
An Index Bucketing Framework to Support Data Manipulation and
Extraction of Nested Data Structures

Jeffrey Myers II and Yaser Mowafi
School of Engineering and Applied Sciences, Western Kentucky University, Bowling Green, Kentucky, U.S.A.

Keywords: Nested Data Structures, Irregular Schema, Skewed Distribution, Information Loss, Duplication Explosion.

Abstract: Handling nested data collections in large-scale distributed data structures poses considerable challenges in
query processing, often resulting in substantial costs and error susceptibility. These challenges are exacerbated
in scenarios involving skewed, nested data with irregular inner data collections. Processing such data demands
costly operations, leading to extensive data duplication and imposing challenges in ensuring balanced
distribution across partitions—consequently impeding performance and scalability. This work introduces an
index bucketing framework that amalgamates upfront computations with data manipulation techniques,
specifically focusing on flattening procedures. The framework resembles principles from the bucket spreading
strategy, a parallel hash join method that aims to mitigate adverse implications of data duplication and
information loss, while effectively addressing both skewed and irregularly nested structures. The efficacy of
the proposed framework is assessed through evaluations conducted on prominent question-answering datasets
such as QuAC and NewsQA, comparing its performance against the Pandas Python API and recursive,
iterative flattening implementations.

1 INTRODUCTION

The widespread rise in big data analytics has spurred
interest in query processing systems that allow for
performing complex analytical tasks over distributed
data structures of arbitrary data types—including
nested data collections. Implementations of
languages integrated with query systems are
evidenced in large-scale distributed data processing
platforms (Apache Flink. http://flink.apache.org/;
Apache Spark, http://spark.apache.org/; Pandas
Python, https://pandas.pydata.org/). Despite their
vaunted support of nested data, these systems provide
no direct processing for nested data manipulation
over different distributed collections, whose values
may themselves be collections.

To stave off this penalty, declarative querying
APIs have been employed for integrating data query
languages with host programming languages’ data
processing features using higher-order operations—
i.e., Google’s F1 query (Samwel et al., 2018).

Apart from their intricate and computational
challenges, unnesting and manipulating data
collections inherently entail the generation of large
amounts of duplicated data and redundant
computations that significantly degrade the run-time

performance of these techniques. These challenges are
exacerbated for skewed nested data with irregular inner
data collections – where loading unnecessarily large
amounts of data to enforce balancing across partitions
can lead to performance deficiency and error
susceptibility (Diestelkämper et al., 2021; Smith,
2021).

To illustrate these challenges, consider the
reading comprehension question-answering dataset.
The dataset consists of questions where the answer to
every question is a segment of text, or span, from the
corresponding reading passage, or the question might
be unanswerable with an indeterminant plausible
answer (Fig. 1).

The dataset articulates a schema that can be
structured within the following relational database
tables: Sources (src), Questions (qst), Answers (ans),
and Plausible Answers (pls). For the sake of clarity
and brevity, the number of records within a table is
denoted as n. Table 1 comprises source records
featuring id and context fields. The id field
encompasses incremental integers (INC), i = 1, …, n,
while context (ctx) stores textual excerpts (STR),
extracted from source document paragraphs. Table 2
incorporates id, text (txt), and i fields. The id field
embodies incremental integers (INC), j = 1, …, n,

Myers II, J. and Mowafi, Y.
An Index Bucketing Framework to Support Data Manipulation and Extraction of Nested Data Structures.
DOI: 10.5220/0012828800003838
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 1: KDIR, pages 191-199
ISBN: 978-989-758-716-0; ISSN: 2184-3228
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

191

Figure 1: Question-answering dataset structure of
answerable and unanswerable plausible answers.

housing textual representations (STR) of questions.
The i field functions as a foreign key (FK) referencing
records in Table 1. Table 3 encompasses the id,
answer start (srt), answer end, and j fields. The id
field spans incremental integers (INC), k = 1, …, n,
while start (srt) and end signify the index positions of
answers within the context of the related resource
dataset. The j field acts as a foreign key (FK) referring
to records in Table 2. Table 4 accommodates
plausible yet indeterminate answers to questions,
acknowledging instances, where a definitive answer
might be unattainable. Table 4 augments the dataset
by mirroring fields akin to those in Table 3, with
incremental integers (INC), l = 1, …, n, representing
its incremental id. The j field acts as a foreign key
(FK) referring to records in Table 2.

Table 1: Sources (src). Table 2: Questions (qst).
id (i) Context (ctx)
INC STR

id (j) text (txt) i
INC STR FK

Table 3: Answers (ans). Table 4: Plausible Answers
 (pls).

 id (k) start (srt) end j id (l) Start (srt) end j
 INC INT INT FK INC INT INT FK

These interconnected tables establish a nested
relationship structure, delineating diverse data
distribution patterns, while exemplifying irregular
schema through the inclusion of Table 4. To further
visualize the nested data structure portrayed by the
relational Tables 1, 2, 3, and 4, consider the tree
representations in Fig. 2 of an irregular nested
structure with a given source (src), i of a context (ctx),
and j questions (qst). A given question (qst), j of a text
(txt) may have k answers (ans) or l plausible answers
(pls) or both, where each answer (ans), k or plausible
answer (pls), l has a start (srt) and end.

Figure 2: Irregular question answering nested structure.

With the tree-based representations, it becomes
evident that sources might lack associated questions,
and questions might encompass answers, plausible
answers, both, or neither. This variability extends to
the varying counts of answers and plausible answers
within each question, along with fluctuations in the
number of questions within each source. Such
variability typifies an irregular nested structure
marked by skewed data distribution. Next, we present
the challenges associated with manipulating and
information extraction of these nested data structures.

2 CHALLENGES

2.1 Duplication Explosion

Duplication explosion is a phenomenon characterized
by an overwhelming proliferation of duplicated data
during the flattening process. As the term implies, this
explosion also known as a data avalanche or data
storm results in an excessive replication of data, aka
N + 1 query problems or avalanches (Grust et al.,
2010). This often leads to severe memory utilization
issues and potential system failures, especially when
handling extensive datasets. Current flattening
solutions, primarily relying on recursion, fail to
mitigate the adverse effects of this rampant data
duplication.

2.2 Skewed Distribution

Another hurdle to overcome in nested data collections
is unbalanced distributions of information. When
flattening such data, ensuring that each flattened

Context: {" The Normans (Norman: Nourmands; French:
Normands; Latin: Normanni) were the people who in
the 10th and 11th centuries gave their name to
Normandy, a region in France. They were descended
from Norse ("Norman" comes from "Norseman")
raiders and pirates from Denmark, Iceland and
Norway who, under their leader Rollo, agreed to
swear fealty to King Charles III of West Francia."
}
Answerable question: {"question": "In what country is
Normandy located?", "id":
"56ddde6b9a695914005b9628", "answers": [{"text":
"France", "answer_start": 159 }],
"is_impossible": false
}
Unanswerable question: {"plausible_answers": [{ "text":
"Normans", "answer_start": 4 }c], "question":
"Who gave their name to Normandy in the 1000's and
1100's", "id": "5ad39d53604f3c001a3fe8d1",
"answers": [], "is_impossible": true
}

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

192

instance contains all requisite keys introduces a
problem akin to duplication explosion. However, in
this case, missing keys necessitate filling with null
values, requiring comprehensive parsing of the
dataset to gather all keys. The challenge lies in
distributing these missing keys throughout the
flattened data. Strategies may involve parsing before
flattening, allowing simultaneous filling, or
conducting a secondary traversal after flattening,
although the former, while superior, present
implementation complexities (Smith et al., 2020).

2.3 Irregular Schema

Here, disparate data collections within the dataset
may contain entirely different keys at the same
nesting level, significantly complicating parsing and
filling algorithms. Akin to skewed distribution,
solving irregular schema involves filling in missing
keys throughout the dataset. However, it presents an
even more intricate challenge, where the endeavor to
enforce balance across partitions escalates runtime
inefficiencies and scalability limitations,
exacerbating disk spillage and load imbalance issues
(Smith et al., 2021).

2.4 Information Loss

The final challenge, information loss, poses some
concern, describing the repercussions of processing
nested data structures. The flattened data loses crucial
information required for reconstructing the original
nested form. Without incorporating metadata into the
flattened dataset, reconstructing the initial
hierarchical structure becomes unfeasible
(Diestelkämper, 2021). Reverting to the original data
necessitates reloading the data file or maintaining a
copy of the original data, which could be time-
consuming and can proliferate memory utilization
problems, especially with large datasets.

To address these challenges, we propose a novel
framework, which we refer to as index bucketing. The
basis of our framework resembles principles from the
bucket spreading strategy, a parallel hash join method
that allows for handling irregular data distribution for
relational database systems by utilizing bucketing
mechanisms. The strategy aims to evenly distribute
the load among processes, always fully exploiting
(Kitsuregawa & Ogawa, 1990). Index bucketing
draws on applying these principles to a tree-based
nesting by mapping the data indexes corresponding to
their respective hierarchical structure within the
original data.

3 FRAMEWORK

This section delineates a concise implementation of
the index bucketing framework provided by the
following algorithmic classes (Algorithms 1, 2, 3, 4,
5, 6). The framework is designed to address the
aforementioned challenges, accentuating the
framework's prowess in surmounting the diverse
challenges encountered in nested data structure
manipulation.

3.1 Base Node – Algorithm 1

As a foundational base class, the NODE class serves as
the common blueprint inherited by the LEAF,
BRANCH, and ROOT classes within the index
bucketing framework. The NODE class lays out the
essential structural elements shared across all
inheriting classes:
• NODE – This is the shared base constructor for all

inheriting node classes and is responsible for
setting the shared node attributes – kdx, value,
level, and parent. The kdx attribute is a key or
index value used for gathering index and key
paths. The value attribute contains a collection of
child NODE types or serves as a BASE value type
for leaves. The level attribute is used to determine
the depth of the node within the tree. The parent
attribute is used to establish a link to the node’s
parent node.

• IBUCKET – By collecting a set of index paths, each
aligning with the maximum depth of the nested
data tree, this method is responsible for gathering
the index bucket.

Algorithm 1: Node Class.

This standardized class structure established by

the NODE class ensures coherence and consistency in
defining and organizing nodes across the index
bucketing framework.

3.2 Leaf Node – Algorithm 2

Within the framework, the LEAF class, along with its
inheriting classes – INDEXEDLEAF and KEYEDLEAF –

An Index Bucketing Framework to Support Data Manipulation and Extraction of Nested Data Structures

193

fulfill the role of nodes encapsulating the terminus of
nested data structures. These classes define essential
functionalities pivotal to handling leaf nodes within
the index bucketing framework:
• LEAF – Rather than directly receiving the level

parameter argument, the LEAF constructor derives
its level value from the parent node, ensuring
hierarchical consistency within the tree structure.

• IBUCKET – This method accepts the maximum
depth value of the tree as a parameter argument. It
validates whether the depth value matches its
level, subsequently returning its index path
enclosed in an index bucket set object if true;
otherwise, an empty index bucket set object is
returned. Employing a bottom-to-top algorithm,
this method is invoked by non-leaf nodes to
update and collate their child leaf node value
fields into a set collection.

• FLATTEN – Disregarding the index path parameter
argument, ipath, when invoked by the leaf nodes
corresponding parent, this method returns a new
mapping of the leaf node’s key path and value,
adhering to a top-to-bottom calling sequence and
resulting in a bottom-to-top return sequence.

• IPATH & KPATH – Defined in the INDEXEDLEAF
and KEYEDLEAF classes which serve to
differentiate leaves based on their indexing
nature: indexed with integers or keyed with
strings during tree initialization, these class
methods manage bottom-to-top index paths or key
paths by integrating the leaf node’s kdx field along
with its parent’s index or key path, respectively.
In cases where index paths are gathered, the leaf
node converts arrays of index values into tuples of
the same size.

Algorithm 2: Leaf Classes.

By segregating leaves between indexed and keyed

types during tree initialization, the classes circumvent
the need for conditional evaluations. This strategic
segregation bolsters performance and scalability,
especially in managing larger datasets.

3.3 Branch Node – Algorithm 3

The BRANCH class integrates into various specialized
nodes, including I2B, KIB, IKB, and K2B which are
defined by inheriting combinations of INDEXED and
KEYED classes with INDEXINGBRANCH and
KEYINGBRANCH classes.

• INDEXED – The INDEXED class encapsulates nodes
indexed with integers, defining the IPATH method
to append the current node’s index value to the
parent’s index path.

• KEYED – The KEYED class represents nodes keyed
with strings, providing the KPATH method to
append the node’s key value to the parent’s key
path.

• INDEXINGBRANCH – The INDEXINGBRANCH class
inherits from BRANCH, designed for indexed
branches. Its constructor sets attributes based on
the provided values and parent node, and the
FLATTEN method retrieves the corresponding child
node based on the index path.

• KEYINGBRANCH – The KEYINGBRANCH class,
also extending BRANCH, targets keyed branches.
Its constructor initializes attributes, and the
FLATTEN method iterates through child nodes,
updating a map with their flattened results.

• I2B – The I2B class combines INDEXED and
INDEXINGBRANCH functionalities.

• KIB – The KIB class combines KEYED and
INDEXINGBRANCH functionalities.

• IKB – The IKB class combines INDEXED and
KEYINGBRANCH functionalities.

• K2B – The K2B class combines KEYED and
KEYINGBRANCH functionalities.

Algorithm 3: Branch Classes.

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

194

These specialized branch classes cater to different
scenarios, providing distinct methods for handling
various types of nested data collections. Each class
offers unique functionalities for efficient execution,
minimizing conditional evaluations during execution.

3.4 Root Node – Algorithm 4

The Root class, and its inheriting classes, mark the
starting point of top-to-bottom processes and the
conclusion of bottom-to-top processes within the
index bucketing framework.
• ROOT – Inheriting from the Node class, the base

Root class undergoes constructor modification,
accepting solely value and level parameters. Root
nodes lack kdx or parent attributes. Consequently,
both the IPATH and KPATH methods return new
empty arrays. Notably, the FLATTEN method’s
signature undergoes modification, now accepting
the index bucket, ibucket, and flat template as
parameters, and returning an array of flat
mappings rather than a single mapping as seen in
prior class definitions.

• INDEXINGROOT – This class inherits the base
ROOT class, but its constructor configures the root
node’s level to 0 during instantiation, aligning its
child node calling behavior with that of
INDEXINGBRANCH nodes. Its FLATTEN method
iterates over the index bucket, IBUCKET,
dispatching each index path to the appropriate
child nodes for further processing. An array of flat
mappings, each of which is applied to a copy of
the flat template, is gathered from the child nodes
and is returned.

• KEYINGROOT – Also inheriting from the base
ROOT class, the KEYINGROOT class sets its level
to -1 within the constructor since its child-calling
behavior does not utilize the indexes from the
index bucket. Its FLATTEN method operates by
passing index paths, IPATH, from the index bucket,
IBUCKET, to its child nodes for further processing.
Likewise, an array of flat mappings, each of which
is applied to a copy of the flat template, is
gathered from the child nodes and is returned.

By distinguishing between KEYINGROOT and

INDEXINGROOT nodes, the tree’s root node ensures
that subsequent level attributes are set appropriately
during initialization and the index bucket is
distributed accordingly during execution.

Algorithm 4: Root Classes.

3.5 Tree Structure – Algorithm 5

The Tree class serves as the foundational structure to
organize the nested dataset for the execution of the
index bucketing algorithm. In the constructor, the
initialization commences by setting the depth field to
0 and creating an empty set object for the key bucket,
kbucket. These fields are then used to analyze the data
parameter’s nested structure while the tree itself is
constructed and stored within the tree field which acts
as a reference to the root node. Next, the algorithm
gathers the index bucket, ibucket. Additionally, it
constructs the template by iterating through the key
bucket, compiling all key paths into a mapping with
initial null values for each key path. This flat template
formation streamlines the subsequent data
organization process.
• FLATTEN – To facilitate the flattening process, the

Tree class defines its own FLATTEN method. This
method initiates the root node’s FLATTEN method,
passing along the index bucket and flat template.

• LEAF – The LEAF method initializes and returns the
relevant LEAF class node. Additionally, the LEAF
method identifies the maximum depth of the tree
and aggregates key paths into the key bucket.

• BRANCH – The BRANCH method initializes and
returns the relevant BRANCH class node. If the
collection passed as data is empty, then the
BRANCH method delegates the parameter
arguments to the LEAF method with null passed for
the data parameter’s argument. Otherwise,
respective to the nested data types, the BRANCH
method directs nested information to either another
BRANCH method call or a LEAF method call.

An Index Bucketing Framework to Support Data Manipulation and Extraction of Nested Data Structures

195

• ROOT – The ROOT method initializes and returns
the relevant ROOT class node. The ROOT method
returns null when the data parameter is an empty
collection, indicating that no data is present.
Otherwise, respective to the nested data types, the
ROOT method directs nested information to either
BRANCH method call or a LEAF method call.

Algorithm 5: Tree Class.

3.6 Generator Alternative – Algorithm
6

To allow for the implementation flexibility of the
index bucketing algorithm, ROOT and TREE class
definitions are modified to transform the framework
into a generator capable of delivering flattened data
incrementally rather than in a single instance.

Instead of the ROOT node managing the index
bucket within its FLATTEN method, this responsibility
is shifted to the TREE class’s FLATTEN method.
Introducing a count field, initialized at 0, enables the

Algorithm 6: Generator Implementation.

tracking of index bucket progress. When the count
reaches the end of the index bucket, it is reset to 0,
and null is returned to signal completion. This
generator-style implementation offers a controllable
method to alleviate the adverse effects of duplication
explosion which can otherwise overload memory
usage. The adaptability of index bucketing as an
algorithm allows for diverse implementations,
offering various advantages to address challenges that
stem from other recursion-intensive approaches.

4 EVALUATION

To assess the efficacy of the index bucketing
algorithm, we evaluate the performance
measurements across two prominent question-
answering datasets: QuAC (QuAC, Question
Answering in Context. https://quac.ai/) and NewsQA
(NewsQA: A Machine Comprehension Dataset.
https://www.microsoft.com/en-us/research/publicati
on/newsqa-machine-comprehension-dataset/). These
datasets vary in file size: 74 MB and 151 MB
respectively. Both datasets come with a myriad of
restructuring challenges described below.
• QuAC dataset requires that the background

attribute be prepended to each paragraph’s
context attribute, and data with
“CANNOTANSWER” questions and questions
without answers need to be filtered out (Fig. 3).

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

196

Figure 3: QuAC question answering dataset structure.

• NewsQA dataset requires data extraction from
start and end attributes, into a new answer
attribute containing the indicated substring found
in the text context, and data with
“isQuestionBad” questions ne ed to be filtered
out (Fig. 4).

Figure 4: NewsQA question answering dataset structure.

The index bucketing algorithm was juxtaposed
against two alternative flattening implementations:
one leveraging the Pandas Python API and another
employing a basic solution that combines recursive
and iterative techniques. Summarized in 0, Pandas
Python is used as a benchmark for comparison, as it
offers a competitive set of methods to flatten nested
data collections, such as filling missing values,

normalizing dictionaries into new columns, and
exploding lists into new records. The basic
implementation, on the other hand, serves to
demonstrate the worst-case effects of each challenge.
Evaluations span various subsets of each dataset
incrementally from a Fibonacci-based sequence in the
range of 0.1% to 100% to gauge scalability. Each
subset underwent evaluations of the observed total
time of initialization and execution runtimes. The
average runtimes across the evaluations were
recorded to ensure more robust assessments.

Figure 5: Pandas Python implementation & basic execution
pipelines.

The ensuing graphs are organized by
implementation and dataset, plotting subset size,
measured in bytes, against runtime, measured in
seconds. These evaluations were conducted on an
Intel Core i7-8750H CPU, 32 GB RAM PC, clocking
in at a base frequency of 2.20 GHz, and capable of
reaching a maximum turbo frequency of 4.10 GHz. A
stringent maximum time limit of thirty minutes was
set to avoid prolonged executions, triggering a
timeout exception if exceeded. Notably, the basic
algorithm showcases an exponential growth pattern in
total runtimes, vividly illustrating the cost escalations
attributed to challenges that the index bucketing
algorithm aims to address. Compared to Pandas
Python implementation, our index bucketing
framework shows a 24.7% faster total runtime with
the QuAC dataset evaluations (0). With the NewsQA
larger dataset, the Pandas Python encounters failures,
which we suspect are attributed to duplicated data
instances within the original dataset. While Pandas
Python offers potential solutions to address these
errors, implementing such remedies remains
nontrivial to the best of our knowledge.

By preserving the original dataset structure, index
bucketing eliminates the need for dataset
reacquisition during subsequent executions. For
instance, considering a scenario where the flattening
process is repeated 100 times for each
implementation, the index bucketing showcases
substantial performance superiority. Although
multiple iterations of flattening might not align with
typical real-world scenarios, this comparison

{"text": "Miami ... contributed to this report.",

"type": "train",
 "questions": [{
 "isQuestionBad": 0.0,
 "consensus": {
 "s": 15,
 "e": 32
 },
 "validatedAnswers": [{
 "count": 2,
 "s": 15,
 "e": 32
 }],
 "answers": [{
 "sourcerAnswers": [{
 "s": 15,
 "e": 32
 }]
 }],
 "q": "Who reportedly suffers a seizure?",
 "isAnswerAbsent": 0.0
 }],
 "storyId":
"./cnn/stories/6ebb8ab29b94430fa68f0e256c7703d9a41
f8bff.story"}…

{"text": "Miami ... contributed to this report.",
 "type": "train",
 "questions": [{
 "isQuestionBad": 0.0,
 "consensus": {
 "s": 15,
 "e": 32
 },
 "validatedAnswers": [{
 "count": 2,
 "s": 15,
 "e": 32
 }],
 "answers": [{
 "sourcerAnswers": [{
 "s": 15,
 "e": 32
 }]
 }],
 "q": "Who reportedly suffers a seizure?",
 "isAnswerAbsent": 0.0
 }],
 "storyId":
"./cnn/stories/6ebb8ab29b94430fa68f0e256c7703d9a41
f8bff.story"}…

An Index Bucketing Framework to Support Data Manipulation and Extraction of Nested Data Structures

197

Figure 6: Total runtime evaluation.

demonstrates the index bucketing’s efficiency in
executing additional feature implementations beyond
flattening. Tasks like conditional filtering or attribute
selection can be executed notably more efficiently
with index bucketing compared to other
implementations. The performance results exemplify
the enduring advantages of the index bucketing
approach in handling repetitive operations and
processing complex tasks.

5 RELATED WORK

We have discussed nearly related work on employing
declarative querying APIs for integrating data query
languages with host programming languages’ data
processing. Transforming nested queries into
efficient forms using set-oriented operators has been
investigated for decades in different contexts
(Agrawal, 1988; Suciu, 1996). Work presented by
(Ulrich, 2019) offers a review of query flattening and
descriptions of query flattening in database theory.
Obtaining flat outputs in the presence of collection
queries was extended to multiset collections via
normalization and conservative algorithms (Fegaras
& Maier, 2000; Van den Bussche, 2001). Several
applications of nested data models build on this
calculus (Fegaras & Noor, 2018; Ricciotti & Cheney,
2021).

Another closely related work proposes a
framework that translates nested collection queries
into a semantically equivalent sequence of queries,
where outputs may then be nested and efficiently
evaluated (Smith et al., 2021). The framework
flattens nested queries by utilizing a series of

preprocessing and post-processing algorithms
referred to as query shredding and query stitching.
This has exhibited effectiveness in addressing
information loss, duplication explosion, and irregular
schema within the confines of traditional relational
database environments.

For resiliency against skewed distribution in
query processing, (Rödiger et al., 2016)introduce a
distributed join algorithm that detects skewness for
relational data by using small approximate
histograms and adapting the redistribution scheme to
resolve load imbalances. Nonetheless, alleviating
performance inefficiencies of flattening nested
collections with skew problems remains an open
question in the context of query processing (Smith et
al., 2020). Our framework addresses the
aforementioned challenges which also arise when
manipulating these large nested data structures, and
has shown the potential to extend its scope to the
realm of query processing.

6 CONCLUSIONS

We introduce a novel framework, index bucketing,
that aims to address the irregular schema, skewed
distribution, information loss, and duplication
explosion challenges in the manipulation of nested
data structures. Our contributions can be summarized
as the following. Employing proactive processes,
computational overheads that impede performance
are effectively offloaded during initialization, hence
enabling a controllable solution for data duplication
(Challenge A). Addressing skewed data distribution
(Challenge B) before manipulating the nested
structure. This is achieved by aggregating index paths
into an index bucket, a mechanism facilitating
efficient indexed-hashing access for nested data and
ultimately producing flattened records. Addressing
irregular schema (Challenge C) in the initialization
process that includes constructing a flat template—a
critical step ensuring every flattened record
encompasses all absent keys filled with null values.
The architecture of index bucketing, rooted in a
platform-independent, tree-based algorithmic
structure, aligns seamlessly with the original nested
data, preserving its inherent structure and
circumventing potential information loss (Challenge
D). The work explores an intuitive framework for
mitigating these challenges assessed on prominent
question-answering datasets such as NewsQA and
QuAC. Performance is compared against a
competitive Pandas Python API implementation and
a basic recursive, iterative implementation. Index

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

198

bucketing compares favorably against these
alternatives, exemplifying the enduring advantages of
the ability of the framework algorithm to handle
repetitive operations and process complex nested data
structures. Comparing the performance of index
bucketing against larger datasets is a limitation of this
study. More insights can be gleaned from further
evaluations expanding to other datasets and
implementations. Future work will, in part, explore
the implications of index bucketing to handle
repetitive operations and process complex nested data
structures.

REFERENCES

Agrawal, R. (1988). Alpha: an extension of relational
algebra to express a class of recursive queries. IEEE
Transactions on Software Engineering, 14(7), 879-885.
https://doi.org/10.1109/32.42731

Apache Flink. http://flink.apache.org/.
Apache Spark, http://spark.apache.org/.
Diestelkämper, R. (2021). Explaining existing and missing

results over nested data in big data analytics systems
http://dx.doi.org/10.18419/opus-12052.

Diestelkämper, R., Lee, S., Herschel, M., & Glavic, B.
(2021). To Not Miss the Forest for the Trees - A Holistic
Approach for Explaining Missing Answers over Nested
Data Proceedings of the 2021 International Conference
on Management of Data, Virtual Event, China.
https://doi.org/10.1145/ 3448016.3457249.

Fegaras, L., & Maier, D. (2000). Optimizing object queries
using an effective calculus. ACM Trans. Database
Syst., 25(4), 457–516. https://doi.org/10.1145/3776
74.3 77676.

Fegaras, L., & Noor, M. H. (2018, 2-7 July 2018). Compile-
Time Code Generation for Embedded Data-Intensive
Query Languages. 2018 IEEE International Congress
on Big Data (BigData Congress), doi: 10.1109/
BigDataCongress.2018.00008.

Grust, T., Rittinger, J., & Schreiber, T. (2010). Avalanche-
safe LINQ compilation. Proc. VLDB Endow., 3(1–2),
162–172. https://doi.org/10.14778/ 1920841.1920866.

Kitsuregawa, M., & Ogawa, Y. (1990). Bucket Spreading
Parallel Hash: A New, Robust, Parallel Hash Join
Method for Data Skew in the Super Database Computer
(SDC). Vldb '90, 210–221.

NewsQA: A Machine Comprehension Dataset. https://
www.microsoft.com/en-us/research/publication/news q
a-machine-comprehension-dataset/.

Pandas Python, https://pandas.pydata.org/.
QuAC, Question Answering in Context. https://quac.ai/.

https://quac.ai/.
Ricciotti, W., & Cheney, J. (2021). Query Lifting.

Programming Languages and Systems, 12648, 579 -
606.

Rödiger, W., Idicula, S., Kemper, A., & Neumann, T.
(2016, 16-20 May 2016). Flow-Join: Adaptive skew

handling for distributed joins over high-speed
networks. 2016 IEEE 32nd International Conference on
Data Engineering (ICDE), https://doi.org/10.1109/
ICDE.2016.7498324.

Samwel, B., Cieslewicz, J., Handy, B., Govig, J., Venetis,
P., Yang, C., Peters, K., Shute, J., Tenedorio, D., Apte,
H., Weigel, F., Wilhite, D., Yang, J., Xu, J., Li, J.,
Yuan, Z., Chasseur, C., Zeng, Q., Rae, I., Biyani, A.,
Harn, A., Xia, Y., Gubichev, A., El-Helw, A., Erling,
O., Yan, Z., Yang, M., Wei, Y., Do, T., Zheng, C.,
Graefe, G., Sardashti, S., Aly, A. M., Agrawal, D.,
Gupta, A., & Venkataraman, S. (2018). F1 query:
declarative querying at scale. Proc. VLDB Endow.,
11(12), 1835–1848. https://doi.org/10.14778/32298
63.3229871.

Smith, J. (2021). Declarative nested data transformations
at scale and biomedical applications, University of
Oxford.

Smith, J., Benedikt, M., Moore, B., & Nikolic, M. (2021).
TraNCE: transforming nested collections efficiently.
Proc. VLDB Endow., 14(12), 2727–2730.
https://doi.org/10.14778/3476311.3476330.

Smith, J., Benedikt, M., Nikolic, M., & Shaikhha, A.
(2020). Scalable querying of nested data. arXiv preprint
arXiv:2011.06381.

Suciu, D. (1996). Parallel programming languages for
collections, University of Pennsylvania.

Ulrich, A. (2019). Query Flattening and the Nested Data
Parallelism Paradigm Universität Tübingen].

Van den Bussche, J. (2001). Simulation of the nested
relational algebra by the flat relational algebra, with an
application to the complexity of evaluating powerset
algebra expressions. Theoretical Computer Science,
254(1-2), 363-377.

An Index Bucketing Framework to Support Data Manipulation and Extraction of Nested Data Structures

199

