
Modelling of an Untrustworthiness of Fraudulent Websites Using

Machine Learning Algorithms

Kristína Machová a and Martin Kaňuch
Department of Cybernetics and Artificial Intelligence, Technical University of Košice, Letná 9, Košice, Slovakia

Keywords: Untrustworthy Content, Fraudulent Websites, Detection Models, Machine Learning, Neural Networks.

Abstract: This paper focuses on learning models that can detect fraudulent websites accurately enough to help users

avoid becoming a victim of fraud. Both classical machine learning methods and neural network learning were

used for modelling. Attributes were extracted from the content and the structure of fraudulent websites, as

well as attributes derived from the way of their using, to generate the detection models. The best model was

used in an application in the form of a Google Chrome browser extension. The application may be beneficial

in the future for new users and older people who are more prone to believe scammers. By focusing on key

factors such as URL syntax, hostname legitimacy, and other special attributes, the app can help prevent

financial loss and protect individuals and businesses from online fraud.

1 INTRODUCTION

The Internet gives us many advantages, but there are

also disadvantages and threats to this wonderful tool.

Hacker attacks, stolen personal data and whitewashed

accounts are often mentioned in the media. Many

people still fall into the trap of scammers even though

there is a huge effort by the authorities to stop these

scams. What do these scams look like? Can they be

stopped? How can such scams be avoided and how

can internet users be alerted using a smart app? This

article offers answers to these questions and possible

solutions.

Phishing attacks have become a major concern in

the digital age, posing significant threats to users'

online security. Detecting and preventing phishing

websites is crucial to protect individuals and

organizations from falling victim to cybercrimes.

The Australian Government's website

(scamwatch.gov.au) shows how the number of

reports of fraud and the amount of money lost has

evolved. In 2019, Australians lost more than $142

million to scammers. In 2020 it was $175 million in

2021 - $323 million and in the first 3 months of 2022

alone people lost $167 million to scams, more than in

the whole of 2019. As we can see, this problem is only

getting worse.

a https://orcid.org/0000-0002-7741-4039

Large companies are also falling victim to internet

fraud. For example, if a hacker gains access to an

employee's email of a company and sends a phishing

page that looks like a company login sent to the

employee from a supervisor, the hacker can gain

access to sensitive company information and the

company can suffer major financial losses. Or the

fraudster will spread a link to a page that looks like a

legitimate news site and inform the public about a

false event, which in turn will negatively affect stock

growth (Ciampaglia, 2018).

The results of our research into the ability to

model fraudulent behaviour on the web have been

used to develop an application that can detect that a

user is on a fraudulent website and inform the user if

the application service is activated. We think that this

application will be especially helpful for new Internet

users and older people, who are most often victims of

such scams and are the most vulnerable.

2 FRAUDULENT WEB SITES

The Internet has always been relatively secure in the

realm of websites run by large companies, well-

known brands and other technology giants. Payment

gateways on online stores are very well secured with

218
Machová, K. and Kaňuch, M.
Modelling of an Untrustworthiness of Fraudulent Websites Using Machine Learning Algorithms.
DOI: 10.5220/0012886700003838
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 1: KDIR, pages 218-225
ISBN: 978-989-758-716-0; ISSN: 2184-3228
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

two/three and multi-factor authentication. But

sometimes it happens that we get to a website that

pretends to be trustworthy but a fraudster has created

an exact copy of the site. We want to log in to our

account but logging in doesn't work and our password

and email have just been sent to the scammer. This

method of creating a fraudulent site is called spoofing

in English. Nowadays, DDoS attacks became a real

problem. The number of DDoS attacks in 2021 has

been recorded as high as 9.75 million (Vermer, 2021).

Although DDoS attacks are more frequent, modern

servers can handle them more easily than in the past.

In 2021, hackers managed to obtain just one

single password to the system of the US oil pipeline

company Colonial Pipeline (Turton, 2021). The

hackers gained access to the system after an employee

entered the password to a fraudulent website posing

as the company's VPN. The hackers then locked down

the entire system using ransomware and demanded a

ransom of 75 bitcoins ($4.4 million at the time).

In July 2020, Twitter employees were the target

of a phishing attack, and hackers managed to gain

access to the accounts of many celebrities as Elon

Musk, Bill Gates, and shared the message that if you

send Bitcoin to a certain Bitcoin address, your deposit

will be doubled (Leswing, 2021). The scam was also

shared by hacked accounts of well-known financiers

such as Mike Bloomberg and Warren Buffet. This

was an example of a scam called a Ponzi scheme.

Factors such as page load time, SSL protocol and

contact details play an important role in identifying a

fraudulent site (Fedorko, 2020). If the loading time of

a web page is longer than 5 seconds, it causes a

decrease in the credibility of the page. According to

the latest rules, all websites should have SSL. It is the

"https:" at the beginning of the URL. The presence of

SSL increases the credibility of the website. Also,

visibly accessible contact information - phone

number, e-mail address, brief information about the

company, for example, physical address, ID number,

etc. increase the credibility of the website.

2.1 Related Works

Several studies have focused on what fraudulent sites

have in common and how big the differences are

between phishing sites, fraudulent payment gateways,

fraudulent online stores and sites that pretend to be

legitimate news organizations. For example, one of the

common features that fraudulent sites have in common

are invalid certificates and many buttons with broken

links (Fedorko, 2020). In this study a descriptive

statistic, multiple linear regression and structural

equation modelling were used.

Other research, which worked with a dataset of

phishing websites (Hannousse, 2021), discusses an

importance of the syntax of URLs, i.e., how many

special characters are in a link, how long the link is,

how many times the www subdomain is in the link,

whether the link contains the name of a globally

known brand, and also whether the domain is

registered at all and if so what is its age. These are

features that we can more easily extract and

preprocess for machine learning models. In this study,

following machine learning were used for detection

models training: logistic regression, random forest

and support vector machines. The best performing

model was learned using random forests method.

In 2013, research was conducted where 2046

participants decide whether or not the website

displayed is trustworthy on a scale of 1-5. Those

participants who very frequently ranked websites

with the number 5 or the number 1 were often the

most wrong in their decisions (Rafalak, 2014). In the

study, descriptive statistics were used for estimated

psychological traits levels. The results of this research

are helpful in designing a method to detect fraudulent

websites.

Nowadays, more and more user-generated

content is hosted on web servers that belong to a small

group of giant technology companies. This trend is

leading to a centralized web with many problems.

These could be addressed by decentralizing the web,

which has the potential to ensure that the end-user

always knows that the website they are currently on

is from a legitimate source or not. A study (Kim,

2021) proposes a blockchain-based way of operating

such a decentralized web.

Another way to prevent phishing and password

leaks is by using blockchain encryption of messages

and communications in companies between company

servers when logging into the system. If an employee

sends a login key or password to a corporate system,

the blockchain ensures through a stored hash that only

the target corporate server can read the content of the

message - i.e. the password (Cai, 2017). In this case,

it cannot happen that the content of the message - the

password to the system, can be read by a hacker who

sent a phishing website to the employee.

The study (Rutherford, 2022) demonstrates that

the machine learning approach is viable with

validation accuracy ranging from 49 to 86%. The

support vector machine was able to predict whether a

cadet would be compromised upon receipt of a

phishing attack with a 55% accuracy while a recall

score was 71%. On the other hand, logistic regression

model had the highest 86% accuracy while

maintaining a recall score only of 16%.

Modelling of an Untrustworthiness of Fraudulent Websites Using Machine Learning Algorithms

219

In the paper (Aljabri, 2022), in addition to the

classic machine learning methods, it was also used a

deep learning. For classification performance in

identifying phishing websites, random forest

algorithm achieved the highest accuracy.

The article (Alnemari, 2023) presents

experiments with phishing detection models learned

using artificial neural networks, support vector

machines, decision trees, and random forest

techniques. Their results show that the model based

on the random forest technique is the most accurate.

The analysis of related works in the field showed,

that blockchain encryption and descriptive statistic

are often used. From machine learning methods

mainly logistic regression, random forest and support

vector machines were used. So we have decided to

use logistic regression from statistical methods of

machine learning and random forests as very

successful method of ensemble learning, and two

other methods of ensemble learning - gradient

boosting and ADABoost. We also experimented with

neural networks, as they have recently been

successful in solving a wide range of problems.

3 USED METHODS

3.1 Classic Machine Learning

We have used one of methods of regression analysis

namely logistic regression (LR) as the classic statistic

machine learning method suitable for detection

models generation on numerical, non-text data. The

LR is a technique to estimate parameters of a logistic

model. Logistic model is a model where linear

combinations of independent variables are

transformed using a specific type of logistic function,

mostly a sigmoid function (Brownlee, 2023).

We also tested approaches based on ensemble

learning such as boosting (gradient boosting - GB and

XGBoost – extreme boosting) and random forest

(RF). The ensemble learning is based on the idea of

combination of several weak prediction models into

one stronger model for final decision.

The GB provide this by iterative minimizing the

loss function. The algorithm generates a set of

decision trees where each tree is trained to predict the

difference between the predicted and true values (i.e.,

residual values) of the previous tree. The algorithm

then calculates the residues of the predictions and

trains a new decision tree to predict these residues.

This process is repeated several times. The final

prediction is obtained by voting or averaging the

results of particular trees. One of the benefits of GB

regression is its ability to handle a wide variety of data

types. In addition, it is known for its high accuracy

and robustness, as well as its ability to process high-

dimensional data. However, it also has some

limitations. One is that it can be a computationally

complex, especially for large datasets. Another

limitation is that the model can be sensitive to the

choice of hyper parameters such as learning speed

and the number of trees in the file (Ke, 2017).

 XGBoost (Extreme Gradient Boosting) is

designed to improve the performance of traditional

gradient boosting algorithms using a combination of

regularization and parallel processing techniques.

Regularization techniques such as L1 and L2 are used

to prevent overtraining and improve generalization

performance. XGBoost also uses a technique to trim

trees, further reducing overtraining and improving

model efficiency (Chen, 2016).

RF tries to minimize the variance by creating more

decision trees in different parts of the same training

data. Individual trees are de-correlated using a random

selection of a subset of attributes. The method achieves

the final classification by voting or averaging the

results of particular trees. RF method is used mainly in

cases where a limited amount of data is available,

which significantly reduces memory requirements

when generating many trees (Donges, 2024).

3.2 Neural Networks

We also experimented with very successful methods

for generating of artificial neural networks, namely

LSTM (long-short term memory), CNN

(convolutional neural network) and MLP (multi-layer

perceptron).

LSTM is the most known recurrent neural

network, which can re-store information a longer time

and that is why they can process longer sequence of

inputs. LSTM networks are composed of repeating

modules (LSTM blocks) in the form of a chain. The

basis of LSTM is a horizontal line through which a

vector passes between individual blocks. There are

three gates (input, forget and output gate) in

individual cells. These gates are used to remove or

add information to the state of the block. Information

passes through these gates, which are composed of

neurons with a sigmoidal activation function.

Depending on the value of the output on these

neurons, certain amount of information passes

through it (0 means that no information passes

through the gate and 1 means that everything passes

through the gate) (Ralf, 2019).

The basic building block of the CNN network is a

convolutional layer that applies a set of filters to the

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

220

input and extracts properties from it. Filters are

learned by training as weights and other parameters.

Filters are usually small in size to capture local

patterns in the data. The output from the

convolutional layer is then transmitted through a

nonlinear activation function such as ReLU

(Rectified Linear Unit) to insert nonlinearity into the

network. In addition to convolutional layers, CNN

networks typically include post-layer pooling, which

reduces dimensionality and helps prevent overfitting.

The most common type is max pooling, which selects

the maximum value in a certain local region of the

property map. The last layers of the CNN network are

usually fully interconnected layers. The output from

the last layer is used for prediction (He, 2016).

MLP consists of multiple layers of interconnected

neurons, each performing a nonlinear transformation

at its input. The basic building block of MLP is the

perceptron, which receives a set of input values and

produces a single output value. The output of a

perceptron is determined by the weighted sum of its

inputs that passes through a nonlinear activation

function such as a sigmoid or ReLU function. MLPs

are powerful models that can learn complex nonlinear

input-output relationships (Goodfellow, 2016).

4 MODELS TRAINING AND

TESTING

4.1 Dataset Description

We sourced data from (Hannousse, 2021). Dataset is

also available to download from (Kaggle, 2024). This

dataset contains 11 429 URL addresses, and has 87

attributes and information about its legitimacy; 50%

of URLs were legitimate and 50% of URLs were

linking to phishing websites. Dataset contains 3 types

of attributes: attributes extracted from syntax of URL,

attributes extracted from source code of a website and

attributes that were queried using APIs. Dataset was

split to 2 datasets. We also created 3rd dataset, which

contained URLs with 34 extracted attributes. These

URLs were of a browsing history of a simulated user.

All datasets were loaded and adjusted in python

programming environment – Spyder Anaconda using

library pandas.

Dataset 1 was full dataset with all 87 attributes.

This dataset was used to test the suitability of a

diverse group of models from simple ones that use

one function for classification to more complex ones

that use network of functions for classification.

 Dataset 2 was reduced to 34 attributes. The rest

53 attributes were removed from the dataset 2

because we couldn’t reliably extract their values from

websites other than those in the kaggle dataset, so the

final model learned also from those 53 attributes

would not be sufficiently general while using for

phishing detection on a random website. The

methodology of filtering was based on indication of

missing values during the extraction process. The

reason for those extraction errors (missing values of

attributes) could be that many of phishing websites

are after some period blocked by internet provider,

blocked by firewall or antivirus software or simply no

longer exist. The chosen 34 attributes are detailed in

the Appendix. We expected that after attributes

reduction the performance of models could be

negatively impacted but extraction of attributes

values was much faster (from 30 seconds to less than

one second).

Dataset 3 was used to test the functionality of the

application. It contained 100 URLs of a simulated

user, every URL contained 34 attributes (same as in

dataset 2) and information of legitimacy of an URL.

4.2 Methodology

We chose a diverse type of models from the simplest

ones to models based on learning an artificial neural

networks. We have also used techniques of ensemble

learning as random forest, gradient boosting, and

XGBoost. All these different types of methods were

chosen to see how well they can classify target

attribute – phishing webpage. The above-mentioned

models were trained at first on Dataset 1 (first round).

Then three best methods were used for training on

Dataset 2 with reduced number of attributes (second

round) and only one best method was used for

training on Dataset 3 (final round). The process is

illustrated in Figure 1.

4.3 First Round of Training

Models were trained in python programming

environment – Spyder Anaconda using library scikit-

learn. Dataset 1 with 87 attributes was split into train

and test dataset (ratio 80:20). In both sets the ratio of

legitimate and phishing URLs was 50:50. Following

models were trained and tested on this dataset: LR,

GB, XGBoost, RF, LSTM, CNN, and MLP. The

number of models (for example trees in RF) was set

on 100. The same n_estimators=100 was set for GB

and XGBoost. The hyper-parameters of the various

NNs are presented in Table 3 and Table 4.

Modelling of an Untrustworthiness of Fraudulent Websites Using Machine Learning Algorithms

221

Figure 1: The methodology of models training.

After testing we evaluated the accuracy of every

model and for next training (second round) chose

only those, that achieved accuracy of more than 95%.

We chose accuracy as metric to compare models

because accuracy is most basic metric that evaluates

general performance of models. This metric is also

suitable for a balanced dataset.

Models that achieved expected accuracy were:

GB, LSTM and MLP Neural Network. Other Metrics

such as precision, recall, sensitivity, F1-score, and

Matthew’s correlation coefficient were calculated for

the tested models and are shown on Table 1 and 2.

The mentioned three best methods were used for

training on Dataset 2 with reduced number of

attributes. The reason for this was that we wanted to

see how much the accuracy of these models drops

when we train them on less complete and complex

data, but which are more suitable for use in real-world

conditions, since it is not necessary to extract all 87

attributes values considered at the beginning of

training process. In recognition of the phishing pages,

we need to extract for them all values of all attributes,

which were used in final model training.

Table 1: The results of experiments on Dataset 1 using LR,

GB, XGB (XGBoost) and RF. The shortcut Matthews CC

is Matthew’s Correlation Coefficient.

Method LR GB XGB RF

Accuracy 0.783 0.952 0.949 0.925

Precision 0.823 0.956 0.953 0.921

Recall 0.760 0.953 0.949 0.934

Specificity 0.810 0.951 0.948 0.915

F1 Score 0.790 0.954 0.951 0.927

Matthews CC 0.568 0.904 0.897 0.849

In Table1 and Table 2, there are bolded the results

in accuracy of three best models. In Table 1 it is GB

– gradient boosting, and in Table 2 they are LSTM –

long-short term memory, and MLP - multi-layer

perceptron.

Table 2: The results of experiments on Dataset 1 using

CNN, LSTM, and MLP.

Method CNN LSTM MLP

Accuracy 0.942 0.954 0.963

Precision 0.951 0.954 0.952

Recall 0.939 0.958 0.974

Specificity 0.946 0.950 0.953

F1 Score 0.945 0.956 0.963

Matthews CC 0.884 0.908 0.927

4.4 Second Round of Training

We determined that going forward, we would only

train models on Dataset 2 that exceeded

accuracy=0.95 in the first round on Dataset 1, and

thus GB, LSTM and MLP were selected.

We used the scikit-learn library to train the GB

model. In the first step of testing, normalized data

entered the learning process. We defined the model as

follows:

▪ model=GradientBoostingClassifier

(n_estimators=100,

▪ learning_rate=0.1,

▪ max_depth=3).

We then trained and tested the model with the

functions:

▪ model.fit(X_train, y_train)

▪ tested y_pred=model.predict(X_test).

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

222

Finally, we displayed the confusion matrix with the

function cm=confusion_matrix(y_test, y_pred).

The LSTM model was trained using the keras

library. In the first step, it was necessary to change the

shape of the input normalized data to make it suitable

for the LSTM model. This reshaping was done with

the following functions:

▪ X_train=np.reshape(X_train,(X_train.shape

[0],1,X_train.shape[1]));

▪ X_test=np.reshape(X_test,(X_test.shape[0],

1,X_test.shape[1])).

We defined the model architecture with the

following functions (see Table 3).

Table 3: The architecture of the LSTM model.

Method LSTM

model “sequential()”

model_add (LSTM) 128 neurons

input_shape 1

return_sequencies False

dense 64, activation=”relu”

dense 1, activation=”sigmoid”

optimizer Adam, lr=0.001

model_compile loss=”binary_crossentropy”

optimizer_metrics “accuracy”

For training the MLP model, we also used the

scikit-learn library. In the first step of training,

normalized data entered the learning process. We

defined the model as follows (see Table 4).

Table 4: The architecture of the MLP model.

Method MLP

model “MLPClassifier”

solver “adam”

alpha 0,01

hidden_layer_sizes 100, 100, 100, 100, 100

max_iter 100

random_state 44

The results of testing of all the models trained on

Dataset 2 are shown in Table 5.

Table 5: The results of experiments on Dataset 2 using GB,

LSTM and MLP.

Method GB LSTM MLP

Accuracy 0.925 0.933 0.948

Precision 0.927 0.940 0.935

Recall 0.929 0.932 0.960

Specificity 0.920 0.933 0.935

F1 Score 0.928 0.936 0.947

Matthews CC 0.850 0.865 0.895

The predicted reduction in accuracy in the second

round of training GB model was confirmed but the

reduction in accuracy was minimal from 95.22% to

92.5%. The reduction in accuracy of the LSTM model

in the training on Dataset 2 was also confirmed but

the reduction in accuracy was also minimal from

95.40% to 93.25%, and similarly for MLP model was

observed the reduction of accuracy, but the reduction

was the lowest - only 1.57%. The final best MLP

model has been retrained on Dataset 3 and used in our

application for phishing detection.

5 PHISHING DETECTION

APPLICATION

It is important for the proper functioning of the

application to ensure smooth operation. The

application cannot slow down the page load time and

at the same time it must evaluate the page fast enough

to inform the user about the threat. The threat

information should not block the website but rather

alert the user with a pop-up window, as an extension

for Google Chrome, not as a new browser window.

If a website is flagged as fraudulent, because

posing as a real news service or because this is a

satirical site such as babylonbee.com or

theonion.com, should the app block access to such

sites? We think not. We just want to inform the user

that what they are reading may not be true or the

website is not a legitimate news service. So, we would

like to stick to the principle of freedom of expression

and just warn the user.

This work introduces a functional web application

(Google Chrome extension) that can detect

fake/phishing/spoofing websites and is intended to

help people not to be fooled and robbed. Our

application consists of two parts.

The first part – Python script - is launched

automatically when browser is launched, user does

not interact with this part at all. Python script is coded

in a form of server that awaits input from browser –

from extension using REST – get method. When

script gets the URL sent from Chrome extension,

MLP model trained on dataset 2 extracts all 34

attributes from URL and URL is evaluated. If URL is

evaluated as phishing, number 1 is sent to extension,

if URL is evaluated as legitimate, number 0 is sent to

extension.

The second part – Google Chrome extension - is

part that user will see and can interact with it. The

application is situated on the top right corner of

browser for good visibility, as shown in Figure 2.

Modelling of an Untrustworthiness of Fraudulent Websites Using Machine Learning Algorithms

223

The extension automatically sends newly opened

URLs to Python script using REST method put. While

waiting for response, extension changes its colour to

yellow and text changes to “LOAD…” indicating that

extension is waiting for response (shown in Figure 2).

If 5 seconds passes and no response follows,

extension changes its colour to orange and text

changes to “ERR” indicating error message (shown in

left part of Figure 3). If extension receives number 0

in 5 seconds time, extension changes its colour to

green and text changes to “tick” symbol (shown in the

middle part of Figure 3). If extension receives number

1 (python script evaluated URL as phishing site), the

extension changes its colour to red and text changes

to “X” symbol (shown in right part of Figure 3).

Figure 2: The illustration of our application as Google

Chrome extension.

Figure 3: The illustration of different responses of the

application.

6 CONCLUSIONS

Our study demonstrates the effectiveness of machine

learning models in detecting phishing websites. We

have trained and tested all selected models on the

entire Dataset 1 - 87 attributes and expected accuracy

of at least 95%. The models that achieved the required

accuracy in the first round were MLP, LSTM and GB.

In the second round of training, we used Dataset 2

reduced to 34 attributes (attributes that we can

reliably extract from various websites outside the

dataset). We re-trained and tested the models that

advanced to this second round. We expected an

accuracy of at least 90% and this was achieved for all

three models in the second round. The highest

accuracy was achieved by the Multilayer Perceptron

(MLP) model at 94.75%. We used this model in

developing a web application for real-time phishing

detection. This solution can enhance online security

and provide users with instant alerts regarding the

legitimacy and trustworthiness of visited websites.

This approach offers a proactive solution to combat

phishing attacks and reduce the risk of cybercrimes.

ACKNOWLEDGEMENTS

This work was supported by the Scientific Grant

Agency of the Ministry of Education, Science,

Research and Sport of the Slovak Republic, and the

Slovak Academy of Sciences under no. 1/0685/21

and by the Slovak Research and Development

Agency under the Contract no. APVV-22-0414.

REFERENCES

Aljabri, M., Mirza, S. (2022) Phishing Attacks Detection

using Machine Learning and Deep Learning Models.

7th International Conference on Data Science and

Machine Learning Applications (CDMA), Riyadh,

Saudi Arabia, 2022, ps. 175-180.

Alnemari, S., Alshammari, M. (2023) Detecting Phishing

Domains Using Machine Learning. Applied Sciences,

Vol. 13, no. 8, 2023, ps. 4649-4649, ISSN 2076-3417.

Brownlee, J. (2023) Logistic regression for machine

learning [online] 2023, Accessible [August 5, 2024].

Cai, C., Yuan, X., Wang, C. (2017) Towards trustworthy

and private keyword search in encrypted decentralized

storage. In IEEE International Conference on

Communications (ICC17), 2017, ps. 1-7, DOI:

10.1109/ICC.2017.7996810.

Chen, T., Guestrin, C. (2016) Xgboost: A scalable tree

boosting system. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2016, ps. 785-794, ISBN

978-1-4503-4232-2.

Ciampaglia, G. et al. (2018). Research Challenges of

Digital Misinformation: Toward a Trustworthy Web.

AI Magazine [online]. Vol. 39, no. 1,2018, ps. 65-74,

ISSN 0738-4602.

Donges, N. (2024) Random forest: A complete guide for

machine learning [online] 2024, Accessible [August 5,

2024].

Fedorko, I., Gburová, J. (2020). Selected Factors of

Untrustworthiness during web pages using. [online].

2020, ISSN 2453-756X.

Goodfellow, I., Bengio, Y., Courville, A. (2016) Deep

learning. MIT press, 2016, captions 6-9, ISBN

9780262035613.

Hannousse, A. Yahiouche, S. (2021). Web page phishing

detection. [online]. V3. Mendeley Data, 2021, DOI:

10.17632/c2gw7fy2j4.3.

He, K., Zhang, X., Ren, S., Sun, J. (2016) Deep residual

learning for image recognition. In Proceedings of the

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

224

IEEE conference on computer vision and pattern

recognition, 2016, ps. 770-778, DOI:

10.1109/CVPR.2016.90.

Kaggle (2024) Kaggle datasets [online] Accessible [May

25, 2024] <[https://www.kaggle.com/datasets/

shashwatwork/web-page-phishing-detection-dataset]>.

Ke, G. et al. (2017) Lightgbm: A highly efficient gradient

boosting decision tree”. In Advances in neural

information processing systems, Vol. 30, no.1., 2017,

ps. 1-9.

Kim, G.-H. (2021). Blockchain for the Trustworthy

Decentralized Web Architecture. International Journal

of Internet, Broadcasting and Communication [online].

Vol. 13, no. 1, ps. 26–36, 2021. ISSN 2233-7857.

Leswing, K. (2021). Hackers appear to target Twitter

accounts of Elon Musk, Bill Gates, others in digital

currency scam, CNBC [online] 2021, Accessible [May

25, 2024] <https://www.cnbc.com/2020/07/15/

hackers-appear-to-target-twitter-accounts-of-elon-

musk-bill-gates-others-in-digital-currency-

scam.html>.

Rafalak, M., Abramczuk, K., Wierzbicky, A. (2014)

Incredible: is (almost) all web content trustworthy?

Analysis of psychological factors related to website

credibility evaluation. In Proceedings of the 23rd

International Conference on World Wide Web (WWW

'14 Companion), New York, Association for

Computing Machinery, 2014, ps. 1117-1122, ISBN

9781450327459.

Ralf, C., Rothstein-Morris, E. (2019) Understanding LSTM

[online] 2019, Accessible [May 25, 2024]

https://arxiv.org/abs/1909.09586.

Rutherford, S., Lin, K., Blaine, R.W. (2022) Predicting

Phishing Vulnerabilities Using Machine Learning.

IEEE SoutheastCon Conference, IEEE345 E 47TH ST,

NEW YORK, NY 10017 USA, 2022, ps. 779-786.

Turton, W., Mehrotra, K. (2021). Hackers Breached

Colonial Pipeline Using Compromised Password,

Bloomberg [online] 2021-06-04, Accessible [May 25,

2024] https://www.bloomberg.com/news/articles/

2021-06-04/hackers-breached-colonial-pipeline-using-

compromised-password.

Vermer, B. (2021). Cybercriminals launched 9.75 million

DDoS attacks in 2021. (IN)SECURE Magazine,

Vol.70, ps. 54-55, 2021.

APPENDIX

The attributes in the Dataset 2 were following:

▪ length_url - is the length of the URL obtained by

the function len(url)

▪ length_hostname is the length of the hostname

obtained by len(urlparse(url).netloc)

▪ ip detects if the URL is in IP shape

▪ nb_dots detects the number of "." characters in

URL

▪ nb_hyphens detects the number of "-" in URL

▪ nb_at detects the number of "@" in URL

▪ nb_qm detects the number of "?" in URL

▪ nb_and detects the number of "&" in URL

▪ nb_or detects the number of "|" in URL

▪ nb_eq detects the number of "=" in URL

▪ nb_underscore detects the number of "_" in URL

▪ nb_tilde detects whether the character " ~ " is

present in the URL with the function

url.count('~')>0

▪ nb_percent detects the number of "%" in URL

▪ nb_slash detects the number of "/" in URL

▪ nb_star detects the number of "*" in URL

▪ nb_colon detects the number of " : " in URL

▪ nb_comma detects the number of " , " in URL

▪ nb_semicolumn detects the number of " ; " in

URL

▪ nb_dollar detects the number of "$" in URL

▪ nb_space detects the number of spaces in the

URL

▪ nb_www detects the number of strings "www" in

the URL with the function url.count('www')

▪ nb_com detects the number of "com" strings in

the URL with the url.count('com') function

▪ nb_slash detects the number of "//" in URL

▪ https_token detects whether the string "https" is

present in the URL

▪ ratio_digits_url detects the ratio between the

number of digits and the number of other non-

numeric characters in the URL

▪ abnormal_subdomain detects the abnormal

shape of the subdomain "www" with the function

re.search('(http[s]?://(w[w]?|\d))([w]?(\d|-

)))',url)

▪ nb_subdomains counts the number of

subdomains in the URL with the function

len(re.findall("\.",url))

▪ prefix_suffix finds out if there are

prefixes/suffixes in the URL with the function

re.findall(r "https?://[^\-]+-[^\-]+/",url)

▪ shortening_service detects if the URL is

shortened by services such as tinyurl, bit.ly,

bit.do, etc.

▪ phish_hints detects if there are strings in the link

that may point to a phishing link. Strings such as:

"wp", "login", "css", "plugins", etc.

▪ domain_in_brand detects if there is a name

string from the tag list in the URL. Tags like:

"Pepsi", "Adidas", "Adobe", "Amazon",

"Google", etc.

▪ website registered in WHOIS database,

▪ domain_registration_length

▪ websites PageRank

Modelling of an Untrustworthiness of Fraudulent Websites Using Machine Learning Algorithms

225

