
Two-Stage Fault Detection and Control Approach for DFIG-Based 
Wind Energy Conversion System 

Daison Stallon1 a, Ichrak Eben Zaid2 b and Yolanda Vidal1,3 c 
1Control, Data, and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona  

Est (EEBE), Universitat Politécnica de Catalunya (UPC), Barcelona, Spain 
2Commande Numérique des Procédés Industriels (CONPRI) National School of Engineers of Gabes,  

University of Gabes, Tunisia 
3Institut de Matemátiques de la UPC, BarcelonaTech, IMTech, Pau Gargallo 14, 08028 Barcelona, Spain 

Keywords: Wind Turbines, Wind Speed, Fault Diagnosis, Wind Energy Conversion Systems, Control Monitoring, 
Doubly Fed Induction Generators, Machine Learning. 

Abstract: Doubly-Fed Induction Generator (DFIG)-based Wind Energy Conversion Systems (WECS) are critical in 
modern electricity generation due to their ability to enhance energy capture and seamlessly integrate with 
the electrical grid. However, maintaining reliability and minimizing maintenance costs are essential to 
ensure consistent energy production. This research presents an innovative method for fault detection and 
diagnosis in DFIG-based WECS. The approach leverages independent component analysis-based 
correlation coefficient for precise fault identification. Additionally, an enhanced multihead cross attention 
with bi-directional long short term memory classifier is employed to accurately categorize different fault 
types. To further improve classifier’s performance, the multi-strategy enhanced orchard algorithm is 
implemented, focusing on regulating active and reactive power variations, harmonics in rotor current, and 
voltage in the DC link. The proposed method is evaluated using MATLAB working platform and 
demonstrates a high accuracy rate of 98% compared to other techniques. 
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1 INTRODUCTION 

The increasing use of fossil fuels and growing 
environmental concerns highlight the urgent need for 
clean and sustainable energy sources. Wind energy 
has become a vital part of the global energy 
landscape, providing 20% of the world’s electricity, 
with Wind Turbines (WT) at its core. Consequently, 
efficient problem diagnosis and maintenance are 
necessary to ensure that WT operates dependably 
(Ding et al., 2019; Heilari et al., 2016). Power 
electronic converters' fault-tolerant performance in a 
variety of applications, including electrical drives, 
has been extensively studied in recent years. Zhang et 
al. (2014), for instance, talk about fault-tolerant 
techniques for multilevel and two-level converters. 
Furthermore, Riera-Guasp et al. (2014) offer 
information on condition monitoring and fault-

tolerant operation for electric drives and other 
equipment.  

Moreover, a fault-tolerant control strategy for a 
T-type three-level inverter is presented which 
guarantees a decrease in power and output voltage 
distortions in the event of an open circuit fault. 
Despite the paucity of research on fault tolerance in 
Wind Energy Conversion Systems (WECSs), 
provides a fault-tolerant topology using a five-leg 
converter configuration for the grid side converter’s 
post-fault operation in PMSG-based systems. An 
alternative approach is presented, wherein the output 
phases are connected to the dc-link post-fault 
detection midway. 

Practicality is limited, though, as this arrangement 
causes grid-side converter switch voltages to double 
in the post-fault mode (Li, Y et al. 2020; Tumari, M 
et al. 2022; Dou, B et al. 2020). To eliminate current 
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distortion post-fault, research suggests faulttolerant 
control for open-switch faults in three-level neutral 
point clamped converters of Permanent Magnet 
Synchronous Generator (PMSG) based systems by 
using d-axis current injection. References (SaeKok et 
al., 2010), examined the reconfiguration post-fault 
diagnosis and converter defects in DFIG. Kanjiya et 
al. (2013) presented a fault-tolerant Power Electronic 
(PE) structure by substituting a nine-switch Grid Side 
Converter (GSC). 

While grid failures are covered in (Li et al., 
2014), converter faults are not mentioned. Shi and 
Patton (2015) explain current sensor malfunctions 
and introduce a new current observer to enhance fault 
detection. In order to overcome these problems, Gao 
et al. (2015a) investigate malfunctions in pitch and 
generator speed sensors and suggest an observer-
based active fault-tolerant control technique. 

Timely defect detection is critical to all fault-
tolerant 

systems. A wealth of information on defect 
diagnostic techniques has been published recently, 
including surveys such as (Gao et al., 2015b).  

Various research papers have existed in the 
literature 

based on fault analysis in wind energy using 
various techniques and aspects. Tuerxun et al. 
(Tuerxun et al., 2021) introduced the SSA-SVM 
(Sparrow Search Algorithm-Support Vector 
Machines) model, an efficient approach that 
outperforms existing methods for enhancing 
diagnostic accuracy and applicability of WT. Zhang 
et al. (Zhang et al., 2022) introduced a CVAE-GAN 
(Conditional Variational Generative Adversarial 
Network)-based strategy, enhancing the diagnostic 
precision of WT in complex scenarios.  

Kong et al. (Kong et al., 2021) introduced an 
adaptive noise reduction technique known as 
CDWPSO (Chaotic Dynamic Weight Particle Swarm 
Optimization with Sigmoid-Based Acceleration 
Coefficients), aimed at enhancing the diagnosis of 
bearing faults in WT.  

Hsu et al. (Hsu et al., 2020) employed a statistical 
process control and machine learning on 2.8 million 
sensor data to diagnose WT faults and predict 
maintenance needs with high accuracy, improving 
operational efficiency and reducing downtime. Qi et 
al. (Qi et al., 2023) presented the WJDAN (Weighted 
Joint Domain Adversarial Network) as an innovative 
approach for improving cross-domain fault diagnosis 
in WT. This research makes the following significant 
contributions: 

• To handle the non-stationary nature of vibration 
signals originating from WECS, the research 

uses the Independent Component Analysis-
based Correlation Coefficient (ICA-CC) 
method, particularly within the timefrequency 
domains. 

• The research encompasses the process of 
training an Enhanced Multihead Cross 
Attention with BiLSTM (EMCABN) classifier, 
that is specifically designed for categorizing 
different types of faults in WECS. 

• Furthermore, the research involves the 
optimization of critical parameters within the 
EMCABN model. 

• This optimization is carried out using the Multi-
strategy Enhanced Orchard Algorithm 
(MSEOA) for controlling the variations in 
active and reactive powers, harmonics in rotor 
current, and the voltage in the dc-link. 

The research is organized into distinct sections: 
Section 2 outlines the proposed control methodology 
mechanism, Section 3 discusses implementation 
results, and Section 4 offers a comprehensive 
conclusion summarizing the entire work. 

2 PROPOSED SYSTEM UNDER 
INVESTIGATION 

The data processing system depicted in Figure 1 for 
WT fault detection and classification represents a 
cutting-edge and comprehensive approach to 
ensuring the reliability and safety of WT while also 
mitigating maintenance costs.The present framework 
comprises the following primary steps for the goal of 
defect identification and classification: 
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Figure 1: Structure of proposed methodology. 

Data Collection: Under various operating 
conditions, the process records different 
measurements. The gathered data depicts both 
optimal and several potentially flawed scenarios that 
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may arise during the process. It can be split into two 
sets, one for testing and the other for training. 
Denoising Process: Firstly, use the wavelet threshold 
denoising method to denoise the defected voltage 
signal, then the denoised voltage signal is subjected 
to ICA-CC model to produce a series of components. 
Feature Extraction: When the system is functioning 
normally, an ICA-CC model is constructed solely 
from the training data set. The ICA-CC model 
extracts a collection of characteristics where the 
original data's information becomes less and less 
important. As a result, the features that are most 
frequently caught are retained and show how the data 
is projected onto a subspace that is determined  
by fewer total projector directions. Given that it has a 
substantial impact on the classification performance, 
this quantity was chosen with sufficient care. The 
combined probabilities of the chosen features across 
the various process scenarios are computed. An ICA-
CC model with five directions has been built based 
on the most important information that was projected 
from the data.  
Fault Detection and Classification: During the 
training phase, EMCABN demonstrates a potential 
capacity to identify each of the WT's various 
operating circumstances. The quantity of situations 
determines the EMCABN structure. As a result, each 
scenario is given a matching state. The intermediate 
transitions between all EMCABN states are defined 
manually based on certain requirements and for 
large-sized data. Conversely, estimating the 
transition probabilities is more feasible in the 
univariate scenario. The EMCABN parameter triplet 
is defined once it has been trained, and its 
effectiveness is evaluated using a testing setup. 
Fault Control: Wind speed, rotor speed, generator 
temperature, voltage, and current are the inputs of 
the system. Using these inputs, fault control actions 
are implemented, such as adjusting pitch angle, yaw 
control, braking, or activating protection 
mechanisms to mitigate fault effects and ensure safe 
and efficient WECS operation. The mechanism is 
done using MSEOA. 

2.1 Fault Identification Phase Using 
ICA-CC 

In the fault detection phase of the DFIG-based 
WECS, the independent component analysis-based 
correlation coefficient (ICA-CC) is used to isolate 
and identify fault signatures from the system's 
operational data. The ICA-CC method effectively 
separates the mixed signals into independent 
components, allowing for precise detection of 

anomalies indicative of faults.  
Monitoring statistics include active and reactive 

power variations, harmonics in rotor currents, and 
voltage fluctuations in the DC link. These 
parameters are continuously monitored to establish 
baselines and identify deviations that may signal a 
fault. Thresholds for each parameter are set based on 
historical data, and any significant deviation triggers 
an alert. The enhanced multihead cross attention 
with BiLSTM classifier then categorizes the fault 
type based on the identified patterns, ensuring 
accurate and timely diagnosis. The monitoring 
statistics are crucial in this phase, as they provide the 
necessary data to detect and classify faults 
efficiently. 

Fault Detection: 
Input Parameters: Decrease in wind speed, abnormal 
generator temperature rise, and fluctuations in 
electrical grid voltage. 
Output: Detection of anomalies in the system’s 
behavior, triggering an alarm for further 
investigation.  
Based on this, the measured data matrix is 
represented in the following: 

EASX +=      (1) 

Where X represents the measured data matrix, S 
represents the independent component matrix, and A 
represents the mixing matrix. To find the separation 
matrix W, the reconstructed matrix Sˆ is derived as 
follows: 

WXS =
^

  (2) 

To derive the detection logic, the thresholds are 
established first, followed by the application of the 
corresponding logic: 
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where estimated thresholds are expressed as J 2  

and 

JSPE,th, the unit matrix is expressed as I. 

2.2 Fault Classification Phase Using 
EMCABN 

The fault classification phase in DFIG-based WECS 
leverages the Enhanced Multihead Cross Attention 
with BiLSTM Network (EMCABN) to accurately 
categorize various fault types (Leng, X.L et al. 
2021). This advanced model combines the strengths 
of multihead attention mechanisms and BiLSTM 
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networks. The model can focus on various input data 
points at once thanks to the multihead cross attention 
method, which helps it identify complex patterns 
linked to various defects. The BiLSTM component, 
with its bidirectional processing, ensures that 
temporal dependencies in the data are effectively 
utilized, leading to a more accurate fault 
classification.  

EMCABN excels in handling complex, nonlinear 
relationships within the system, enabling it to 
differentiate between subtle fault signatures. By 
integrating this approach, the model can classify 
faults with high precision, which is essential for 
timely intervention and maintenance in WECS. The 
performance of EMCABN is further enhanced by 
optimizing its parameters using the Multi-strategy 
Enhanced Orchard Algorithm (MSEOA), ensuring 
robust classification under various operational 
conditions. 

Fault Classification: 
Input Parameters: Detected anomalies and historical 
fault data. 
Output: Classification of faults into categories such 
as mechanical faults (e.g., bearing failure), electrical 
faults (e.g., short-circuit in the generator), or 
gridrelated faults (e.g., voltage instability). 

It incorporates the forward hidden layer denoted 
as Lf w, the backward hidden layer Lbw and the output 
GHIOp for network updates. The network undergoes 
iterative updates, proceeding both in the backward 
direction, beginning T to 1 and in the forward 
direction, beginning 1 to T. The mathematical 
expression for the layers of the EMCABN technique 
is formulated as follows: 

fLfifw bLwtGHIwL ++= −121 )((σ    (4) 

bLbibw bLwtGHIwL ++= −153 )((σ    (5) 

OGHIfOp bLwLwGHI ++= 64          (6) 

where, Lf w represents forward bias, Lbw represents 
backward pass, GHIOp represents the final output 
layers. σ represents standard deviation, w represents 
the weight coefficients, and bLf , bLb , and bGHIO 

defines the biases in the model. 

2.3 Fault Control Phase Using MSEOA 

The practical implementation of a multi-objective 
framework for WT fault detection is discussed in 
this section. This framework's main goal is to 
maximise EMCABN. The objective function for the 
proposed system is formulated in the following. 

],,,,,,[
)(min

,,,, QPVIVIVE
EfunctionObjective

abcgabcgabcrabcrDC=
=

(7)

where, error is specified as E which mainly defines 
the minimization of voltage, current and power 
variation in the WECS. VDC represents dc-link 
voltage, Ir,abc, Vr,abc represents three phase rotor 
current and voltage, Ig,abc, Vg,abc represents three 
phase grid current and voltage,  P represents active 
power, Q represents reactive power, ’min’ represents 
minimize.  

Fault Control: 
Input Parameters: Identified fault types and system 
configuration.  
Output: Implementation of control actions such as 
adjusting pitch angle to reduce load on the turbine or 
activating protection mechanisms to isolate faulty 
components. Pseudocode and flowchart of MSEOA 
is shown in Figure 2 respectively. 
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Figure 2: Flowchart of MSEOA Algorithm. 

2.4 Step-by-Step Explanation of  
Multi-Strategy Enhanced Orchard 
Algorithm (MSEOA)  

According to the Orchard Algorithm (OA), 
exploration is the movement of candidate 
individuals in the direction of the ocean current, 
whereas exploitation is the movement of candidate 
individuals within the swarm. Temporal control 
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parameters regulate how these two phases transition 
into one another. In Kaveh et al., 2023.  
In order to find potential areas, the OA focusses on 
exploration in the beginning of an iteration. 
Ultimately, though, the OA favors exploitation to 
identify the optimal spot inside the designated 
region.  

The algorithm's capacity for local exploration 
and convergence are enhanced by the sine and 
cosine learning factors approach. The ability to 
participate in global exploitation and to break free 
from the trap of local optimization is both improved 
by the local escape operator method. Opposition 
Based Learning (OBL) and Quasi Oppositional 
Learning (QOL) approaches increase the population 
solution quality and expand the pool of possible 
persons, which improves optimization competency. 
An MSEOA is created by integrating the OA with 
these three tactics. In order to solve optimisation 
difficulties, MSEOA integrates multiple 
sophisticated methodologies, building upon the 
fundamentals of OA. To improve the OA, it 
combines generalised oppositional learning, 
quadratic interpolation, and orthogonal learning. 
Generalised oppositional learning enhances initial 
population quality and convergence, quadratic 
interpolation improves the accuracy of global 
searches, and orthogonal learning helps escape local 
optima. When combined, these tactics improve OA 
performance, especially for high-dimensional and 
complicated issues. The comprehensive steps of the 
MSEOA are summed up in the following to 
represent the aforementioned phases. 
Step 1. Start by initializing a population of 
solutions randomly. Each solution represents a 
potential answer to the optimization problem, and 
the population size determines the number of 
solutions considered at each iteration. Define 
necessary parameters, such as the number of 
iterations, the search space boundaries, and the 
learning rates. Initialize specific parameters for each 
strategy used within the algorithm. Establish N = 
300 and T = 200, specify the fitness function, and 
use the logistic maps provided by to create the 
starting locations of N seedlings in the solution search 
space. Pi+1 = αPi(1   Pi), 0 ⩽ P0 ⩽ 1 and let t = 1. 
Step 2. Assess and contrast the objective value of 
every contender, and record the best location thus far 
along with the matching optimal objective value. 
Evaluate the fitness of each solution using an 
objective function. This function quantifies how well 
each solution solves the problem. In DFIG-based 
WECS, for instance, it could measure how well the 
algorithm controls power variations and harmonics. 

Rank the solutions based on their fitness. The better 
the solution, the higher its rank. 

Step 3. Growth of the seedlings. Compute the time 
control function C(t). If C(t) > 0.5, the candidate 
individual ( )tPi tracts the growth for each seedling, 
screening of the seedlings and graft for each seedling 

( )1+tPi  is renewed using 

( ) ( ) ( )μβ ××−×+=+ ∗ 221 rPrtPtP ii . 

Where constants is denoted as β , μ , random 
number is expressed as 2r , deviated updated 
position is denoted as ∗P . 

Step 4. Replacement of the weak seedlings by the 
new ones. If ( ) ( )( )tC11,0rand −> , Type A 
movement is performed by the candidate, and the 
new position is determined using 

( ) ( ) ( )LbUbrtPtP ii −××+=+ 31 γ .     
Otherwise, the candidate engaged in Type B 
movement, and the updated position makes use of 

( ) ( )( ) ( )( )tPPsteptPtP iii −++=+ *
21 ..1 ωω . 

Where, upper bound and lower bound is expressed 

as LbUb, , constant for seedlings is expressed as γ

, step  is expressed as step function. 

Step 5. Verify the modified individual solution to 
see if it exceeds the boundary condition. If it is 
outside the scope of the search, 











−++= d

i
dd

dd
d

i PUbLbUbLbrandP ,
2

  is used to 

return to the opposite boundary. 

Step 6. Examine the current location's objective 
cost both before and after upgrading. Replace the 
site if the grafted seedlings are more fit than the 
existing one. Next, compare the ideal fitness value to 
the objective value of the existing place. Renew the 
best location so far found and the accompanying 
ideal objective value if the objective value at the 
current position is superior. 

Step 7. If t < T, go back to Step 3, otherwise, 
perform Step 8. 

Step 8. The optimal solution is the one that 
remains after the algorithm converges and finds the 
best solution. Next, this solution is implemented in 
the problem domain, e.g., DFIG-based WECS fault 
categorisation. In order to confirm the solution's 
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resilience, evaluate the outcomes once more and, if 
necessary, validate the results against different 
benchmarks. 

3 RESULTS AND DISCUSSION 

The research uses a benchmark model that uses the 
MATLAB software to simulate a modern WT in 
order to evaluate the efficacy of this strategy 
(Xiahou, K.S et al 2020). The dataset consisting of 
images related to these fault scenarios, is divided 
into two subsets through a random split. Details on 
the number of variables assessed, the total number of 
samples, and the percentage of data allotted to 
training and testing should all be included in the 
EMCABN dataset.  

Usually, 80% of the data is used for training and 
20% is used for testing; however, this could change 
depending on the study. The Multihead Cross 
Attention mechanism improves the model's focus on 
pertinent portions of the input data, enhancing 
overall performance in tasks like time series 
prediction or classification. The EMCABN catches 
both past and future information in the sequence. 
Simulink block setup of the proposed system is 
shown in Figure 3. 

Approximately 75% of these images are 
allocated for detection within the EMCABN, while 
the remaining 25% are reserved for the classification 
task.  

Figure 4 shows the average accuracy of the 
EMCABN-MSEOA machine learning model over 
the course of training. The validation accuracy 
reaches a maximum of about 98% at around epoch 
10. The proposed EMCABN detects the WT faults 
with remarkable average accuracy of 98%. The 
Figure 5 shows the training and validation loss of a 
machine learning model over the course of training. 
The results, shown in Figure 6, indicate that 
EMCABN-MSEOA benefit from increased depth. 
Notably, EMCABN-MSEOA models with two or 
three layers achieved performance, reaching an F1 
score of about 98%. This represents a substantial 7% 
improvement over the single-layer 
EMCABNMSEOA model. 

Wind Turbine Grid

sV
LV

Grid side 
converter

Rotor side 
converter

Proposed algorithm

FilterGrid

 
Figure 3: Simulink block setup of the proposed system. 

 

Figure 4: Average accuracy of the EMCABN-MSEOA 
model. 

 

Figure 5: Average losses of the EMCABN-MSEOA 
model.  

 
Figure 6: Comparison for efficient diagnosis of WT fault 
with proposed and conventional techniques. 

In Figure 7, the evaluation compares 
EMCABNMSEOA, MSCNN, and CNN using 
average F1 scores across eight conditions as the 
evaluation metric. Table 1 offers a comprehensive 
and wellrounded analysis by synthesizing the results 
from 50 randomly conducted trials. 

 
Figure 7: Comparison for efficient diagnosis of noise with 
proposed and conventional techniques. 
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Table 1: Comparison of solution techniques for 50 random 
trails. 

Techniques F1 Score (%) Detection time (s)
CNN (Zare and Ayati, 2021) 98.82±0.0050 36.7318±0.2197 

MSCNN (Zare and Ayati, 2021) 98.57±0.0038 14.5388±0.2247 
EMCABN-MSEOA 98.05±0.0058 14.5995±0.1756 

Techniques Classification 
time (ms) Control time(s) 

CNN (Zare and Ayati, 2021) 0.4884±0.0023 6.56 
MSCNN (Zare and Ayati, 2021) 0.1806±0.0025 4.19 

EMCABN-MSEOA 0.1814±0.0022 2.65 

Table 2: Comparison of solution techniques for 50 random 
trails. 

Techniques Control level 1 Control level 2 Control level 3
CNN 

(Zare and Ayati, 2021) 80.41±4.32 86.92±2.84 72.50±5.40 

MSCNN 
(Zare and Ayati, 2021) 71.01±1.04 70.42±2.32 62.70±3.04 

EMCABN- 
MSEOA 97.34±0.96 98.20±0.72 96.76±1.46 

Techniques Control 
level 4

Control 
level 5 Average 

CNN 
(Zare and Ayati, 2021) 96.93±2.99 78.95±3.21 84.31 

MSCNN 
(Zare and Ayati, 2021) 72.09±1.97 71.30±1.57 72.71 

EMCABN- 
MSEOA 98.94±0.85 99.05±0.69 98.33 

Within Table 2, a comprehensive comparative 
assessment is presented, utilizing percentage scores 
as the evaluative metric. Statistical comparative 
analysis is shown in Table 3. The performance of 
proposed technique is compared with existing 
approaches (Dhibi, K et al. 2022) such as NN-based 
EL (NN-EL), Reduced NN-EL, Neural Network 
(NN), Bagging ensemble, Random Forest ensemble, 
Cascade Forward Neural Network (CFNN), Multiple 
Layers (MNN), Feed-Forward Neural Network 
(FFNN), and Generalized Regression Neural 
Network (GRNN). 

The proposed method gives better results in 
terms of statistical analysis. 

Table 3: Statistical comparative analysis. 

Methods 
Global performances 

Accuracy Recall Precision Computational 
time (s)

Proposed 99.98 99.987 99.987 27.01 
GRNN 97.01 97.01 97.01 99.14 
FFNN 97.17 97.18 97.17 126.45 
MNN 93.58 93.58 93.58 51.30 
CFNN 97.41 97.41 97.40 186.82 

Random Forest 
ensemble 98.41 98.41 98.42 261.3 

Bagging ensemble 98.31 98.31 98.31 197.12 
NN 93.70 93.71 93.70 47.01 

Reduced NN-EL 99.95 99.95 99.95 141 
NN-EL 99.97 99.97 99.97 386 

Table 4 displays the results of the Wilcoxon 
signed-rank test comparison (Fathy, A. et al., 2022). 
The suggested approach differs dramatically, with a 
95% confidence level. 

Table 4: Wilcoxon signed-rank test comparison results. 
Method Negative 

ranks
Positive 
ranks

Ties Z Decision regard (30 runs) 

GA-PSO 5a 25b 0c -3.918d a. GA < PSO 
b. GA > PSO 
c. GA = PSO 
d. Based on negative ranks

FPA-GA 30a 0b 0c -4.782d a. FPA < GA 
b. FPA > GA 
c. FPA = GA 
d. Based on positive ranks

FPA-PSO 30a 0b 0c -4.782d a. FPA < PSO 
b. FPA > PSO 
c. FPA = PSO 
d. Based on positive ranks

Proposed 35a 0b 0c -5d a. Proposed<FPA-GA 
b. Proposed >FPA-GA 
c. Proposed=FPA-GA 
d. Based on positive ranks

4 CONCLUSIONS 

This work confirms the efficacy of the 
EMCABNMSEOA method in processing signal 
images for intelligent WT fault diagnosis, which 
improves system reliability and reduces the need for 
human interpretation. The methodology is shown to 
be proficient at detecting faults and accelerating the 
decision-making process, thereby decreasing the 
dependence on human expertise for signal feature 
extraction. Variable wind speeds, a significant factor 
influencing WT performance, are incorporated into 
the analysis. Utilizing data across various wind 
speeds ensures that the approach reflects real-life 
scenarios. When compared to other artificial neural 
networks, the Independent Component Analysis-
based Correlation Coefficient (ICA-CC) is notable 
for its ability to directly extract optimal features 
from raw data, although it does necessitate a 
considerable amount of training data. Additionally, 
the EMCABN-MSEOA method is characterized by 
its computational efficiency and an impressive 
classification accuracy rate of 98%, representing a 
notable improvement. Future works are planned to 
apply this method to actual vibration data from WT 
gearboxes in wind farms to confirm its practical 
value in improving operational WT fault diagno sis. 
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