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Abstract: Query Auto-Completion (QAC) is of particular importance to the field of Enterprise Search, where query
suggestions can steer searchers to use the appropriate organisational jargon/terminology and avoid submitting
queries that produce no results. The order in which QAC candidates are presented to users (for a given prefix)
can be influenced by signals, such as how often the prefix appears in the corpus, most popular completions,
most frequently queried, anchor text and other of a document, or what queries are currently trending in the
organisation. We measure the individual contribution of each of these heuristic signals and supplement them
with a feature based on Large Language Modelling (LLM) to detect jargon/terminology. We use Learning
To Rank (LTR) to combine the weighted features to create a QAC ranking model for a live Enterprise Search
service. In an online A/B test over a 12-week period processing 100,000 queries, our results show that the
addition of our jargon/terminology detection LLM feature to the heuristic LTR model results in a Mean Re-
ciprocal Rank score increase of 3.8%.

1 INTRODUCTION

Query Auto-Completion (QAC) presents users with a
ranked list of suggested queries in a drop-down box
as they start typing their query in a search box. QAC
facilitates the search process by making it easier for
users to finish entering their queries without typing
all the letters.

The user’s query prefix can be reformulated in-
line to use specific ‘wording’ that ensures relevance
or semantic matching. This reformulation is particu-
larly useful for Enterprise Search (ES), where organ-
isations have their own jargon and terminology. QAC
can also help avoid users submitting queries that pro-
duce no results (a potentially common occurrence, as
an ES corpus is small compared to WS) (Kruschwitz
and Hull, 2017).

A consequence of the ubiquity of commer-
cial/Internet Web Search (WS) is that users have high
expectations when it comes to interacting with search
engines (Davis et al., 2011). Cleverley and Burnett
refer to this as ‘Google Habitus’ (Cleverley and Bur-
nett, 2019). Ranked query suggestions are an ex-
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pected characteristic of every interactive search ser-
vice (White, 2018).

The simple definition of ES is finding the informa-
tion needed within an organisation (Bentley, 2011).
Many employees or members of an organisation may
not be proficient in using their organisation’s jargon
and terminology. QAC for ES can educate new staff
members about the range of selections available to
them and assist in narrowing that selection even be-
fore the user has finished typing a query. For com-
mercial WS services, the search box typically occu-
pies the centre of an otherwise blank page. Major
providers such as Google, Yahoo, Bing, and Baidu of-
fer ten auto-complete suggestions. For ES, the search
box is less prominent and has limited real estate to
present suggestions. For this reason, many ES ser-
vices present fewer suggestion candidates. Addition-
ally, more suggestions could cause users (especially
on mobile devices) to either begin to ignore sugges-
tions (at which point the additional suggestions be-
come mere noise) or spend an inordinate amount of
time reading suggestions (interrupting or even halting
the flow of their search session) (Scott, 2022). Where
an ES service presents a restricted number of sugges-
tions, their ranking is more important.

Learning to Rank (LTR) is the application of su-
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pervised machine learning techniques to train a model
to list the best ranking order (Li, 2011; Xu et al.,
2020). In the context of QAC, this involves com-
bining signals to present the best order of query can-
didates for a given query prefix. LTR computes the
optimum ‘weight’ (importance) of signals, which are
extracted from the ES corpus, and query log files.

The challenge of deciphering enterprise jar-
gon/terminology within a corpus lends itself to the
fields of natural language processing (NLP) and
large language models (LLM). LLMs, such as Ope-
nAI’s GPT (Generative Pre-trained Transformer), are
trained on large datasets containing vast amounts of
text from diverse sources. Word embeddings can
capture semantic relationships between words in text
data. While LLMs and embeddings are regularly used
in e-commerce (Singh et al., 2023a) and commercial
search engines (Li et al., 2017), their application for
ES has not been sufficiently explored.

In this paper, we introduce a ranking feature
explicitly designed for ES. We call this ‘QACES’
(Query Auto-Complete for Enterprise Search). This
feature is centred on the relative unusualness of
words, such as those used in organisational jar-
gon/terminology. QACES is scalable and can be
applied to any ES service. Our hypothesis is that
adding the QACES feature to a heuristic LTR rank-
ing model will significantly increase the QAC ranking
performance, as measured by Mean Reciprocal Rank
(MRR). The major contribution of this research is the
introduction of our new feature designed to detect, un-
derstand and suggest jargon/terminology specific to
organisations. For performance context, we undertake
an offline ablation study to measure the individual im-
provement of each ranking feature. Subsequently, we
perform an A/B test on a live ES service of a large
third-level academic institution to confirm that the ad-
dition of the QACES feature to our heuristic model
can significantly improve QAC ranking performance.

2 RELATED WORK

2.1 QAC Components

Depending on a researcher’s field of study, the ter-
minology used to describe QAC varies widely. A
user’s incomplete input is often referred to as a ‘query
prefix’. The generated query suffixes or suggestions
are ‘query candidates’ or ‘query completions’. Lesser
used terminologies used to describe the same or sim-
ilar functionality include typeahead, query transfor-
mation (Croft, 2010), ‘search as you type’ (Turn-
bull and Berryman, 2016), predictive search, auto-

suggest, real-time query expansion (RTQE) (White
and Marchionini, 2007), query modification sugges-
tions (Kruschwitz and Hull, 2017) and subword com-
pletion (Kim, 2019). A closely related and overlap-
ping concept to QAC is ‘auto-complete suggestion’,
which is a more general term that often encompasses
a broader range of features aimed at assisting users
in formulating queries that do not necessarily contain
the same starting string of characters. Google differ-
entiates these two concepts by using the word ‘predic-
tions’ rather than ‘suggestions’. For predictions, the
priority is to faithfully ‘help people complete a search
they were intending to do, not to suggest new types of
searches to be performed.’1. In practice, since QAC
may also include the related tasks of suggestion, cor-
rection (e.g. spelling reformulation) and expansion,
the terms QAC and query suggestion are usually used
interchangeably (Yadav et al., 2021; Li et al., 2017),
as is the case in this study.

2.2 Approaches to QAC Ranking

There are two principal approaches to ranking QAC
candidates (Cai and De Rijke, 2016). The first,
more traditional approach is heuristic and combines
domain-specific signals from a corpus and query
logs. This approach, where ranking signals are hand-
crafted based on relevance or popularity, typically
uses experimental or trial-and-error methods to ap-
ply weightings to features. The heuristic approach
produces ranking models that are relatively transpar-
ent. The second approach employs NLP or Lan-
guage Modelling to produce context-aware sugges-
tions (Singh et al., 2023a; Kim, 2019). Learning to
Rank can combine or ’fuse’ the two approaches with
any number of features (Rahangdale and Raut, 2019;
Guo et al., 2016) as outlined in §3.

2.3 Historical QAC Data

Relevance judgements in the form of annotated query-
document pairs are typically required to train a rank-
ing model for documents on the Search Engine Re-
sults Page (SERP) (Joachims, 2002; Daly, 2023).
QAC researchers rarely rely on the same editorial
effort to manually annotate prefix-candidate pairs.
More often, QAC relies on the collection of large-
scale historical data for QAC tasks (Chang and Demg,
2020). Previously recorded behaviour and queries
provide useful information for any user’s intent and
can be leveraged to suggest completions that are more

1https://blog.google/products/search/how-google-
autocomplete-works-search/, accessed 29th June 2023
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relevant while adhering to the user’s prefix (Yadav
et al., 2021).

Most Popular Completions (MPC) is a ranking
feature that proposes completion candidates based on
user preferences recorded in historical search data.
For this reason, and because of a reluctance of users
to provide explicit feedback (Kruschwitz and Hull,
2017), MPC is typically considered the main indica-
tor of historical relevance (Li et al., 2017) and thus
considered to be a credible proxy for ground truth in
many datasets.

A similar ranking feature extracted from historical
logs is Most Frequent Queries (MFQ) (Yadav et al.,
2021). These queries represent the topics or key-
words searched for most frequently by the user com-
munity. MFQ simply ranks the most frequent sug-
gestions matching the input prefix and is particularly
useful when MPC data is sparse.

Much research for QAC focuses on improving the
relevance of suggested queries using a ranking model
trained and evaluated with data generated by com-
mercial search engines, such as the 2006 AOL WS
dataset (Pass et al., 2006), which includes over 10
million queries. ES differs from WS insofar as the
content may be indexed from multiple databases (e.g.
corporate directories) and intranet document reposi-
tories. ES may also include searches for explicitly
indexed usernames, course codes, tracking numbers,
purchasing codes or any datum specific to the organ-
isation (Craswell et al., 2005). In §3.3, we demon-
strate that the AOL query history is sweeping, cen-
tred around popular culture and often archaic. While
the AOL QAC dataset is not ideal, we could not find
a more relevant ES benchmark. A test collection or
dataset based on Enterprise Search is hard to come
by, as organisations are not inclined to open their in-
tranet to public distribution, even for research pur-
poses (Craswell et al., 2005; Cleverley and Burnett,
2019).

Personalisation of an individual user’s session
or recent history enables ‘contextual suggestions‘,
which has proved very effective for completing a
user’s query prefix in Web Search (Fiorini and Lu,
2018). For example, if a particular user submits a
Google search for ”Past American Presidents”, then
if his/her next query prefix starts with an ‘N’, the sug-
gestion will be ‘Richard Nixon’. The use of person-
alisation for QAC in the domain of Enterprise Search
seems to be rare, possibly because members of the or-
ganisation may not wish to be ‘profiled’.

2.4 Trending Queries

Queries that have been popular in a recent time pe-
riod merit a ranking feature to capture temporal be-
havioural trends. In 1999, the operators of the Lycos
commercial Web Search engine began publishing a
weekly list of the 50 most popular queries submit-
ted. The query term ‘Britney Spears’ was number
two on the weekly list. The popularity of that term
endured, and ‘Britney Spears’ never fell off the list
over the next eight years. This meant that the list was
quite static, and emergent topics were volumetrically
drowned out. This has sometimes been referred to as
‘The Britney Spears Problem’ (Hayes, 2008). A more
dynamic list tells us what topic or query is up and
coming or generating a buzz as measured by a sud-
den abnormal burst of interest. This concept is known
as trending and is based on the relative spike in the
volume of clustered topic searches in relation to the
absolute volume of searches. Unlike the popularity
list, the trend list would exclude the constantly popu-
lar ‘Britney Spears’.

2.5 Terms Extracted from the Corpus

The preceding sections describe how historical log
data can be harnessed to create candidates. Sepa-
rately, candidates can also be retrieved from the cor-
pus. Enterprise Search engines like Apache Solr (The
Apache Software Foundation., 2004) are designed for
the explicit retrieval of Term Frequency (TF) within
a particular field of a schema, such as title, content
body, anchors, footers, etc. A candidate indexed from
anchor text within a corpus is likely to be more im-
portant than a candidate from the content field.

2.6 Jargon/Terminology

Jargon is enterprise-specific vocabulary that employ-
ees/members can understand. It encompasses words,
phrases, expressions, and idioms that are not univer-
sally familiar or properly understood. The same term
can have a different meaning outside of the organi-
sation. A search for ‘timetable’ in WS will proba-
bly return bus or train times. Krushwitz gives the ex-
ample that the same search in a third-level education
institution might be aimed at lecture timetables (in
Autumn) or exam timetables (in Spring) (Kruschwitz
et al., 2013).

Although excessive use of jargon and terminology
in organisations is often perceived as exclusionary, we
use the terms here in a positive context for conveying
complex ideas, processes, or services among employ-
ees/members who share common knowledge of the
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enterprise. In this context, jargon and terminology fa-
cilitate efficient communication.

As we will see in §3, the task of detecting enter-
prise jargon/terminology terms within a corpus lends
itself to the fields of NLP and LLM. Once the terms
have been detected and scored, they can be used as
another feature in our model.

2.7 Learning to Rank for QAC

Users’ search history is generally the most likely in-
dicator of current search intent (Chang and Demg,
2020). The use of MPC and MFQ to extract sug-
gestions from historical log data assumes that cur-
rent and future query popularity distribution will re-
main the same as previously observed. A generalised
ranking model is therefore required to handle as-yet-
unseen queries. LTR can be used to combine multi-
ple features with the optimum weighting contribution
to a ranking model. When a user types a query pre-
fix, Apache Solr can retrieve and dynamically score
suggestions from multiple sources using a ‘weightEx-
pression’ in real-time.

2.8 Metrics for QAC

The evaluation of QAC performance has two general
approaches (Chang and Demg, 2020), each of which
has its own metric:
1. The MRR metric focuses on the quality of rank-

ing.
2. The Minimum Keystroke Length (MKS) metric

that focuses on savings of a user’s keystroke
effort (Duan and Hsu, 2011).

Since this study focuses on ranking rather than
keystroke effort, we compute MRR, which is widely
accepted as the principal metric for evaluating QAC
ranking performance (Li et al., 2017; Cai and De Ri-
jke, 2016). The MRR metric is appropriate when-
ever evaluating a list of possible responses to a sample
of queries, ordered by the probability of correctness.
The Reciprocal Rank (RR) of a query response is the
multiplicative inverse of the rank of the first correct
answer: 1 for first place, 1⁄3 for third place, or zero
if the submitted query is not present in the ranked
list (Singh et al., 2023a). The mean reciprocal rank is
the average of the RR results for a sample of queries
Q:

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

where ranki refers to the rank position of the first rele-
vant document for the ith query. MRR only considers

the rank of the first relevant candidate (if there are fur-
ther relevant candidates, they are ignored).

3 METHODS

This section describes how logging is configured to
capture users’ autocomplete session behaviour. This
historical behaviour is converted into a QAC dataset,
which is used to train a baseline ranking model us-
ing LTR-weighted features. We describe each feature
and analyse its contribution. We describe how our
QACES concept can supplement the baseline heuris-
tic features. The subsequent ranking models are then
evaluated using the MRR metric.

3.1 Log Collection for QAC

To enable detailed capture of users’ session be-
haviour, the log4j module2 of the Apache Solr Enter-
prise Search platform (The Apache Software Founda-
tion., 2004) is modified to record the suggestion can-
didates for a given query prefix, the selected candidate
(if any), and finally, the submitted query. This session
data enables the calculation of an RR score (§2.8).
Table 1 lists the recorded parameters for each query
session.

Table 1: QAC session logging parameters to capture sug-
gestion candidates, record the user’s selection, and the sub-
mitted query.

Parameter ES QAC Dataset example
user id (anon) qtp1209411469-21
session id 33418(rid)
time stamp 2024-01-14 16:25:37.697
prefix “aca”

top
suggestion
candidates

academic registry, academic
calendar, academic year
structure, academic registry
fees, academic year, aca-
demic practice, academic
resources

submitted
query “academic registry”

The QAC session id commences as soon as the
first letter is typed into the search box and ends when
the user selects a suggestion candidate or hits submit
with the fully typed query (Li et al., 2017).
This enhanced logging has no discernible impact on
the responsiveness or latency of our live ES service.

2https://cwiki.apache.org/confluence/display/solr/
SolrLogging, accessed 16th Jan 2024
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Storage was added to the backend linux servers to host
both the enhanced logging file size and file retention
for 180 days.

3.2 QAC Dataset Construction

3.2.1 Ground Truth

Yossef et al. claim that MPC carries ‘the wisdom of
the crowds’ (Bar-Yossef and Kraus, 2011). It can be
regarded as an approximate maximum likelihood es-
timator (Li et al., 2017; Yadav et al., 2021). In our
study, we use MPC as a surrogate for judgements of
prefix-candidate pairs. For a given prefix, enumerated
judgements {2-5} are allocated to the candidates, rep-
resenting {irrelevant, moderately relevant, relevant,
highly relevant}. The judgement scores are computed
as a percentile of the MPC score. Figure 1 shows an
extract of our dataset, which has been formatted for
use with an LTR framework (§3.5).

3.2.2 Sensical Suggestions

An important pre-processing step applied to any QAC
dataset for ES is the removal of suggestions that
would produce no search results if selected. An in-
correct suggestion may be considered more damag-
ing than no suggestion, as it would undermine users’
confidence in the ES service. This step is sometimes
referred to as producing ‘plausible completions‘ or fil-
tering out of ‘nonsensical’ suggestions (Yadav et al.,
2021). For example, many suggestions extracted from
the 2006 AOL WS dataset (Table 2) cannot be used.
Even the top AOL queries, such as ‘mapquest’ and
‘myspace’ do not produce search results within our
ES corpus.

3.2.3 Pre-Processing

Further pre-processing steps involved converting all
queries, prefixes, and completions to lowercase. Full
stops, other punctuation, and diacritics were removed.
Queries and suggestions with less than three char-
acters, more than eight words, or 50 characters
(whichever was the bigger) were removed or trun-
cated. All non-English queries were removed.

3.3 Heuristic Ranking Features

We describe the list of ranking functions below as
‘heuristic’ because they are carefully hand-crafted
based on domain knowledge and information retrieval
principles.

• MFQ. The ‘Most Frequent Queries’ feature con-
sists of a table of queries with their frequency of

occurrence extracted from the query logs. An ex-
ample is ”data science 410”, which tells us that
the query ‘data science’ has been submitted to
the search engine 410 times. The Search De-
mand Curve (Figure 2) shows the outsize impact
that a small number of popular queries has on
the overall volume of search activity. Accord-
ing to Kritzinger et al, popular search terms make
up 30% of the overall searches performed on
commercial Web Search engines. Using zoning
norms devised by the SEO community in 2011,
the 18.5% of searchers with the highest occur-
rence is known as the Fat Head. The next 11.5% is
termed the Chunky Middle (Kritzinger and Wei-
deman, 2013). The Long Tail (x-axis) in Figure
2 has been limited for presentation purposes but
actually represents 70% of the search volume. In
our ES query logs, we see that 65 queries account
for 18.5% of all search volume3.

• aolFeature This feature extracts pertinent queries
from the AOL WS dataset (20 million search
queries from about 650,000 users collected be-
tween May and July 2006). Since our ES ser-
vice must only offer ‘sensical’ candidates, our ex-
tracted list contains just 1740 candidates, which
is 0.009% of the total. The feature consists of
a table of queries with their frequency of occur-
rence extracted from the AOL dataset. An exam-
ple is ”music downloads 517”, which tells us that
the query ‘music downloads’ has been submitted
to the AOL search engine 517 times. The AOL
queries differ markedly from the types of query
we expect for ES, which has a much narrower fo-
cus, as shown in Table 2.

Table 2: The top 10 most popular query terms for the 2006
AOL WS compared with our ES query history.

Top 10 AOL WS query terms ES query terms
1 google scholarship
2 ebay fees
3 yahoo library
4 mapquest phd
5 yahoo.com medicine
6 google.com pshychology
7 myspace.com erasmus
8 internet courses esc
9 myspace vacancies

10 www.google.com law

• trendingFeature. The new or nearly new terms
that have been queried in the past 24 hours. To
measure an abnormal spike, we must first deter-

3https://github.com/colindaly75/QAC LTR for ES
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Figure 1: An extract of our LTR formatted dataset including a sample of the prefix-candidate pairs for the “open” prefix.
Each candidate has an associated judgement for a particular prefix (generated using MPC). The candidates also have an prefix
identifier (pid) and a series of feature vectors.

mine what would be a normal baseline score. This
type of calculation lends itself to z-scores, which
consider the burst of popularity against the back-
drop of the historical average (including its stan-
dard deviation). This feature consists of a table of
queries with their computed z-score (e.g. ”grad-
uate studies 22.81”).4 A higher z-score indicates
that the query is more ‘trending’.

• anchorTextFeature. The ‘anchorText’ is the link
label that content providers use to describe a doc-
ument. This feature was generated using the
LinkRank algorithm (similar to Google’s PageR-
ank). In the field of Web Search, this feature can
be expected to have a high weighting co-efficient
as it both tags meaningful descriptive text and also
adds context to a document. In ES, LinkRank may
be less effective, as many documents are created
without publishing intent (e.g. MS Word docu-
ments placed on an intranet drive). This feature
consists of a table of terms with their frequency
of occurrence. An example is ”research support
system 24”, which tells us that the phrase ‘re-
search support system‘ is encoded into anchors 24
times in our corpus. Considerable filtering was re-
quired to remove non-descriptive terms and repet-
itive labels such as ’Next page’, ’Previous Page’,
’Home’, etc.

• titleFeature. This TF feature is a list of candidates

with their corresponding frequency retrieved from
the field of our enterprise corpus. An example is
”communication 333”, which tells us that the term
‘communication’ occurs 333 times in the title field
of our corpus.

• contentFeature. This TF feature is a list of candi-
dates with their corresponding frequency retrieved
from the content field of our enterprise corpus.

Although MPC is typically considered the main
indicator of historical relevance (Li et al., 2017), it
cannot be included as a feature here (since we already
use it as a proxy for ground truth (i.e. the target vari-
able) in our LTR dataset). Similarly, while Person-
alisation has proved very effective for completing a
user’s query prefix in WS, we exclude it as part of
this ES research as our organisation does not permit
the profiling of individual user data.

3.4 QACES LLM Feature for ES

The task of detecting enterprise jargon/terminology
terms within a corpus lends itself to the fields of
NLP and LLM. We call this feature ‘QACES’ (Query
Auto-Complete for Enterprise Search). It is computed
using the synonyms of terms in the real world and the
closest terms in an enterprise corpus. Where these dif-
fer significantly, the term is considered jargon. Once
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Figure 2: Search Demand Curve for our Enterprise Search query history, showing the so-called ’Fat Head’, ’Chunky Middle’
and ’Long Tail’ zones. For our ES service, the most popular 65 queries represent 18.5% of all search volume.

the jargon terms have been detected, they can be used
as a feature in our ranking model.

3.4.1 LLM Synonyms

LLMs are trained on enormous datasets containing
vast amounts of text from diverse sources. We use the
‘client.chat.completions.create’ API response of Ope-
nAI’s GPT-4 model (OpenAI 2023, 2023) to produce
a list of ten English language ‘LLM nearest’ terms for
each query in the ‘fat head’ zone of our Search Curve
(this is the second column of Table 3). An alterna-
tive tool to GPT-4 would have been WordNet (Prince-
ton University, 2010). We opted not to use Word-
Net, however, as frequency data are not independently
available, making it impossible to determine the near-
est terms.

Use of the GPT-4 API prevents data leaking (Bal-
loccu et al., 2024). We tested the temperature pa-
rameter at both 0.5 and 1.0 and observed no obvious
changes in the retrieved nearest terms. The prompt
was “create a flat, json-formatted, sorted, unnum-
bered list of the top 10 nearest (semantically) words
or phrases for each of the words in the following ar-
ray”. We struggled to achieve repeatable lists of near-
synonyms on each run. The detailed wording of the
prompt was necessary to achieve repeatable results.
The array included all of the query terms in the ‘fat
head’ of our Search Demand Curve.

3.4.2 ES Corpus Vectorisation

Word embeddings represent terms as dense vectors
where similar words are closer together in vector
space. We use Word2Vec (Mikolov et al., 2013) to
learn representations based on their contextual usage
in our ES corpus. This produces word and phrase vec-
tors where vectors close together in vector space have
similar meanings based on context. We produce a list
of ‘Corpus Nearest’ terms for each query in the ‘fat

head’ zone of our Search Curve (this is the third col-
umn of Table 3).

3.4.3 Detecting Jargon/Terminology

Jargon/terminology consists of enterprise-specific
words, phrases, expressions, and idioms that diverge
from those universally familiar or understood outside
of the organisation. In Set Theory, these divergent
terms can represented by the set of elements both in
Y and not in X:

Divergent Terms = X̃∩Y

where X is the set of LLM generalised terms and
Y is the nearest neighbour terms with the ES corpus.
The fourth column in Table 3 lists the divergent terms.

3.4.4 Jargony

Jaccard Distance (JD), also known as the Jaccard sim-
ilarity coefficient, is a measure commonly used to cal-
culate the similarity or dissimilarity between two sets
of words such as those in columns 2 and 3 in Table
3. JD is particularly useful in scenarios where the
presence or absence of elements is more important
than their actual values. In this case, the Jaccard dis-
tance represents a measure of divergence. A higher
distance suggests the divergent terms are more ‘jar-
gony’ (i.e. more unlikely to be understood outside the
enterprise). The calculated JD score is presented in
the final column of Table 3). Note that the jargony
score is applied to the query rather than to the diver-
gent terms.

3.5 Learning to Rank Methodology

The Apache Solr ’weightExpression’ parameter of
the ‘DocumentExpressionDictionaryFactory’ dictio-
nary implementation is used to score the suggestions.
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Table 3: A comparison of the top synonyms for two examples of ‘fat head’ queries. The ‘Divergent Terms’ are those that
commonly feature in the Enterprise Corpus but are not part of LLM’s common vocabulary.

’Fat Head’
Query

LLM Nearest (X) Corpus Nearest (Y) Divergent Terms
(X̃∩Y)

Jaccard
Distance

scholarship grant, bursary, fel-
lowship, financial
aid, award, stipend,
tuitions assistance,
academic fund, edu-
cational grant, study
grant

foundation schol-
arship, scholarship
examinations, en-
trance scholarships,
scholarship exams,
schols, visiting
scholar

schols

0.65

id card Identification Card,
Identity Card, Per-
sonal Identification,
Photo ID Card,
Driver’s License,
Passport, Employee
Badge, Student Card,
Membership Card,
Official Documenta-
tion

id card, student card,
student id, tcard

tcard

0.9

The ‘AnalyzingInfixLookupFactory’ Lookup Imple-
mentation allows for suggestions where the starting
string does not necessarily match the query prefix.
These numeric weights were calculated offline using
the RankEval framework (Lucchese et al., 2020). Fig-
ure 3 depicts how each feature weighting contributes
to ranked suggestions in our ES search box. The sol-
rconfig.xml file is published on github4. The RankE-
val Python open-source tool (Lucchese et al., 2017;
Lucchese et al., 2020), based on ensembles of deci-
sion trees, is then employed to determine the optimal
relative feature weighting and calculate each feature’s
contribution to the overall ranking efficiency.

3.5.1 Model

The ranking model is generated using the XGBoost
implementation of the LambdaMART list-wise rank-
ing algorithm4. Table 4 lists the hyper-parameters
used.

3.6 MRR Metric Calculation

In our offline study, we break down the MRR scores
for the three zones of our ES Search Demand Curve
(Figure 2). We compute the MRR scores after three
keystrokes. This breakdown helps us distinguish
the QAC ranking performance for the most popular
queries versus more obscure queries in the long tail
zone.

4https://github.com/colindaly75/QAC LTR for ES

Table 4: Hyper-parameter settings used to evaluate ranking
performance for the Learning to Rank ranking method.

Parameter Value

Algorithm LambdaMark
Framework XGBoost
max depth 10
rank MAP
num round 10
eta 0.5

For the online study, MRR is computed for
the users’ last keystroke (sometimes referred to as
MRR@last (Chang and Demg, 2020)) since this is
where the user selects a suggested candidate for sub-
mission to the search engine. A score of zero is used
where no candidates are offered or in the case where
users fail to select any of the offered candidates. We
calculate MRR@k, where k is the number of offered
completion candidates. We present results for k=10
(as is the norm) and k =7 because our live ES service
presents a maximum of seven candidates.

The calculated MRR scores are initially computed
for heuristic features, which serve as our baseline sys-
tem (i.e., the ’A’ in our online A/B test). The online
test will also give us an overall MRR score based on
‘real‘ data (i.e. the combined score across all of the
Search Demand Curve zones).
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Figure 3: The typed ”aca” prefix presents a list of completion choices via a ranked list of prefix-candidate pairs. Candidates
are generated from various sources/features, each of which is ‘weighted’ using LTR.

3.7 Ablation Study Methodology

Not all of the described ranking features are equally
important. We perform an ablation study to better un-
derstand the contribution of each of the different fea-
tures toward our QAC ranking model learning capa-
bility. We remove one feature from each iteration and
perform again the LTR training and testing steps as
before. If we observe a large decrease in QAC MRR
scores, this indicates that the ablated feature is very
important for the model. Our ablation study is carried
out for MRR@{1,3,7 and 10}.

3.8 Online A/B Test Methodology

An online test will give us the overall MRR score
(across all of the Search Demand Curve zones). Be-
fore commencing the A/B test, we perform an A/A
test. Also known as a null test, the A/A test is used
to establish trust in our experimental platform. This
involves splitting the search requests into two pools,
as in a regular A/B test, but where B is identical to
A. If the scripts to record search requests and com-
pute metrics from the logfiles are functioning consis-
tently, we expect a t-test to prove that any difference
in MRR results is not statistically significant (Kohavi
et al., 2020).

Having established the integrity of our experimen-
tal platform, we subsequently undertake the A/B test
to compare the ranking performance of QAC candi-
dates using two pools: -

• A: This is the Control pool and encompasses all
of the heuristic features.

• B: This Treatment pool includes A’s heuristic fea-
tures and the additional QACES feature.

We use a load balancer with two servers in an ac-
tive/active configuration, with a 50% traffic allocation
to both the Control and Treatment groups. The load

balancer has a session persistence (stickiness) param-
eter enabled so that the suggestion candidates are pre-
sented by the same back-end server that executes the
submitted query. This ensures that each log file has a
complete record.

Since the data collected from group A is indepen-
dent of the data collected from group B, we use an
unpaired two-sample t-test to validate statistical sig-
nificance with α set to 0.05.

4 EVALUATION

In this section, we present the computed LTR weights
for each feature, the results of the ablation study and
the MRR scores for our offline study. Finally, we
compare the MRR scores for our online evaluation
(A/B test) of our ranking models, with and without
the QACES feature.

4.1 LTR Weights

Table 5 shows the RankEval computed weighting as-
sociated with each of our ranking features.

Table 5: LTR weightings for features calculated using the
RankEval framework.

Feature Weight

MFQ 69
titleFeature 22
anchortextFeature 25
contentFeature 20
trendingFeature 9
aolFeature 6
QACES 4
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Figure 4: Ablation/leave-one-out analysis showing the contribution of individual features to the MRR performance across the
QAC ranking model.

4.2 Offline Evaluation

The MRR scores for selected k-value cutoffs for the
three Search Demand Curve zones are listed in Ta-
ble 6. For comparison, we include the scores for the
AOL WS dataset as well as our ES dataset. Across
all zones, the AOL scores are consistently higher; we
speculate this may be due to the use of a Personaliza-
tion feature in the AOL WS dataset.

Singh et al. have achieved QAC MRR scores in
the region of 0.485 for e-Commerce site search (Singh
et al., 2023b), but any comparison is complicated as
they omitted to break down scores into Search De-
mand Curve zones.

Table 6: Offline MRR scores for WS and ES data, with a
breakdown for the sections of the Search Demand Curve.

Dataset /
Zone

MRR
@1

MRR
@7

MRR
@10

AOL WS Data
Fat Head 0.72 0.75 0.78
Chunky Mid 0.29 0.36 0.36
Long Tail 0.23 0.25 0.29
All Zones 0.33 0.36 0.36

ES Data
Fat Head 0.60 0.68 0.68
Chunky Mid 0.32 0.34 0.36
Long Tail 0.19 0.24 0.24
All Zones 0.29 0.33 0.34

4.3 Ablation Study Results

We performed an ablation analysis to better under-
stand the contribution of each of the different fea-
tures of our QAC ranking model (for MRR@{1,3,7
and 10}). Figure 4 shows their relative contribution
totals.

We see that MFQ is the most important ranking

feature, as its removal from the model results in a
sharp decrease in MRR scores. This suggests that
the collective query history is the best indicator of
user intent. The AOL feature makes the smallest con-
tribution to our model; this may be because many
of the suggestions in the feature are deprecated or
simply because the feature was not generated from
our ES index. The contribution of our QACES jar-
gon/terminology feature is comparable to that of the
‘trend’ feature.

4.4 Online Evaluation (A/B Test)

We evaluated two ranking models. The first (A) in-
cluded heuristic features only. The second (B) also
included our QACES feature. The ranking score for
each ranking model is presented in Table 7. The A/B
test was undertaken on the live Enterprise Search ser-
vice of a large third-level education institution. The
model was tested for 16 weeks on 140,000 queries,
which resulted in a statistically significant increase in
MRR score of +3.8% with a p-value < 0.05.

Table 7: A/B test results for ranking models with the per-
centage change in MRR score after implementation of the
QACES feature.

Feature MRR@10

Heuristic only 0.219 ± 0.01
With QACES 0.227 ± 0.02
Percentage change +3.8%

The observed MRR@10 score in our online eval-
uation (0.227) is substantially lower than that calcu-
lated in our offline study (0.34). A possible cause is
that search users type with speed and urgency and opt
not to take the time to engage with the QAC interac-
tive search offering, even where a candidate was an
exact match to the query. We call this phenomenon
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’QAC abandon’ and speculate that it frequently oc-
curs in the case of ‘navigational searches’ (i.e. re-
turning users who already have a good idea of what
document they are looking for).

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we discuss the unique requirements for
QAC in Enterprise Search and demonstrate the im-
plementation of a QAC ranking model using features
whose weightings are computed using Learning to
Rank.

We hypothesise and prove that adding our QACES
LLM-based jargon/terminology ranking feature to our
baseline heuristic LTR model results in a statisti-
cally significant improvement to QAC ranking perfor-
mance (MRR score) on a live Enterprise Search ser-
vice.

A limitation of the GPT-4 language processing
model is that, unlike WordNet, it does not always
produce repeatable results. For example, we may
get a slightly different list of synonyms for the same
query each time it is run. While this does not in-
fluence the general reproducibility of results, it may
affect the consistency of the generated list of jar-
gon/terminology terms. Our initial investigation of
the GPT-4o LM also seems to produce more consis-
tent results and this will be detailed in future work.

Another idea for future work is to explore how
our QACES innovation could be adapted for use with
query expansion. Finally, an investigation of the
causes and factors that affect ‘QAC abandon’ would
be an interesting new direction for the field of auto-
completion.
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