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Abstract: The prevalence of atopic dermatitis is significantly higher in women than in men. Understanding the dif-
ferences in the manifestation of the disease between males and females can contribute to more tailored and
effective treatments. Our goal in this paper was to discover sex-specific biomarkers that can be used to dif-
ferentiate between lesional and non-lesional skin in atopic dermatitis patients. Using transcriptomic datasets,
we first identified the genes with the highest expression difference. Subsequently, several feature selection
methods and machine learning models were employed to select the most relevant genes and identify potential
candidates for sex-specific biomarkers. Based on backward feature elimination, we obtained a male-specific
signature with 11 genes and a female-specific signature with 10 genes. Both candidate signatures were prop-
erly evaluated by an ensemble classifier using an independent test. The obtained AUC and accuracy values
for the male signature were 0.839 and 0.7222, respectively, and 0.65 and 0.6667 for the female signature.
Finally, we tested the male signature on female data and the female signature on male data. As expected, the
analysed metrics decreased considerably in these scenarios. These results suggest that we have identified two
promising sex-specific gene signatures, and support that sex affects the ability to distinguish lesions in patients
with eczema.

1 INTRODUCTION

Atopic dermatitis (AD) is a chronic and highly com-
plex inflammatory skin condition that significantly re-
duces the quality of life of patients. In Europe and
the USA, one in five children and 10% of adults are
diagnosed with AD (Bylund et al., 2020; Laughter
et al., 2021). Probably due to socioeconomic and
environmental changes, including the growing lev-
els of urbanisation and industrialisation, the preva-
lence of AD is increasing worldwide, having partic-
ularly alarming rates in low-income countries (Nut-
ten, 2015; Schuler et al., 2023; Skevaki et al., 2021;
Tsai et al., 2019). The incidence of the disease varies
significantly between different geographical regions
and cultures, age, sex, and ethnicity (Mesjasz et al.,
2023; Nutten, 2015; Schuler et al., 2023). The rea-
sons for this heterogeneity are not clearly understood.
They require further investigation and a deeper under-
standing of how the combination of the multiple fac-
tors involved affects the susceptibility, development,
progression, and treatment of the disease.
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Numerous diseases, including AD, present a
broad spectrum of clinical manifestations, unpre-
dictable courses, and variable responses to therapy. In
this regard, the effective management of these com-
plex diseases associated with multiple phenotypes
and endotypes requires a precision medicine-based
strategy. Concretely, AD is among the disorders that
can benefit most from more personalised and targeted
interventions (Muraro et al., 2016). However, in con-
trast to other diseases, precision medicine in AD is
still in its early stages. Despite the progress made in
recent decades, the clinical reality is still not based on
a multifactorial approach tailored to the needs of each
patient (Mesjasz et al., 2023; Muraro et al., 2016).
Currently, the main challenges for the development of
precision medicine in AD are the discovery of new ef-
fective therapies with few side effects, taking into ac-
count the profile of each patient. Prescribing the most
appropriate therapies for each profile presupposes the
identification of the pathophysiological mechanisms
associated with the disease (Arkwright and Koplin,
2023; Leung, 2024). Particularly, the identification
of biomarkers capable of distinguishing lesional from
non-lesional skin in AD patients may facilitate the
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understanding of the mechanisms involved in the de-
velopment of lesions. A thorough comprehension of
these mechanisms is essential to intervene with tar-
geted therapies in the critical pathways. Gene ex-
pression profiling based on transcriptomic data can
be used to compare lesional and non-lesional skin tis-
sues and identify the key biomarkers involved. Given
the multiplicity of factors that influence the disease,
the inclusion of supplementary patient characteristics
such as sex, age, or existing comorbidities can lead to
more accurate biomarker detection. Hence, a holis-
tic approach with the creation of more complex pro-
files can be tremendously valuable for the manage-
ment and control of the disease, as well as for enhanc-
ing its treatment (Muraro et al., 2016).

With this paper, we expect to contribute to the ad-
vancement of precision medicine in AD. Specifically,
we aim to discover candidate biomarkers for AD by
applying machine learning (ML) algorithms to gene
expression data of two distinct patient profiles. ML
and classical statistical methods have demonstrated
great potential in biomedicine, namely in the process-
ing of high-dimensional datasets such as those used
in the identification of gene signatures (Karthik and
Sudha, 2018; Liu et al., 2022). We also hypothesise
that sex plays a role in identifying a reliable gene sig-
nature to differentiate lesional from non-lesional skin
in AD patients. For this reason, we speculate that
males and females have different molecular mecha-
nisms involved in the manifestation of AD and, con-
sequently, a separate analysis is required.

The remaining part of this paper is organised as
follows. Section 2 reports some of the literature that
addresses the application of ML techniques to the dis-
covery of gene signatures, and the influence of sex on
the manifestation of AD and other diseases. Section 3
summarises the methodology followed to identify the
gene signatures and section 4 presents and discusses
the results obtained. Finally, Section 5 concludes with
an overview of the main findings and possible future
research directions.

2 GENE SIGNATURES FOR AD:
OPPORTUNITIES AND
CHALLENGES

Despite the urgent need to find candidate gene signa-
tures that could revolutionise current dermatological
care, very little research has been conducted at the
AD level using ML algorithms. In fact, most research
applying ML to advance precision medicine focuses
on the most fatal diseases, such as cancer. Neverthe-

less, a few ML-based studies have explored the iden-
tification of biomarker candidate genes for AD. One
such example is the work developed by Zhong et al.
(Zhong et al., 2021). Based on a bioinformatics ap-
proach and using LASSO, the authors used transcrip-
tomic datasets and identified GZMB, CXCL1 and
CD274 as potential biomarkers to distinguish AD le-
sions from non-lesions. On the other side, Möbus and
colleagues (Möbus et al., 2022), also based on tran-
scriptomic datasets, observed two distinct endotypes
for AD associated with notable clinical differences,
allowing patients to be stratified into eosinophil-high
and eosinophil-low groups. Implementing the Boruta
algorithm and a random forest model, the authors
identified the most relevant genes to predict the clus-
ters to which the patients belong. Both investigations
demonstrate that some key genes are promising can-
didate biomarkers that have a major impact on the di-
agnosis and management of AD. However, these stud-
ies do not explore the different phenotypes of the pa-
tients, such as age, sex, or ethnicity, which are known
to play a preponderant role in the manifestation of the
disease.

In contrast, other researchers have analysed the
discovery of differentiated biomarkers depending on
the phenotypic characteristics of the patients, namely
sex. For example, Moon et al. (Moon et al., 2013)
proposed a procedure to find sex-specific biomark-
ers based on three datasets from patients with acute
myeloid leukaemia, chronic lymphocytic leukaemia,
and cutaneous melanoma. The considered method-
ology consisted of an algorithm based on the impor-
tance of each feature in order to extract the top-ranked
genes for male and female patients. The selected
genes were properly tested and the results obtained
revealed high accuracy values, confirming the valid-
ity of the strategy followed and underlining the rele-
vance of sex-specific biomarkers for enhancing prog-
nosis prediction. Further experiments have also been
conducted to unveil sex-specific biomarkers for dif-
ferent diseases. For instance, some papers exploit the
use of ML methods to find sex-specific biomarkers for
Alzheimer’s disease, emphasising the importance of
considering clinical features in addition to genes for
a more thorough and sensitive analysis (Bourquard
et al., 2023; Ji et al., 2022).

As far as we know, no previous research has ad-
dressed the identification of sex-specific genes for
AD. However, many studies have suggested that sex
has a significant contribution to the prevalence and
severity of the disease. For example, Johansson et al.
examined the distribution and characteristics of AD in
a Swedish population and concluded that the disease
is more common in females among young adults (Jo-
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hansson et al., 2022). Similarly, Kiiski et al. noted
that in a Finnish cohort, the prevalence of AD was
higher among women aged 30 to 49 years than among
men of the same age (Kiiski et al., 2022). These
results are consistent with other investigations con-
ducted in other countries, such as Italy (Pesce et al.,
2015) or the USA (Silverberg and Hanifin, 2013),
where the female sex also appears to be a risk fac-
tor for AD. Therefore, we argue that the process of
searching for suitable candidate gene signatures for
AD requires a sex-separated analysis. Accordingly,
this paper presents a novel contribution to the identi-
fication of sex-specific biomarkers for AD based on a
ML approach.

3 MATERIALS AND METHODS

From a broader perspective, the methodology consid-
ered in our proposal can be divided into two major
stages. Each of these stages must be performed in-
dependently for the male and female data. First, two
datasets sharing the same platform were used to iden-
tify the differentially expressed genes (DEGs). Subse-
quently, based on the selected DEGs, an extra dataset
was also taken into account to determine gene sig-
natures for AD. A more detailed description of the
sequential processes considered at each stage is pro-
vided in Figure 1.

3.1 Data Gathering and Exploration

The datasets used to conduct this project were ob-
tained from the Gene Expression Omnibus1 (GEO),
a public repository containing experimental gene ex-
pression data. A preliminary search was performed
in order to obtain transcriptomic datasets for AD

with information about the sex of the patients. With
this objective in mind, we selected the datasets
GSE130588, GSE58558, and GSE150797. Since
some academics state that datasets from different
manufacturers should not be combined to avoid po-
tential bias in the data, all these data sources were
generated by the Affymetrix manufacturer (Liu et al.,
2021; Serio, 2023). These datasets contain nor-
malised microarray data from skin samples collected
from AD patients. As each of these datasets was de-
signed with the purpose of assessing the patients’ re-
sponse to treatments, only the samples that referred
to the start of the therapies were considered. Further-
more, we took into account only patients with lesional
(AD-L) or non-lesional (AD-NL) AD – Table 1 indi-
cates the main characteristics of the selected data.

Combining the three datasets, the number of sam-
ples by sex is balanced. In total, 87 samples corre-
spond to male patients and 88 samples to female pa-
tients. Particularly, 51 samples from males refer to
AD-L, while 36 refer to AD-NL. Conversely, 49 sam-
ples from females correspond to AD-L and 39 to AD-
NL.

3.2 Differential Expressed Genes

Since the identified DEGs may have a significant im-
pact on the overall results, we need to plan the dif-
ferential gene expression analysis in order to avoid
the exclusion of important genes. Even if they are
from the same manufacturer, datasets from distinct
platforms are more likely to introduce bias into the
data (Campain and Yang, 2010). For this reason,
we decided to perform the differential gene expres-
sion analysis using exclusively the datasets produced
on the same platform, i.e., datasets GSE130588 and
GSE58558.

Figure 1: Sequential processes for obtaining candidate gene signatures for AD.

1https://www.ncbi.nlm.nih.gov/geo/

Machine Learning Unravels Sex-Specific Biomarkers for Atopic Dermatitis

29



Table 1: Summary of the properties of the datasets used.

Samples
Dataset Manufacturer Platform Requirements Sex AD-L AD-NL

GSE130588 Affymetrix GPL570
Time: week 0 Female 22 21

Tissue: LS or NL Male 29 21
Female 6 7

GSE58558 Affymetrix GPL570 Time: day 1
Male 12 10

GSE150797 Affymetrix GPL23159
Treatment: Female 21 11
untreated Male 10 5

The first step in determining the DEGs was to di-
vide each of the datasets into two groups, each cor-
responding to a profile (male or female). Each profile
was analysed separately in order to find specific DEGs
for the group of male patients and specific DEGs for
the group of female patients. All the necessary pro-
cesses were performed in R (version 4.3.1) using the
limma package. One of the first data treatments was
to merge the datasets associated with the same profile,
i.e., the male samples in the GSE130588 dataset were
combined with the male samples in the GSE58558
dataset, and the same was done for the female sam-
ples. As a result, we obtained a specific dataset for
males with 41 AD-L and 31 AD-NL samples and a
dataset for females with 28 AD-L and 28 AD-NL
records. Since the merged data came from different
experiments, we corrected the batch effect using the
“removeBatchEffect” function from the limma pack-
age. Moreover, because we were working with mi-
croarray data, some additional cleansing tasks were
also required for the following encountered situations:

• Multiple probes corresponding to the same
gene – only the probe with the highest average
expression was kept, and the other probes were
discarded. Ties in average counts were resolved
by choosing one of the probes and eliminating the
rest (Miller et al., 2011).

• Probes associated with various genes – these
records were removed (Hu et al., 2023).

• Probes that did not match a specific gene –
these records were removed (Wang and Yu, 2023).

To finalise the data treatment, the probe IDs were
converted into their corresponding gene symbols. Fi-
nally, genes with an absolute log2(fold change) ≥ 1
and padj < 0.05 were identified as DEGs and saved in
text files.

3.3 Gene Selection Strategy

After identifying the DEGs for each profile, we
prepared the datasets GSE130588, GSE58558, and

GSE150797 for feature selection and ML modelling.
As with the differential expression analysis, this pro-
cess was also performed using R, analysing each pa-
tient profile separately. Each of the three datasets
was therefore split into male and female groups, re-
sulting in a total of six subsets. For each subset, we
checked the existence of multiple probes correspond-
ing to the same gene and addressed the issue with a
similar approach to the one we used to identify the
DEGs. Probe IDs were also transformed into the cor-
responding gene symbols. By importing the text file
containing the determined DEGs, we filtered the data
in order to have only DEGs. For each profile, the cor-
responding subsets were merged, and the batch effect
was removed. The resulting male and female datasets
were then ready to support the next steps of the work.

The following tasks, including additional data
processing, feature selection, and construction of ML
models, were performed in Python 3.6 using the
scikit-learn library. All these tasks were applied in
parallel to the male and female datasets. For each
dataset, we divided the data into train (80%) and test
(20%), using a stratified strategy to maintain the pro-
portion of AD-L and AD-NL samples in both sets.
Only the training data were used for feature selection
and for the construction of ML classifiers to iden-
tify potential gene signatures. For ML modelling,
we considered a shuffled and stratified 5-fold cross-
validation. The optimal hyperparameters for each al-
gorithm were found using BayesSearchCV with 30
iterations.

Although the identification of DEGs helps to re-
duce the dimensionality of the data, the resulting high
number of genes is still a drawback for efficient pro-
cessing by ML methods. Feature selection is a com-
mon strategy used to minimise these gaps. Therefore,
before building ML algorithms, we conducted a fea-
ture selection approach using Boruta, Support Vector
Machine Recursive Feature Elimination (SVM-RFE),
and Least Absolute Shrinkage and Selection Operator
(LASSO). These three methods reduced the number
of genes differently and thus originated three distinct
gene sets. The Random Forest (RF), XGBoost, Ad-
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Figure 2: Before (left) and after (right) batch effect correction in the male profile.

aBoost, linear Support Vector Machine (SVM), and
Logistic Regression (LR) methods were applied to
each of these sets. For each ML method, we extracted
the importance of each gene and used the Min-Max
method to normalise the obtained value between 0
and 1. Thus, for each of the three gene sets, we ob-
tained the normalised importance values of each gene
for each algorithm, which we then summed to gen-
erate a gene score. The top genes with significantly
higher scores were selected as candidate genes for the
creation of a gene signature.

From the selected set of candidate genes, we con-
ceived new ML models using the same five meth-
ods and constructed a soft-voting classifier that com-
bines the predictions of the models. This ensemble
method was used to evaluate the predictive power of
the models, considering both AUC and accuracy val-
ues. Adopting a backward feature elimination strat-
egy, we discarded the least important gene and cre-
ated new classifiers to compare the AUC and accuracy
values with the prior solution. These steps were per-
formed iteratively until the performance metrics were
worse than the values obtained in the previous step.
Thus, the genes that were not eliminated by this iter-
ative process became part of our proposed gene sig-
nature. In the end, we obtained one candidate gene
signature for males and another for females.

To test our initial hypothesis that sex must be
taken into account when establishing gene signatures
for AD, we used the independent test to compare the
AUC and accuracy values obtained when the male
signature is applied to the male and female datasets
and vice versa. The additional step of testing the

male signature against the female dataset and vice
versa was necessary to determine whether the identi-
fied genes can be considered sex-specific candidates.

4 RESULTS

4.1 DEGs Identification and Initial
Gene Selection

At the beginning of the differential gene expres-
sion analysis, two distinct groups were identified af-
ter merging the datasets GSE130588 and GSE58558.
In both profiles, the samples belonging to the same
datasets had similar expression values, but these val-
ues were significantly different from the expression
values of the samples in the other dataset. Batch ef-
fect correction removed these technical differences.
Figure 2 shows the box plots obtained before and af-
ter removing the batch effect in the male profile. For
females, the batch effect correction led to similar re-
sults. After processing the data, we identified 188 and
764 DEGs for the male and female datasets, respec-
tively.

Once the DEGs were determined, we proceeded to
the individual treatment of the three datasets, which
involved filtering the genes according to the DEGs
found. As the GSE150797 dataset was generated us-
ing a different platform, some DEGs did not match the
probe IDs. Consequently, after merging the datasets,
the number of DEGs was reduced to 172 in the male
profile and 700 in the female scenario. Moreover, we
also observed that there were larger differences be-
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tween the GSE150797 dataset (GPL23159 platform)
and the datasets from the GPL570 platform before
batch effect correction. After removing the batch ef-
fect, the existing differences were successfully min-
imized. Boruta, SVM-RFE and LASSO yielded the
three gene subsets indicated in Table 2.

Table 2: Number of selected genes by each feature selection
approach.

Profile Boruta SVM-RFE LASSO

Male 12 90 62

Female 23 75 92

4.2 Determination of Sex-Specific Gene
Signatures

Since the number of DEGs in the male dataset is rel-
atively small, in this case, we decided to include an
additional scenario corresponding to the training and
validation of the ML algorithms without using any
feature selection method. Table 3 lists the top genes
obtained after implementing the ML process and de-
termining the scores. In general, the different fea-
ture selection strategies identified the top genes con-
sistently for the same profiles.

Based on the results, we selected an initial set
of 11 candidate genes for males, and for females,
we considered the 16 most important genes (Ta-
ble 3, highlighted in bold). Our backward feature
elimination strategy led to the discovery of an op-
timal 11-gene signature specific to males (KIF2C,
AKR1B10, PHYHIP, FOSL1, FPR1, HS3ST3A1,
MX1, KANK4, PPARG, BCL2A1, and KLHDC7B)
and a 10-gene signature specific to females (CEP126,
FCHSD1, C17orf96, IL18RAP, P2RY10, PTAFR,
ANKFN1, TBX18, P2RY2, and AEN). Interestingly,
none of the genes are common to both signatures.
This may indicate that the molecular pathways in-

volved in the development of AD lesions may dif-
fer between men and women, suggesting that the sex
of the patients should be considered for better dis-
ease management and treatment. The genes KANK4,
PHYHIP and PPARG from the male profile were
downregulated in the lesions, while the rest were
upregulated. In the female profile, only ANKFN1,
CEP126 and TBX18 were downregulated, while all
others were upregulated. There is scientific evidence
that some of these genes may have a major impact on
AD. For example, the downregulation of the PPARG
gene, identified in the male signature, may be associ-
ated with inflammation, keratinisation, and sebaceous
gland function (Konger et al., 2021). On the other
hand, some studies suggest that P2Y receptors, such
as the P2RY10 and P2RY2 genes found in the female
signature, can be involved in skin inflammation (Pas-
tore et al., 2007).

Table 4 presents the AUC and accuracy values
obtained for each candidate signature using the vot-
ing classifier. A closer analysis of the results shows
that the AUC and accuracy values of the male sig-
nature in the independent test are considerably high
when applied to the male data (0.839 and 0.7222, re-
spectively). However, when this signature is tested
with the female data, the AUC (0.575) and accuracy
(0.6111) values deteriorate substantially. Although
the difference is not as marked, the same is true for
the female signature. The AUC and accuracy values
of the female signature when applied to the female
data are 0.650 and 0.6667, respectively. These values
decrease when the female signature is tested on the
male dataset (AUC = 0.552 and accuracy = 0.6111).
These findings thus demonstrate that considering sex-
specific biomarkers leads to improved gene signatures
for distinguishing lesions from non-lesions, reinforc-
ing the benefits of a sex-separate analysis to establish
candidate gene signatures for AD.

Table 3: Top genes identified by the feature selection methods for each profile.

Male profile Female profile
Boruta SVM-RFE LASSO All DEGs Boruta SVM-RFE LASSO
KIF2C KIF2C FOSL1 KIF2C CEP126 FCHSD1 C17orf96

AKR1B10 FOSL1 KIF2C FOSL1 FCHSD1 C17orf96 IL18RAP
PHYHIP FPR1 MX1 PHYHIP C17orf96 IL18RAP MS4A14
FOSL1 MX1 PHYHIP AKR1B10 GNA15 PTAFR STRIP2
FPR1 KANK4 HS3ST3A1 KLHDC7B IL18RAP WIF1 TBX18

HS3ST3A1 PPARG KANK4 FPR1 P2RY10 STRIP2 P2RY2
BCL2A1 HS3ST3A1 PLAG1 AEN

MS4A14 GNA15
ANKFN1 HSD11B1
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Table 4: AUC and accuracy values of the optimal gene signatures when tested against the male and female datasets.

Male data Female data

AUC accuracy AUC accuracy

train 0.9737 0.8099 0.8543 0.8429
Male signature

test 0.839 0.7222 0.575 0.6111

train 0.76 0.6659 0.975 0.9286
Female signature

test 0.552 0.6111 0.650 0.6667

5 CONCLUSION AND FUTURE
WORK

AD presents an unequal distribution between men and
women, and its incidence is increasing worldwide.
Nevertheless, there are very few studies on this dis-
ease to identify biomarkers through ML techniques.
Specifically, we have not found any scientific study
aimed at finding sex-specific biomarkers for the dis-
ease. This could be of particular relevance to gain
deeper insights into how AD manifests in men and
women. To fill this gap in the literature, we developed
a ML approach using transcriptomic datasets and in-
tended to identify male and female biomarkers that
distinguish normal from lesional skin in patients with
atopic eczema.

Our research led to the definition of a male-
specific gene signature consisting of the KIF2C,
AKR1B10, PHYHIP, FOSL1, FPR1, HS3ST3A1,
MX1, KANK4, PPARG, BCL2A1, and KLHDC7B
genes, and a female-specific gene signature com-
prising the CEP126, FCHSD1, C17orf96, IL18RAP,
P2RY10, PTAFR, ANKFN1, TBX18, P2RY2, and
AEN genes. For some of the identified genes, there
is evidence in the literature to support their possible
influence on the skin. The difference between the
genes of the two signatures could indicate that dif-
ferent mechanisms are involved in the manifestation
of AD in men and women. A better understanding
of these mechanisms could promote the emergence of
targeted treatments and contribute to the development
of precision medicine in AD.

Although the results obtained emphasise the need
to investigate sex-specific biomarkers for AD, our
study has certain limitations. The main shortcom-
ings are the limited number of samples and the lack
of public databases providing gene expression data
in combination with clinical phenotypes. Therefore,
new studies on this topic and the availability of new
datasets integrating transcriptomic and phenotypic
data are currently a priority. It would also be valuable

for future research to replicate the proposed method-
ology to other diseases, particularly those where it is
suspected that different molecular mechanisms may
be involved depending on the sex. In addition, a thor-
ough investigation of the discovered biomarkers as
well as the associated molecular mechanisms is re-
quired to gain a comprehensive understanding of how
men and women differ in the development of AD le-
sions. Finally, any research of this nature requires
clinical validation.
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