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Abstract: This paper focuses on learning models that can detect fraudulent websites accurately enough to help users 

avoid becoming a victim of fraud. Both classical machine learning methods and neural network learning were 

used for modelling. Attributes were extracted from the content and the structure of fraudulent websites, as 

well as attributes derived from the way of their using, to generate the detection models. The best model was 

used in an application in the form of a Google Chrome browser extension. The application may be beneficial 

in the future for new users and older people who are more prone to believe scammers. By focusing on key 

factors such as URL syntax, hostname legitimacy, and other special attributes, the app can help prevent 

financial loss and protect individuals and businesses from online fraud. 

1 INTRODUCTION 

The Internet gives us many advantages, but there are 

also disadvantages and threats to this wonderful tool. 

Hacker attacks, stolen personal data and whitewashed 

accounts are often mentioned in the media. Many 

people still fall into the trap of scammers even though 

there is a huge effort by the authorities to stop these 

scams. What do these scams look like? Can they be 

stopped? How can such scams be avoided and how 

can internet users be alerted using a smart app? This 

article offers answers to these questions and possible 

solutions. 

Phishing attacks have become a major concern in 

the digital age, posing significant threats to users' 

online security. Detecting and preventing phishing 

websites is crucial to protect individuals and 

organizations from falling victim to cybercrimes.  

The Australian Government's website 

(scamwatch.gov.au) shows how the number of 

reports of fraud and the amount of money lost has 

evolved. In 2019, Australians lost more than $142 

million to scammers. In 2020 it was $175 million in 

2021 - $323 million and in the first 3 months of 2022 

alone people lost $167 million to scams, more than in 

the whole of 2019. As we can see, this problem is only 

getting worse. 
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Large companies are also falling victim to internet 

fraud. For example, if a hacker gains access to an 

employee's email of a company and sends a phishing 

page that looks like a company login sent to the 

employee from a supervisor, the hacker can gain 

access to sensitive company information and the 

company can suffer major financial losses. Or the 

fraudster will spread a link to a page that looks like a 

legitimate news site and inform the public about a 

false event, which in turn will negatively affect stock 

growth (Ciampaglia, 2018). 

The results of our research into the ability to 

model fraudulent behaviour on the web have been 

used to develop an application that can detect that a 

user is on a fraudulent website and inform the user if 

the application service is activated. We think that this 

application will be especially helpful for new Internet 

users and older people, who are most often victims of 

such scams and are the most vulnerable. 

2 FRAUDULENT WEB SITES 

The Internet has always been relatively secure in the 

realm of websites run by large companies, well-

known brands and other technology giants. Payment 

gateways on online stores are very well secured with 
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two/three and multi-factor authentication. But 

sometimes it happens that we get to a website that 

pretends to be trustworthy but a fraudster has created 

an exact copy of the site. We want to log in to our 

account but logging in doesn't work and our password 

and email have just been sent to the scammer. This 

method of creating a fraudulent site is called spoofing 

in English. Nowadays, DDoS attacks became a real 

problem. The number of DDoS attacks in 2021 has 

been recorded as high as 9.75 million (Vermer, 2021). 

Although DDoS attacks are more frequent, modern 

servers can handle them more easily than in the past. 

In 2021, hackers managed to obtain just one 

single password to the system of the US oil pipeline 

company Colonial Pipeline (Turton, 2021). The 

hackers gained access to the system after an employee 

entered the password to a fraudulent website posing 

as the company's VPN. The hackers then locked down 

the entire system using ransomware and demanded a 

ransom of 75 bitcoins ($4.4 million at the time).  

In July 2020, Twitter employees were the target 

of a phishing attack, and hackers managed to gain 

access to the accounts of many celebrities as Elon 

Musk, Bill Gates, and shared the message that if you 

send Bitcoin to a certain Bitcoin address, your deposit 

will be doubled (Leswing, 2021). The scam was also 

shared by hacked accounts of well-known financiers 

such as Mike Bloomberg and Warren Buffet. This 

was an example of a scam called a Ponzi scheme. 

Factors such as page load time, SSL protocol and 

contact details play an important role in identifying a 

fraudulent site (Fedorko, 2020). If the loading time of 

a web page is longer than 5 seconds, it causes a 

decrease in the credibility of the page. According to 

the latest rules, all websites should have SSL. It is the 

"https:" at the beginning of the URL. The presence of 

SSL increases the credibility of the website. Also, 

visibly accessible contact information - phone 

number, e-mail address, brief information about the 

company, for example, physical address, ID number, 

etc. increase the credibility of the website. 

2.1 Related Works 

Several studies have focused on what fraudulent sites 

have in common and how big the differences are 

between phishing sites, fraudulent payment gateways, 

fraudulent online stores and sites that pretend to be 

legitimate news organizations. For example, one of the 

common features that fraudulent sites have in common 

are invalid certificates and many buttons with broken 

links (Fedorko, 2020). In this study a descriptive 

statistic, multiple linear regression and structural 

equation modelling were used.  

Other research, which worked with a dataset of 

phishing websites (Hannousse, 2021), discusses an 

importance of the syntax of URLs, i.e., how many 

special characters are in a link, how long the link is, 

how many times the www subdomain is in the link, 

whether the link contains the name of a globally 

known brand, and also whether the domain is 

registered at all and if so what is its age. These are 

features that we can more easily extract and 

preprocess for machine learning models. In this study, 

following machine learning were used for detection 

models training: logistic regression, random forest 

and support vector machines. The best performing 

model was learned using random forests method. 

In 2013, research was conducted where 2046 

participants decide whether or not the website 

displayed is trustworthy on a scale of 1-5. Those 

participants who very frequently ranked websites 

with the number 5 or the number 1 were often the 

most wrong in their decisions (Rafalak, 2014). In the 

study, descriptive statistics were used for estimated 

psychological traits levels. The results of this research 

are helpful in designing a method to detect fraudulent 

websites. 

Nowadays, more and more user-generated 

content is hosted on web servers that belong to a small 

group of giant technology companies. This trend is 

leading to a centralized web with many problems. 

These could be addressed by decentralizing the web, 

which has the potential to ensure that the end-user 

always knows that the website they are currently on 

is from a legitimate source or not. A study (Kim, 

2021) proposes a blockchain-based way of operating 

such a decentralized web.  

Another way to prevent phishing and password 

leaks is by using blockchain encryption of messages 

and communications in companies between company 

servers when logging into the system. If an employee 

sends a login key or password to a corporate system, 

the blockchain ensures through a stored hash that only 

the target corporate server can read the content of the 

message - i.e. the password (Cai, 2017). In this case, 

it cannot happen that the content of the message - the 

password to the system, can be read by a hacker who 

sent a phishing website to the employee. 

The study (Rutherford, 2022) demonstrates that 

the machine learning approach is viable with 

validation accuracy ranging from 49 to 86%. The 

support vector machine was able to predict whether a 

cadet would be compromised upon receipt of a 

phishing attack with a 55% accuracy while a recall 

score was 71%. On the other hand, logistic regression 

model had the highest 86% accuracy while 

maintaining a recall score only of 16%. 
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In the paper (Aljabri, 2022), in addition to the 

classic machine learning methods, it was also used a 

deep learning. For classification performance in 

identifying phishing websites, random forest 

algorithm achieved the highest accuracy. 

The article (Alnemari, 2023) presents 

experiments with phishing detection models learned 

using artificial neural networks, support vector 

machines, decision trees, and random forest 

techniques. Their results show that the model based 

on the random forest technique is the most accurate. 

The analysis of related works in the field showed, 

that blockchain encryption and descriptive statistic 

are often used. From machine learning methods 

mainly logistic regression, random forest and support 

vector machines were used. So we have decided to 

use logistic regression from statistical methods of 

machine learning and random forests as very 

successful method of ensemble learning, and two 

other methods of ensemble learning - gradient 

boosting and ADABoost. We also experimented with 

neural networks, as they have recently been 

successful in solving a wide range of problems.  

3 USED METHODS 

3.1 Classic Machine Learning 

We have used one of methods of regression analysis 

namely logistic regression (LR) as the classic statistic 

machine learning method suitable for detection 

models generation on numerical, non-text data. The 

LR   is a technique to estimate parameters of a logistic 

model. Logistic model is a model where linear 

combinations of independent variables are 

transformed using a specific type of logistic function, 

mostly a sigmoid function (Brownlee, 2023).  

We also tested approaches based on ensemble 

learning such as boosting (gradient boosting - GB and 

XGBoost – extreme boosting) and random forest 

(RF). The ensemble learning is based on the idea of 

combination of several weak prediction models into 

one stronger model for final decision.  

The GB provide this by iterative minimizing the 

loss function. The algorithm generates a set of 

decision trees where each tree is trained to predict the 

difference between the predicted and true values (i.e., 

residual values) of the previous tree. The algorithm 

then calculates the residues of the predictions and 

trains a new decision tree to predict these residues. 

This process is repeated several times. The final 

prediction is obtained by voting or averaging the 

results of particular trees. One of the benefits of GB 

regression is its ability to handle a wide variety of data 

types. In addition, it is known for its high accuracy 

and robustness, as well as its ability to process high-

dimensional data. However, it also has some 

limitations. One is that it can be a computationally 

complex, especially for large datasets. Another 

limitation is that the model can be sensitive to the 

choice of hyper parameters such as learning speed 

and the number of trees in the file (Ke, 2017). 

 XGBoost (Extreme Gradient Boosting) is 

designed to improve the performance of traditional 

gradient boosting algorithms using a combination of 

regularization and parallel processing techniques. 

Regularization techniques such as L1 and L2 are used 

to prevent overtraining and improve generalization 

performance. XGBoost also uses a technique to trim 

trees, further reducing overtraining and improving 

model efficiency (Chen, 2016). 

RF tries to minimize the variance by creating more 

decision trees in different parts of the same training 

data. Individual trees are de-correlated using a random 

selection of a subset of attributes. The method achieves 

the final classification by voting or averaging the 

results of particular trees. RF method is used mainly in 

cases where a limited amount of data is available, 

which significantly reduces memory requirements 

when generating many trees (Donges, 2024). 

3.2 Neural Networks 

We also experimented with very successful methods 

for generating of artificial neural networks, namely 

LSTM (long-short term memory), CNN 

(convolutional neural network) and MLP (multi-layer 

perceptron). 

LSTM is the most known recurrent neural 

network, which can re-store information a longer time 

and that is why they can process longer sequence of 

inputs. LSTM networks are composed of repeating 

modules (LSTM blocks) in the form of a chain. The 

basis of LSTM is a horizontal line through which a 

vector passes between individual blocks. There are 

three gates (input, forget and output gate) in 

individual cells. These gates are used to remove or 

add information to the state of the block. Information 

passes through these gates, which are composed of 

neurons with a sigmoidal activation function. 

Depending on the value of the output on these 

neurons, certain amount of information passes 

through it (0 means that no information passes 

through the gate and 1 means that everything passes 

through the gate) (Ralf, 2019). 

The basic building block of the CNN network is a 

convolutional layer that applies a set of filters to the 
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input and extracts properties from it. Filters are 

learned by training as weights and other parameters. 

Filters are usually small in size to capture local 

patterns in the data. The output from the 

convolutional layer is then transmitted through a 

nonlinear activation function such as ReLU 

(Rectified Linear Unit) to insert nonlinearity into the 

network. In addition to convolutional layers, CNN 

networks typically include post-layer pooling, which 

reduces dimensionality and helps prevent overfitting. 

The most common type is max pooling, which selects 

the maximum value in a certain local region of the 

property map. The last layers of the CNN network are 

usually fully interconnected layers. The output from 

the last layer is used for prediction (He, 2016). 

MLP consists of multiple layers of interconnected 

neurons, each performing a nonlinear transformation 

at its input. The basic building block of MLP is the 

perceptron, which receives a set of input values and 

produces a single output value. The output of a 

perceptron is determined by the weighted sum of its 

inputs that passes through a nonlinear activation 

function such as a sigmoid or ReLU function. MLPs 

are powerful models that can learn complex nonlinear 

input-output relationships (Goodfellow, 2016). 

4 MODELS TRAINING AND 

TESTING 

4.1 Dataset Description 

We sourced data from (Hannousse, 2021). Dataset is 

also available to download from (Kaggle, 2024). This 

dataset contains 11 429 URL addresses, and has 87 

attributes and information about its legitimacy; 50% 

of URLs were legitimate and 50% of URLs were 

linking to phishing websites. Dataset contains 3 types 

of attributes: attributes extracted from syntax of URL, 

attributes extracted from source code of a website and 

attributes that were queried using APIs. Dataset was 

split to 2 datasets. We also created 3rd dataset, which 

contained URLs with 34 extracted attributes. These 

URLs were of a browsing history of a simulated user. 

All datasets were loaded and adjusted in python 

programming environment – Spyder Anaconda using 

library pandas. 

Dataset 1 was full dataset with all 87 attributes. 

This dataset was used to test the suitability of a 

diverse group of models from simple ones that use 

one function for classification to more complex ones 

that use network of functions for classification. 

 Dataset 2 was reduced to 34 attributes. The rest 

53 attributes were removed from the dataset 2 

because we couldn’t reliably extract their values from 

websites other than those in the kaggle dataset, so the 

final model learned also from those 53 attributes 

would not be sufficiently general while using for 

phishing detection on a random website. The 

methodology of filtering was based on indication of 

missing values during the extraction process. The 

reason for those extraction errors (missing values of 

attributes) could be that many of phishing websites 

are after some period blocked by internet provider, 

blocked by firewall or antivirus software or simply no 

longer exist. The chosen 34 attributes are detailed in 

the Appendix. We expected that after attributes 

reduction the performance of models could be 

negatively impacted but extraction of attributes 

values was much faster (from 30 seconds to less than 

one second). 

Dataset 3 was used to test the functionality of the 

application. It contained 100 URLs of a simulated 

user, every URL contained 34 attributes (same as in 

dataset 2) and information of legitimacy of an URL. 

4.2 Methodology 

We chose a diverse type of models from the simplest 

ones to models based on learning an artificial neural 

networks. We have also used techniques of ensemble 

learning as random forest, gradient boosting, and 

XGBoost. All these different types of methods were 

chosen to see how well they can classify target 

attribute – phishing webpage. The above-mentioned 

models were trained at first on Dataset 1 (first round). 

Then three best methods were used for training on 

Dataset 2 with reduced number of attributes (second 

round) and only one best method was used for 

training on Dataset 3 (final round). The process is 

illustrated in Figure 1. 

4.3 First Round of Training 

Models were trained in python programming 

environment – Spyder Anaconda using library scikit-

learn. Dataset 1 with 87 attributes was split into train 

and test dataset (ratio 80:20). In both sets the ratio of 

legitimate and phishing URLs was 50:50. Following 

models were trained and tested on this dataset: LR, 

GB, XGBoost, RF, LSTM, CNN, and MLP. The 

number of models (for example trees in RF) was set 

on 100. The same n_estimators=100 was set for GB 

and XGBoost. The hyper-parameters of the various 

NNs are presented in Table 3 and Table 4. 
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Figure 1: The methodology of models training. 

After testing we evaluated the accuracy of every 

model and for next training (second round) chose 

only those, that achieved accuracy of more than 95%. 

We chose accuracy as metric to compare models 

because accuracy is most basic metric that evaluates 

general performance of models. This metric is also 

suitable for a balanced dataset.  

Models that achieved expected accuracy were: 

GB, LSTM and MLP Neural Network. Other Metrics 

such as precision, recall, sensitivity, F1-score, and 

Matthew’s correlation coefficient were calculated for 

the tested models and are shown on Table 1 and 2. 

The mentioned three best methods were used for 

training on Dataset 2 with reduced number of 

attributes. The reason for this was that we wanted to 

see how much the accuracy of these models drops 

when we train them on less complete and complex 

data, but which are more suitable for use in real-world 

conditions, since it is not necessary to extract all 87 

attributes values considered at the beginning of 

training process. In recognition of the phishing pages, 

we need to extract for them all values of all attributes, 

which were used in final model training.  

Table 1: The results of experiments on Dataset 1 using LR, 

GB, XGB (XGBoost) and RF. The shortcut Matthews CC 

is Matthew’s Correlation Coefficient. 

Method LR GB XGB RF 

Accuracy 0.783 0.952 0.949 0.925 

Precision 0.823 0.956 0.953 0.921 

Recall 0.760 0.953 0.949 0.934 

Specificity 0.810 0.951 0.948 0.915 

F1 Score 0.790 0.954 0.951 0.927 

Matthews CC 0.568 0.904 0.897 0.849 

In Table1 and Table 2, there are bolded the results 

in accuracy of three best models. In Table 1 it is GB 

– gradient boosting, and in Table 2 they are LSTM – 

long-short term memory, and MLP - multi-layer 

perceptron. 

Table 2: The results of experiments on Dataset 1 using 

CNN, LSTM, and MLP. 

Method CNN LSTM MLP 

Accuracy 0.942 0.954 0.963 

Precision 0.951 0.954 0.952 

Recall 0.939 0.958 0.974 

Specificity 0.946 0.950 0.953 

F1 Score 0.945 0.956 0.963 

Matthews CC 0.884 0.908 0.927 

4.4 Second Round of Training 

We determined that going forward, we would only 

train models on Dataset 2 that exceeded 

accuracy=0.95 in the first round on Dataset 1, and 

thus GB, LSTM and MLP were selected.  

We used the scikit-learn library to train the GB 

model. In the first step of testing, normalized data 

entered the learning process. We defined the model as 

follows:  

▪ model=GradientBoostingClassifier 

(n_estimators=100,  

▪ learning_rate=0.1,  

▪ max_depth=3).  

We then trained and tested the model with the 

functions:  

▪ model.fit(X_train, y_train)   

▪ tested y_pred=model.predict(X_test).  
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Finally, we displayed the confusion matrix with the 

function cm=confusion_matrix(y_test, y_pred). 

 

The LSTM model was trained using the keras 

library. In the first step, it was necessary to change the 

shape of the input normalized data to make it suitable 

for the LSTM model. This reshaping was done with 

the following functions:  

▪ X_train=np.reshape(X_train,(X_train.shape

[0],1,X_train.shape[1])); 

▪ X_test=np.reshape(X_test,(X_test.shape[0],

1,X_test.shape[1])).  

 

We defined the model architecture with the 

following functions (see Table 3). 

Table 3: The architecture of the LSTM model. 

Method LSTM 

model “sequential()” 

model_add (LSTM) 128 neurons 

input_shape 1 

return_sequencies False 

dense 64, activation=”relu” 

dense 1, activation=”sigmoid” 

optimizer Adam, lr=0.001 

model_compile loss=”binary_crossentropy” 

optimizer_metrics “accuracy” 

 

For training the MLP model, we also used the 

scikit-learn library. In the first step of training, 

normalized data entered the learning process. We 

defined the model as follows (see Table 4).  

Table 4: The architecture of the MLP model. 

Method MLP 

model “MLPClassifier” 

solver “adam” 

alpha 0,01 

hidden_layer_sizes 100, 100, 100, 100, 100 

max_iter 100 

random_state 44 

 

The results of testing of all the models trained on 

Dataset 2 are shown in Table 5. 

Table 5: The results of experiments on Dataset 2 using GB, 

LSTM and MLP. 

Method GB LSTM MLP 

Accuracy 0.925 0.933 0.948 

Precision 0.927 0.940 0.935 

Recall 0.929 0.932 0.960 

Specificity 0.920 0.933 0.935 

F1 Score 0.928 0.936 0.947 

Matthews CC 0.850 0.865 0.895 

The predicted reduction in accuracy in the second 

round of training GB model was confirmed but the 

reduction in accuracy was minimal from 95.22% to 

92.5%. The reduction in accuracy of the LSTM model 

in the training on Dataset 2 was also confirmed but 

the reduction in accuracy was also minimal from 

95.40% to 93.25%, and similarly for MLP model was 

observed the reduction of accuracy, but the reduction 

was the lowest - only 1.57%. The final best MLP 

model has been retrained on Dataset 3 and used in our 

application for phishing detection. 

5 PHISHING DETECTION 

APPLICATION 

It is important for the proper functioning of the 

application to ensure smooth operation. The 

application cannot slow down the page load time and 

at the same time it must evaluate the page fast enough 

to inform the user about the threat. The threat 

information should not block the website but rather 

alert the user with a pop-up window, as an extension 

for Google Chrome, not as a new browser window. 

If a website is flagged as fraudulent, because 

posing as a real news service or because this is a 

satirical site such as babylonbee.com or 

theonion.com, should the app block access to such 

sites? We think not. We just want to inform the user 

that what they are reading may not be true or the 

website is not a legitimate news service. So, we would 

like to stick to the principle of freedom of expression 

and just warn the user. 

This work introduces a functional web application 

(Google Chrome extension) that can detect 

fake/phishing/spoofing websites and is intended to 

help people not to be fooled and robbed. Our 

application consists of two parts. 

The first part – Python script - is launched 

automatically when browser is launched, user does 

not interact with this part at all. Python script is coded 

in a form of server that awaits input from browser – 

from extension using REST – get method. When 

script gets the URL sent from Chrome extension, 

MLP model trained on dataset 2 extracts all 34 

attributes from URL and URL is evaluated. If URL is 

evaluated as phishing, number 1 is sent to extension, 

if URL is evaluated as legitimate, number 0 is sent to 

extension. 

The second part – Google Chrome extension - is 

part that user will see and can interact with it. The 

application is situated on the top right corner of 

browser for good visibility, as shown in Figure 2. 
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The extension automatically sends newly opened 

URLs to Python script using REST method put. While 

waiting for response, extension changes its colour to 

yellow and text changes to “LOAD…” indicating that 

extension is waiting for response (shown in Figure 2). 

If 5 seconds passes and no response follows, 

extension changes its colour to orange and text 

changes to “ERR” indicating error message (shown in 

left part of Figure 3). If extension receives number 0 

in 5 seconds time, extension changes its colour to 

green and text changes to “tick” symbol (shown in the 

middle part of Figure 3). If extension receives number 

1 (python script evaluated URL as phishing site), the 

extension changes its colour to red and text changes 

to “X” symbol (shown in right part of Figure 3). 

 

 

Figure 2: The illustration of our application as Google 

Chrome extension. 

 

Figure 3: The illustration of different responses of the 

application. 

6 CONCLUSIONS 

Our study demonstrates the effectiveness of machine 

learning models in detecting phishing websites. We 

have trained and tested all selected models on the 

entire Dataset 1 - 87 attributes and expected accuracy 

of at least 95%. The models that achieved the required 

accuracy in the first round were MLP, LSTM and GB. 

In the second round of training, we used Dataset 2 

reduced to 34 attributes (attributes that we can 

reliably extract from various websites outside the 

dataset). We re-trained and tested the models that 

advanced to this second round. We expected an 

accuracy of at least 90% and this was achieved for all 

three models in the second round. The highest 

accuracy was achieved by the Multilayer Perceptron 

(MLP) model at 94.75%. We used this model in 

developing a web application for real-time phishing 

detection. This solution can enhance online security 

and provide users with instant alerts regarding the 

legitimacy and trustworthiness of visited websites. 

This approach offers a proactive solution to combat 

phishing attacks and reduce the risk of cybercrimes. 
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APPENDIX 

The attributes in the Dataset 2 were following: 

▪ length_url - is the length of the URL obtained by 

the function len(url) 

▪ length_hostname is the length of the hostname 

obtained by len(urlparse(url).netloc) 

▪ ip detects if the URL is in IP shape 

▪ nb_dots detects the number of "." characters in 

URL  

▪ nb_hyphens detects the number of "-" in URL  

▪ nb_at detects the number of "@" in URL  

▪ nb_qm detects the number of "?" in URL 

▪ nb_and detects the number of "&" in URL  

▪ nb_or detects the number of "|" in URL  

▪ nb_eq detects the number of "=" in URL  

▪ nb_underscore detects the number of "_" in URL  

▪ nb_tilde detects whether the character " ~ " is 

present in the URL with the function 

url.count('~')>0 

▪ nb_percent detects the number of "%" in URL 

▪ nb_slash detects the number of "/" in URL  

▪ nb_star detects the number of "*" in URL  

▪ nb_colon detects the number of " : " in URL  

▪ nb_comma detects the number of " , " in URL  

▪ nb_semicolumn detects the number of " ; " in 

URL  

▪ nb_dollar detects the number of "$" in URL  

▪ nb_space detects the number of spaces in the 

URL  

▪ nb_www detects the number of strings "www" in 

the URL with the function url.count('www') 

▪ nb_com detects the number of "com" strings in 

the URL with the url.count('com') function 

▪ nb_slash detects the number of "//" in URL  

▪ https_token detects whether the string "https" is 

present in the URL 

▪ ratio_digits_url detects the ratio between the 

number of digits and the number of other non-

numeric characters in the URL  

▪ abnormal_subdomain detects the abnormal 

shape of the subdomain "www" with the function 

re.search('(http[s]?://(w[w]?|\d))([w]?(\d|-

)))',url) 

▪ nb_subdomains counts the number of 

subdomains in the URL with the function 

len(re.findall("\.",url)) 

▪ prefix_suffix finds out if there are 

prefixes/suffixes in the URL with the function 

re.findall(r "https?://[^\-]+-[^\-]+/",url) 

▪ shortening_service detects if the URL is 

shortened by services such as tinyurl, bit.ly, 

bit.do, etc. 

▪ phish_hints detects if there are strings in the link 

that may point to a phishing link. Strings such as: 

"wp", "login", "css", "plugins", etc. 

▪ domain_in_brand detects if there is a name 

string from the tag list in the URL. Tags like: 

"Pepsi", "Adidas", "Adobe", "Amazon", 

"Google", etc. 

▪ website registered in WHOIS database, 

▪ domain_registration_length 

▪ websites PageRank  
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