2020). 

2.3 Irregular Schema 

Here, disparate data collections within the dataset 
may contain entirely different keys at the same 
nesting level, significantly complicating parsing and 
filling algorithms. Akin to skewed distribution, 
solving irregular schema involves filling in missing 
keys throughout the dataset. However, it presents an 
even more intricate challenge, where the endeavor to 
enforce balance across partitions escalates runtime 
inefficiencies and scalability limitations, 
exacerbating disk spillage and load imbalance issues 
(Smith et al., 2021). 

2.4 Information Loss 

The final challenge, information loss, poses some 
concern, describing the repercussions of processing 
nested data structures. The flattened data loses crucial 
information required for reconstructing the original 
nested form. Without incorporating metadata into the 
flattened dataset, reconstructing the initial 
hierarchical structure becomes unfeasible 
(Diestelkämper, 2021). Reverting to the original data 
necessitates reloading the data file or maintaining a 
copy of the original data, which could be time-
consuming and can proliferate memory utilization 
problems, especially with large datasets. 

To address these challenges, we propose a novel 
framework, which we refer to as index bucketing. The 
basis of our framework resembles principles from the 
bucket spreading strategy, a parallel hash join method 
that allows for handling irregular data distribution for 
relational database systems by utilizing bucketing 
mechanisms. The strategy aims to evenly distribute 
the load among processes, always fully exploiting 
(Kitsuregawa & Ogawa, 1990). Index bucketing 
draws on applying these principles to a tree-based 
nesting by mapping the data indexes corresponding to 
their respective hierarchical structure within the 
original data. 

3 FRAMEWORK 

This section delineates a concise implementation of 
the index bucketing framework provided by the 
following algorithmic classes (Algorithms 1, 2, 3, 4, 
5, 6). The framework is designed to address the 
aforementioned challenges, accentuating the 
framework's prowess in surmounting the diverse 
challenges encountered in nested data structure 
manipulation. 

3.1 Base Node – Algorithm 1 

As a foundational base class, the NODE class serves as 
the common blueprint inherited by the LEAF, 
BRANCH, and ROOT classes within the index 
bucketing framework. The NODE class lays out the 
essential structural elements shared across all 
inheriting classes: 
• NODE – This is the shared base constructor for all 

inheriting node classes and is responsible for 
setting the shared node attributes – kdx, value, 
level, and parent. The kdx attribute is a key or 
index value used for gathering index and key 
paths. The value attribute contains a collection of 
child NODE types or serves as a BASE value type 
for leaves. The level attribute is used to determine 
the depth of the node within the tree. The parent 
attribute is used to establish a link to the node’s 
parent node. 

• IBUCKET – By collecting a set of index paths, each 
aligning with the maximum depth of the nested 
data tree, this method is responsible for gathering 
the index bucket. 

Algorithm 1: Node Class. 

 
This standardized class structure established by 

the NODE class ensures coherence and consistency in 
defining and organizing nodes across the index 
bucketing framework. 

3.2 Leaf Node – Algorithm 2 

Within the framework, the LEAF class, along with its 
inheriting classes – INDEXEDLEAF and KEYEDLEAF – 
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fulfill the role of nodes encapsulating the terminus of 
nested data structures. These classes define essential 
functionalities pivotal to handling leaf nodes within 
the index bucketing framework: 
• LEAF – Rather than directly receiving the level 

parameter argument, the LEAF constructor derives 
its level value from the parent node, ensuring 
hierarchical consistency within the tree structure. 

• IBUCKET – This method accepts the maximum 
depth value of the tree as a parameter argument. It 
validates whether the depth value matches its 
level, subsequently returning its index path 
enclosed in an index bucket set object if true; 
otherwise, an empty index bucket set object is 
returned. Employing a bottom-to-top algorithm, 
this method is invoked by non-leaf nodes to 
update and collate their child leaf node value 
fields into a set collection. 

• FLATTEN – Disregarding the index path parameter 
argument, ipath, when invoked by the leaf nodes 
corresponding parent, this method returns a new 
mapping of the leaf node’s key path and value, 
adhering to a top-to-bottom calling sequence and 
resulting in a bottom-to-top return sequence. 

• IPATH & KPATH – Defined in the INDEXEDLEAF 
and KEYEDLEAF classes which serve to 
differentiate leaves based on their indexing 
nature: indexed with integers or keyed with 
strings during tree initialization, these class 
methods manage bottom-to-top index paths or key 
paths by integrating the leaf node’s kdx field along 
with its parent’s index or key path, respectively. 
In cases where index paths are gathered, the leaf 
node converts arrays of index values into tuples of 
the same size. 

Algorithm 2: Leaf Classes. 

 
By segregating leaves between indexed and keyed 

types during tree initialization, the classes circumvent 
the need for conditional evaluations. This strategic 
segregation bolsters performance and scalability, 
especially in managing larger datasets. 

3.3 Branch Node – Algorithm 3 

The BRANCH class integrates into various specialized 
nodes, including I2B, KIB, IKB, and K2B which are 
defined by inheriting combinations of INDEXED and 
KEYED classes with INDEXINGBRANCH and 
KEYINGBRANCH classes. 

• INDEXED – The INDEXED class encapsulates nodes 
indexed with integers, defining the IPATH method 
to append the current node’s index value to the 
parent’s index path. 

• KEYED – The KEYED class represents nodes keyed 
with strings, providing the KPATH method to 
append the node’s key value to the parent’s key 
path. 

• INDEXINGBRANCH – The INDEXINGBRANCH class 
inherits from BRANCH, designed for indexed 
branches. Its constructor sets attributes based on 
the provided values and parent node, and the 
FLATTEN method retrieves the corresponding child 
node based on the index path. 

• KEYINGBRANCH – The KEYINGBRANCH class, 
also extending BRANCH, targets keyed branches. 
Its constructor initializes attributes, and the 
FLATTEN method iterates through child nodes, 
updating a map with their flattened results. 

• I2B – The I2B class combines INDEXED and 
INDEXINGBRANCH functionalities. 

• KIB – The KIB class combines KEYED and 
INDEXINGBRANCH functionalities. 

• IKB – The IKB class combines INDEXED and 
KEYINGBRANCH functionalities. 

• K2B – The K2B class combines KEYED and 
KEYINGBRANCH functionalities. 

Algorithm 3: Branch Classes. 
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These specialized branch classes cater to different 
scenarios, providing distinct methods for handling 
various types of nested data collections. Each class 
offers unique functionalities for efficient execution, 
minimizing conditional evaluations during execution. 

3.4 Root Node – Algorithm 4 

The Root class, and its inheriting classes, mark the 
starting point of top-to-bottom processes and the 
conclusion of bottom-to-top processes within the 
index bucketing framework. 
• ROOT – Inheriting from the Node class, the base 

Root class undergoes constructor modification, 
accepting solely value and level parameters. Root 
nodes lack kdx or parent attributes. Consequently, 
both the IPATH and KPATH methods return new 
empty arrays. Notably, the FLATTEN method’s 
signature undergoes modification, now accepting 
the index bucket, ibucket, and flat template as 
parameters, and returning an array of flat 
mappings rather than a single mapping as seen in 
prior class definitions. 

• INDEXINGROOT – This class inherits the base 
ROOT class, but its constructor configures the root 
node’s level to 0 during instantiation, aligning its 
child node calling behavior with that of 
INDEXINGBRANCH nodes. Its FLATTEN method 
iterates over the index bucket, IBUCKET, 
dispatching each index path to the appropriate 
child nodes for further processing. An array of flat 
mappings, each of which is applied to a copy of 
the flat template, is gathered from the child nodes 
and is returned. 

• KEYINGROOT – Also inheriting from the base 
ROOT class, the KEYINGROOT class sets its level 
to -1 within the constructor since its child-calling 
behavior does not utilize the indexes from the 
index bucket. Its FLATTEN method operates by 
passing index paths, IPATH, from the index bucket, 
IBUCKET, to its child nodes for further processing. 
Likewise, an array of flat mappings, each of which 
is applied to a copy of the flat template, is 
gathered from the child nodes and is returned. 

 
By distinguishing between KEYINGROOT and 

INDEXINGROOT nodes, the tree’s root node ensures 
that subsequent level attributes are set appropriately 
during initialization and the index bucket is 
distributed accordingly during execution. 
 
 
 

Algorithm 4: Root Classes. 

 

3.5 Tree Structure – Algorithm 5 

The Tree class serves as the foundational structure to 
organize the nested dataset for the execution of the 
index bucketing algorithm. In the constructor, the 
initialization commences by setting the depth field to 
0 and creating an empty set object for the key bucket, 
kbucket. These fields are then used to analyze the data 
parameter’s nested structure while the tree itself is 
constructed and stored within the tree field which acts 
as a reference to the root node. Next, the algorithm 
gathers the index bucket, ibucket. Additionally, it 
constructs the template by iterating through the key 
bucket, compiling all key paths into a mapping with 
initial null values for each key path. This flat template 
formation streamlines the subsequent data 
organization process. 
• FLATTEN – To facilitate the flattening process, the 

Tree class defines its own FLATTEN method. This 
method initiates the root node’s FLATTEN method, 
passing along the index bucket and flat template. 

• LEAF – The LEAF method initializes and returns the 
relevant LEAF class node. Additionally, the LEAF 
method identifies the maximum depth of the tree 
and aggregates key paths into the key bucket. 

• BRANCH – The BRANCH method initializes and 
returns the relevant BRANCH class node. If the 
collection passed as data is empty, then the 
BRANCH method delegates the parameter 
arguments to the LEAF method with null passed for 
the data parameter’s argument. Otherwise, 
respective to the nested data types, the BRANCH 
method directs nested information to either another 
BRANCH method call or a LEAF method call. 
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• ROOT – The ROOT method initializes and returns 
the relevant ROOT class node. The ROOT method 
returns null when the data parameter is an empty 
collection, indicating that no data is present. 
Otherwise, respective to the nested data types, the 
ROOT method directs nested information to either 
BRANCH method call or a LEAF method call. 

Algorithm 5: Tree Class. 

 

3.6 Generator Alternative – Algorithm 
6 

To allow for the implementation flexibility of the 
index bucketing algorithm, ROOT and TREE class 
definitions are modified to transform the framework 
into a generator capable of delivering flattened data 
incrementally rather than in a single instance.  

Instead of the ROOT node managing the index 
bucket within its FLATTEN method, this responsibility 
is shifted to the TREE class’s FLATTEN method. 
Introducing a count field, initialized at 0, enables the  
 

Algorithm 6: Generator Implementation. 

 

tracking of index bucket progress. When the count 
reaches the end of the index bucket, it is reset to 0, 
and null is returned to signal completion. This 
generator-style implementation offers a controllable 
method to alleviate the adverse effects of duplication 
explosion which can otherwise overload memory 
usage. The adaptability of index bucketing as an 
algorithm allows for diverse implementations, 
offering various advantages to address challenges that 
stem from other recursion-intensive approaches. 

4 EVALUATION 

To assess the efficacy of the index bucketing 
algorithm, we evaluate the performance 
measurements across two prominent question-
answering datasets: QuAC (QuAC, Question 
Answering in Context. https://quac.ai/) and NewsQA 
(NewsQA: A Machine Comprehension Dataset. 
https://www.microsoft.com/en-us/research/publicati 
on/newsqa-machine-comprehension-dataset/). These 
datasets vary in file size: 74 MB and 151 MB 
respectively. Both datasets come with a myriad of 
restructuring challenges described below. 
• QuAC dataset requires that the background 

attribute be prepended to each paragraph’s 
context attribute, and data with 
“CANNOTANSWER” questions and questions 
without answers need to be filtered out (Fig. 3).  
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Figure 3: QuAC question answering dataset structure. 

• NewsQA dataset requires data extraction from 
start and end attributes, into a new answer 
attribute containing the indicated substring found 
in the text context, and data with 
“isQuestionBad” questions ne ed to be filtered 
out (Fig. 4). 

 
Figure 4: NewsQA question answering dataset structure. 

The index bucketing algorithm was juxtaposed 
against two alternative flattening implementations: 
one leveraging the Pandas Python API and another 
employing a basic solution that combines recursive 
and iterative techniques. Summarized in 0, Pandas 
Python is used as a benchmark for comparison, as it 
offers a competitive set of methods to flatten nested 
data collections, such as filling missing values, 

normalizing dictionaries into new columns, and 
exploding lists into new records. The basic 
implementation, on the other hand, serves to 
demonstrate the worst-case effects of each challenge. 
Evaluations span various subsets of each dataset 
incrementally from a Fibonacci-based sequence in the 
range of 0.1% to 100% to gauge scalability. Each 
subset underwent evaluations of the observed total 
time of initialization and execution runtimes. The 
average runtimes across the evaluations were 
recorded to ensure more robust assessments. 

 

Figure 5: Pandas Python implementation & basic execution 
pipelines.  

The ensuing graphs are organized by 
implementation and dataset, plotting subset size, 
measured in bytes, against runtime, measured in 
seconds. These evaluations were conducted on an 
Intel Core i7-8750H CPU, 32 GB RAM PC, clocking 
in at a base frequency of 2.20 GHz, and capable of 
reaching a maximum turbo frequency of 4.10 GHz. A 
stringent maximum time limit of thirty minutes was 
set to avoid prolonged executions, triggering a 
timeout exception if exceeded. Notably, the basic 
algorithm showcases an exponential growth pattern in 
total runtimes, vividly illustrating the cost escalations 
attributed to challenges that the index bucketing 
algorithm aims to address. Compared to Pandas 
Python implementation, our index bucketing 
framework shows a 24.7% faster total runtime with 
the QuAC dataset evaluations (0). With the NewsQA 
larger dataset, the Pandas Python encounters failures, 
which we suspect are attributed to duplicated data 
instances within the original dataset. While Pandas 
Python offers potential solutions to address these 
errors, implementing such remedies remains 
nontrivial to the best of our knowledge. 

By preserving the original dataset structure, index 
bucketing eliminates the need for dataset 
reacquisition during subsequent executions. For 
instance, considering a scenario where the flattening 
process is repeated 100 times for each 
implementation, the index bucketing showcases 
substantial performance superiority. Although 
multiple iterations of flattening might not align with 
typical real-world scenarios, this comparison  

{"text": "Miami ... contributed to this report.", 

"type": "train", 
 "questions": [{ 
 "isQuestionBad": 0.0, 
 "consensus": { 
 "s": 15, 
 "e": 32 
 }, 
 "validatedAnswers": [{ 
 "count": 2, 
 "s": 15, 
 "e": 32 
 }], 
 "answers": [{ 
 "sourcerAnswers": [{ 
 "s": 15, 
 "e": 32 
 }] 
 }], 
 "q": "Who reportedly suffers a seizure?", 
 "isAnswerAbsent": 0.0 
 }], 
 "storyId": 
"./cnn/stories/6ebb8ab29b94430fa68f0e256c7703d9a41
f8bff.story"}… 

{"text": "Miami ... contributed to this report.", 
 "type": "train", 
 "questions": [{ 
 "isQuestionBad": 0.0, 
 "consensus": { 
 "s": 15, 
 "e": 32 
 }, 
 "validatedAnswers": [{ 
 "count": 2, 
 "s": 15, 
 "e": 32 
 }], 
 "answers": [{ 
 "sourcerAnswers": [{ 
 "s": 15, 
 "e": 32 
 }] 
 }], 
 "q": "Who reportedly suffers a seizure?", 
 "isAnswerAbsent": 0.0 
 }], 
 "storyId": 
"./cnn/stories/6ebb8ab29b94430fa68f0e256c7703d9a41
f8bff.story"}… 
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Figure 6: Total runtime evaluation. 

demonstrates the index bucketing’s efficiency in 
executing additional feature implementations beyond 
flattening. Tasks like conditional filtering or attribute 
selection can be executed notably more efficiently 
with index bucketing compared to other 
implementations. The performance results exemplify 
the enduring advantages of the index bucketing 
approach in handling repetitive operations and 
processing complex tasks. 

5 RELATED WORK 

We have discussed nearly related work on employing 
declarative querying APIs for integrating data query 
languages with host programming languages’ data 
processing. Transforming nested queries into 
efficient forms using set-oriented operators has been 
investigated for decades in different contexts 
(Agrawal, 1988; Suciu, 1996). Work presented by 
(Ulrich, 2019) offers a review of query flattening and 
descriptions of query flattening in database theory. 
Obtaining flat outputs in the presence of collection 
queries was extended to multiset collections via 
normalization and conservative algorithms (Fegaras 
& Maier, 2000; Van den Bussche, 2001). Several 
applications of nested data models build on this 
calculus (Fegaras & Noor, 2018; Ricciotti & Cheney, 
2021).  

Another closely related work proposes a 
framework that translates nested collection queries 
into a semantically equivalent sequence of queries, 
where outputs may then be nested and efficiently 
evaluated (Smith et al., 2021). The framework 
flattens nested queries by utilizing a series of 

preprocessing and post-processing algorithms 
referred to as query shredding and query stitching. 
This has exhibited effectiveness in addressing 
information loss, duplication explosion, and irregular 
schema within the confines of traditional relational 
database environments. 

For resiliency against skewed distribution in 
query processing, (Rödiger et al., 2016)introduce a 
distributed join algorithm that detects skewness for 
relational data by using small approximate 
histograms and adapting the redistribution scheme to 
resolve load imbalances. Nonetheless, alleviating 
performance inefficiencies of flattening nested 
collections with skew problems remains an open 
question in the context of query processing (Smith et 
al., 2020). Our framework addresses the 
aforementioned challenges which also arise when 
manipulating these large nested data structures, and 
has shown the potential to extend its scope to the 
realm of query processing. 

6 CONCLUSIONS 

We introduce a novel framework, index bucketing, 
that aims to address the irregular schema, skewed 
distribution, information loss, and duplication 
explosion challenges in the manipulation of nested 
data structures. Our contributions can be summarized 
as the following. Employing proactive processes, 
computational overheads that impede performance 
are effectively offloaded during initialization, hence 
enabling a controllable solution for data duplication 
(Challenge A). Addressing skewed data distribution 
(Challenge B) before manipulating the nested 
structure. This is achieved by aggregating index paths 
into an index bucket, a mechanism facilitating 
efficient indexed-hashing access for nested data and 
ultimately producing flattened records. Addressing 
irregular schema (Challenge C) in the initialization 
process that includes constructing a flat template—a 
critical step ensuring every flattened record 
encompasses all absent keys filled with null values. 
The architecture of index bucketing, rooted in a 
platform-independent, tree-based algorithmic 
structure, aligns seamlessly with the original nested 
data, preserving its inherent structure and 
circumventing potential information loss (Challenge 
D). The work explores an intuitive framework for 
mitigating these challenges assessed on prominent 
question-answering datasets such as NewsQA and 
QuAC. Performance is compared against a 
competitive Pandas Python API implementation and 
a basic recursive, iterative implementation. Index 
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bucketing compares favorably against these 
alternatives, exemplifying the enduring advantages of 
the ability of the framework algorithm to handle 
repetitive operations and process complex nested data 
structures. Comparing the performance of index 
bucketing against larger datasets is a limitation of this 
study. More insights can be gleaned from further 
evaluations expanding to other datasets and 
implementations. Future work will, in part, explore 
the implications of index bucketing to handle 
repetitive operations and process complex nested data 
structures. 
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