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Abstract: Contrastive Learning (CL) has been successfully applied to classification and other downstream tasks related 
to concrete concepts, such as objects contained in the ImageNet dataset. No attempts seem to have been made 
so far in applying this promising scheme to more abstract entities. A prominent example of these could be the 
concept of (discrete) Quantity. CL can be frequently interpreted as a self-supervised scheme guided by some 
profound and ubiquitous conservation principle (e.g. conservation of identity in object classification tasks). 
In this introductory work we apply a suitable conservation principle to the semi-abstract concept of natural 
numbers by which discrete quantities can be estimated or predicted. We experimentally show, by means of a 
toy problem, that contrastive learning can be trained to count at a glance with high accuracy both at human as 
well as at super-human ranges. We compare this with the results of a trained-to-count at a glance supervised 
learning (SL) neural network scheme of similar architecture. We show that both schemes exhibit similar good 
performance on baseline experiments, where the distributions of the training and testing stages are equal. 
Importantly, we demonstrate that in some generalization scenarios, where training and testing distributions 
differ, CL boasts more robust and much better error performance. 

1 INTRODUCTION AND 
RELATED WORK 

Contrastive Learning (CL) is a self supervised 
scheme which has attracted much attention in recent 
years. In the visual modality realm it maps a visual 
input (e.g. objects to be classified) to linearly 
separable representations which achieve 
classification accuracy rates competitive with those 
of supervised learning (SL) networks of similar 
architecture (Chen et al., 2020) in challenging 
datasets such as ImageNet (Deng et al., 2009). 

In spite of its impressive success in the space of 
concrete concepts (Chen et al., 2020), neither CL nor 
its variants (Grill et al., 2020; He et al., 2020; Chen & 
He, 2020) have been apparently applied so far to the 
learning and prediction of abstract or semi-abstract 
entities. In a recent work (Nissani (Nissensohn), 
2023) has shown that CL can (unlike SL) build 
“hyper-separable” representations which are useful 
not only to predict an object identity but also to 
indicate the existence (or absence) of selected 
attributes of interest of this object; this might be seen 

as a first modest step away from the concrete and 
towards the abstract. Another prominent example of 
the learning, ‘grounding’, or in-depth ‘understanding’ 
of such an abstract entity could be that of the concept 
of natural numbers (equivalently, discrete quantities). 
This work is a preliminary and introductory step 
forward in this direction.  

CL exploits, in the concrete visual modality, a 
profound principle of conservation: that distinct 
views of an object preserve the identity of said object. 
To create such distinct views suitable transformations 
should (and generally can) be designed (Tian et al., 
2020). Analog principles of conservation have been 
applied in physics (e.g. conservation of energy, of 
momentum, etc. under suitable reference frames 
transformations) with extraordinary success during 
the last two centuries. 

To apply a relevant and useful transformation to 
our (discrete) quantity prediction challenge within a 
CL scheme we can imagine the following thought 
experiment: that we have objects which we wish to 
count at a glance (that is “count without counting”, 
see ahead), that these objects lay at the bottom of a 
closed box with transparent cover. Shaking the box, 
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our transformation, will randomly change the layout 
of the objects inside the box, but the total number of 
objects on the box floor will be conserved (since the 
box is closed, etc.).   

Our CL optimization goal l(i, j) will then consist 
of minimizing the normalized distance (Wang & 
Isola, 2020) between the neural network so called 
projection (i.e. last) layer (Chen et al., 2020)  
representations zi and zj of the  pre- and post-shaking 
views (‘positive samples’ in the CL jargon) while 
simultaneously maximizing the distances between 
these representations and the representations of other 
samples randomly gathered in a mini-batch (‘negative 
samples’). Formally, our goal will then be (see Chen 
et al., 2020 for details): 

 𝑙(𝑖, 𝑗) =                      (1) − 𝑠𝑖𝑚൫𝑧 , 𝑧൯𝜏 +  log ( 1ஷ ଶேୀଵ exp (𝑠𝑖𝑚(𝑧 , 𝑧)𝜏 ) 

 𝐿 =                                  (2)  ଵଶே ∑ [𝑙(2𝑘 − 1, 2𝑘) +  𝑙(2𝑘, 2𝑘 − 1)]ேୀଵ       
 

where sim(. , .) is the normalized inner product (i.e. 
the cosine similarity), τ is  a system temperature, N is 
the mini-batch size, 1ஷ is a binary indicator function 
which vanishes when k = i and equals 1 otherwise, 
and L is the overall loss, i.e. l(i, j) summed over all 
samples in the mini-batch. At the end of the 
optimization process we freeze the neural network 
learned parameters, fetch an interior layer and define 
its output to be our linearly separable representation 
vectors. These are then fed into a (usually supervised, 
single layer) linear classifier.  

We humans are able to estimate at a glance, with 
high precision and with no explicit enumeration, a 
relatively small (up to between 4 to 7) number of 
objects in view (Trick & Pylyshyn, 1994). This 
capability, for which the special term ‘subitizing’ was 
coined (Kaufman et al., 1949) has motivated in recent 
years a few groups of neural networks practitioners 
(Chattopadhyay et al, 2017; Acharya et al., 2018) to 
explore the application of supervised learning (SL) 
schemes to a similar challenge.  

We are not aware of any similar work on natural 
numbers under the umbrella of CL, nor of the 
application of CL schemes to other non-tangible 
concepts. 

As a preliminary introduction to these ideas we 
implement a toy problem and corresponding datasets 
by means of which CL and SL networks of similar 
architecture are trained to subitize and predict the 
quantity of identical objects present in an image. We 

compare the error performance of these two schemes 
at both a ‘baseline’ regime, where training and testing 
data originate from identical distributions, as well as 
at various generalization regimes, where training and 
testing data distributions differ. CL is trained by a 
more profound, potentially ‘grounding’, criterion 
than SL, a criterion that is intimately related to the 
concept of Quantity itself. We thus may well suspect 
that it will exhibit error performance better than that 
of SL, at least in some of the forementioned 
generalization regimes. 

The main contributions of this introductory work 
are: 

a. We demonstrate through the example of the 
Quantity (equivalently, Natural Numbers) 
non-tangible concept, that CL can learn 
abstract concepts whenever transformations 
which conserve their defining properties can 
be identified and implemented. 

b. We show that both CL and SL can learn to 
subitize, both at human range (order of 10 
objects) and super-human range (order of 
100). Moreover, that the error performance of 
CL and SL are similarly good under the 
forementioned baseline regime scenarios. 

c. We show that CL exhibits significant error 
performance superiority over SL under certain 
generalization regime scenarios, possibly 
corroborating, as suspected, the more 
profound and grounded nature of learning by 
means of a conservation principle (relative to 
SL learning which consists of merely forcing 
representations to adjust to arbitrary labels). 

  
In Section 2 the toy problem and test setup which 

we introductorily employ to demonstrate these ideas 
are presented. Section 3 details our simulation results, 
and Section 4 provides concluding remarks and 
outlines potential future lines of research. 

2 EXPERIMENTAL SETUP 

We implement a toy problem to conduct experiments, 
demonstrate our ideas and probe into our CL 
superiority conjecture. We generate (practically 
infinite) sequences of random synthetic images of 
dimension d x d pixels, with d = 22 or 28. Each image 
contains a number of identical white objects laid out 
over a black background. For each experiment we 
select a training dataset distribution {O, S, R} and a 
testing dataset distribution {O’, S’, R’} so we 
designate an experiment by the composite triplet 
{O/O’, S/S’, R/R’}.  
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Figure 1: Synthetic image samples. Each image of d x d 
pixels (d = 28 in this Figure) contains a random layout of a 
random number of objects of an identical shape. Shapes are 
either (from top to bottom) Full squares (denoted F in the 
text), Void squares (V), Dots (D) and Crosses (C); we may 
either preset the objects shape for all images within the 
dataset with the same selected shape, or randomly pick for 
each image a fixed shape amongst F/V/C which we denote 
by X (for miXed, not shown in Figure). The shapes 
definition is thus an element of {F, V, C, D, X}. 

Baseline experiments consist of triplets where   O 
= O’, S = S’ and R = R’; otherwise they are 
Generalization experiments wherein the training and 
testing distributions differ. 

O is the maximal number of objects in an image 
and took in our experiments the values 10 (to emulate 
human range), 60 or 80 (for super-human); the 
number of objects in an image is uniformly randomly 
selected within a subset of [1, O]. 

S defines the shape of all objects within an image 
and, for the sake of some shape diversity, can take the 
values F, V, C, D or X (see Figure 1 for details).  

R can take the values A (for All), E (for Evens) or 
O (for Odds) where A means that the number of 
objects in an image can be any in the range [1, O] 
while E or O restricts this number to the subset of 
even or odd values respectively.  

A typical experiment may consist of {O/O’, S/S’, 
R/R’} =  {80/80, D/D, A/A} which means identical 
training and testing distribution (i.e. a Baseline 
experiment) with between 1 to 80 objects in each 
image, each  object of Dot shape, and no Evens nor 
Odds only restriction.  

The objects are randomly laid out within the 
image. We do not allow objects to occlude nor touch 
each other. Each sample image is generated along 
with its label which describes the number of objects 
in that sample. 

We train a simple fully connected multi layer 
neural network by CL with architecture [d2  400  400  
100] where the last layer, of dimension 100, is the (so 
called) projection layer (Chen et al., 2020) and the 
penultimate layer, of dimension 400 is our 
representation layer. 

We use for SL an identical architecture, except for 
the last layer which for SL contains a softmax 
activation function of dimension O. Note that we 
could instead have chosen to implement a regression 
(e.g. linear) scheme for SL. We opted for the former 
since it supports a more ‘apples to apples’ 
comparative study.   

It is not so simple to physically emulate the 
“shaking of our box” (of our thought experiment 
above) in order to create a new image sample with the 
same number of objects within it but with a different 
random objects layout. Instead, we opt for a 
surrogate: we take the label attached to each image 
(which describes the number of objects in that image) 
and use it to generate another (random layout) image 
with this specified number of objects. This may seem 
at first glance a cheating perversion by which we 
convert our CL (unsupervised learning) scheme into 
a supervised learning one (since we are now using 
labels for our ‘transformation’). After some reflection 
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however, it should be easy to conclude that this is 
immaterial to our purpose. The same results we are 
going to show can be exactly replicated by a true 
physical shaking of our box. 

Training of CL or SL proceeded for a number of 
samples until no further visible convergence progress 
is observed in the Loss goal (Eqns. (1) and (2) above 
for CL) or in the training Mean Squared Error goal 
(for SL). Once training is halted we freeze the CL (or 
SL) parameters, and train a single layer supervised 
linear classifier (Oord et al., 2018) with the CL (or 
SL) network representations generated by the testing 
dataset distribution. After this linear classifier is 
trained, we evaluate error performance with samples 
generated by means of this same selected test dataset 
distribution (as mentioned above our datasets are 
practically infinite so we are not, by no means and as 
properly prohibited, re-using samples for both 
training and testing).  

We set the CL hidden layers neural units 
activation to ReLU and the last layer units to tanh. CL 
temperature (τ of Equation 1) was set to 1, and batch 
size (N of Equation 2) was set to 103. We used ADAM 
(Kingma & Ba, 2015) gradient descent with fixed 
learning rate η = 10-3. The number of training samples 
ranged from 1.8 x 106 (equivalent to e.g. 30 MNIST 
epochs) to 3.6 x 106 depending on the running 
experiment. 

SL units were here again set to ReLU for hidden 
layers but to softmax activation for the last layer. We 
used ADAM with fixed learning rate  η = 5 x 10-4 for 
the initial stage followed by plain gradient descent 
with learning rate typically descending from 10-5 to 
10-7. We found this protocol necessary to achieve our 
best error performance, possibly testifying the 
navigation within a deep narrow valley (Martens, 
2010). The number of SL training samples ranged 
from 4.2 x 106 to 10.8 x 106. 

Finally, the linear classifier was trained by ADAM 
followed by plain SGD, with similar optimization 
protocol as that of SL above and number of samples 
typically ranging from 2.4 x 106 to 28.8 x 106.   

Across all three above schemes ADAM parameters 
were set to β1 = 0.9, β2 = 0.999 and e = 10-8. 

To facilitate replication of our results a simulation 
package will be provided by the author upon request. 

3 SUBITIZING EXPERIMENTAL 
RESULTS 

In this Section we will be comparing CL vs. SL 
subitizing error performance. To probe whether our 

forementioned conjecture, which states that CL will 
boast superior performance w.r.t. SL in at least some 
of the Generalization scenarios (where training and 
test distributions differ) we define a set of appropriate 
experiments. We also provide baseline results (where 
training and testing distributions are identical) for 
reference.  

Generalization here can be applied along the 
shape dimension, or the quantity dimension, or both 
at a time (which we do not pursue herein). For 
convenience we list below the experiments 
(generalized item bold and underlined; please refer to 
Section 2 for triplets legend): 

• Shape Dimension (human range; train with 
miXed images, test with Dots): 
o Baseline: {O/O’, S/S’, R/R’} = {10/10, 

X/X, A/A} 
o Generalization: {O/O’, S/S’, R/R’} = 

{10/10, X/D, A/A} 
• Quantity Dimension, Range extension (super 

human range; train with up to 60 objects, test 
with up to 80): 
o Baseline: {O/O’, S/S’, R/R’} = {60/60, 

D/D, A/A} 
o Generalization: {O/O’, S/S’, R/R’} = 

{60/80, D/D, A/A} 
• Quantity Dimension, within Range (super 

human range; train with up to 80 objects, Even 
values only, test with up to 80, All values): 
o Baseline: {O/O’, S/S’, R/R’} =  {80/80, 

D/D, E/E} 
o Generalization: {O/O’, S/S’, R/R’} = 

{80/80, D/D, E/A} 
• Quantity Dimension, within Range (super 

human range; train with up to 80 objects, Even 
values only, test with up to 80, Odd values 
only): 
o Baseline: {O/O’, S/S’, R/R’} =  {80/80, 

D/D, E/E} 
o Generalization: {O/O’, S/S’, R/R’} = 

{80/80, D/D, E/O} 

3.1 Shape Dimension (Human Range; 
Train with Mixed Images, Test with 
Dots) 

We report PrCL, B{error} = 0.042 and PrSL, B{error} = 
0.007 for Baseline test (denoted by B in super-script), 
i.e. {O/O’, S/S’, R/R’} = {10/10, X/X, A/A}, for CL 
and SL respectively. 

That SL yields better performance than CL under 
baseline tests with similar networks architecture is no 
surprise: it was noticed in prior works, see e.g. (Chen 
et al. 2020) where in order to achieve similar error 
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performance a deeper and wider architecture (on CL 
network relative to SL) was required.  

 

 

 
Figure 2: Shape Baseline test, 10 Objects, train with miXed, 
test with miXed. Conditional probability of Error given 
Ground Truth for CL (top) and SL (bottom). 

Interestingly, errors are not uniformly distributed 
across ground truth values at both CL and SL (see 
Figure 2): as might be intuitively expected error rate 
steadily increases from small to large ground truth 
values (with 10 a possible curious exception; this may 
be an artifact of our setup: since we set a hard limit of 
10 through our softmax function, errors at this ground 
truth value are contributed, unlike at other values, by 
one side only). A qualitatively similar phenomenon 
was observed in subitizing experiments conducted 
with human subjects (Kaufman et al., 1949). We did 
not observe however a similar trend with our 
experiments at super human range. 

We next turn to the corresponding Shape 
Generalization test, i.e. {O/O’, S/S’, R/R’} = {10/10, 
X/D, A/A} where training is conducted with miXed 
images (which, as described above, contain either F 
or V or C objects but do not contain Dots) but testing 
is done with Dots images. Error probability 
significantly degrades, with similar degradation at CL 
and SL: PrCL, G{error} = 0.31 and PrSL, G{error} = 0.30 
(superscript G here denotes Generalization).  

More important perhaps however in a quantity 
estimation task than this gross error measure is the 

conditional distribution of Distances (conditioned on 
error events), where Distance = |Ground Truth value 
– Predicted value|: in practical situations to predict a 
value of 8 instead of a ground truth value 9 is 
forgivable while to predict a 1 in the same case is not.  

This more suitable metric can be observed in 
Figure 3: we notice that in spite the significant 
forementioned Pr{error} degradation, the distribution 
of Distance in both CL and SL is remarkably 
concentrated in the very low values, with PrCL 

G{Distance > 1 | error} = 0.036 and       PrSL G{Distance 
> 1 | error} = 0.041, again pretty similar to each other. 

To summarize, in this Shape Generalization 
experiment CL and SL perform similarly; they both 
degrade significantly in terms of Pr{error}, but their 
more tolerant (and perhaps relevant) Pr{Distance > 1 
| error} metric is still pretty good. 

We have provided this Figure to contrast vs. next 
experiments, as we will immediately see.  

3.2 Quantity Dimension, Range 
Extension (Super Human Range; 
Train up to 60 Objects, Test with 
up to 80) 

Here we report PrCL, B{error} = 0.029 and PrSL, 

B{error} = 0.004 for the Baseline test, i.e. {O/O’, 
S/S’, R/R’} = {60/60, D/D, A/A}, for CL and SL 
respectively. Since the Distance distribution metrics 
is apparently of more significant relevance in 
subitizing tasks we also report for the Baseline test 
PrCL B{Distance > 1 | error} = 0.035 and PrSL 

B{Distance > 1 | error} = 0.002. 
The corresponding Quantity Generalization test is 

{O/O’, S/S’, R/R’} = {60/80, D/D, A/A} where 
training is conducted with up to 60 Dots images and 
testing is done with up to 80 Dots images. Again, as 
in the Shape Generalization experiment, error 
probability significantly degrades, with similar 
degradation at CL and SL: PrCL, G{error} = 0.24 and 
PrSL, G{error} = 0.23.  

Conditional Distance distributions of CL and SL, 
however, are totally different. Please refer to Figure 
4. While CL Distance distribution is concentrated in 
the very low values (as in our earlier experiments) and 
PrCL G{Distance > 1 | error} = 0.12, SL distribution 
practically explodes with PrSL G{Distance > 1 | error} 
= 0.80.  

Briefly summarizing so far, in shape 
generalization experiments (Subsection 3.1 above) 
both CL and SL behave similarly: this is reasonable 
since it is not shape what CL learns in depth and thus 
they should not differ much from each other, just as 
in baseline tests. 
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Figure 3: Shape Generalization, train with miXed, test with 
Dots. Conditional probability distribution of Ground Truth 
vs. Predicted Distance for CL (top) and SL (bottom).  

 

 
Figure 4: Quantity Generalization, train with up to 60, test 
with up to 80 Dots images. Conditional Distance 
distribution for CL (top) and SL (bottom). CL exhibits a 
modest degradation w.r.t. baseline test while SL collapses. 

In contrast, in quantity generalization scenarios, 
CL and SL respond extremely differently and CL 
significantly outperforms SL. This can be attributed 
in our view to the profoundness to which CL learns 
the abstract concept of “numberness” by means of the 
contrastive learning conservation principle, 
compared to the merely forced mapping of input 
images to arbitrary labels in SL. The concept of 
Numbers seems to become ‘grounded’ in CL but not 
so in SL.  

3.3 Quantity Dimension, Within Range  
(Super Human Range; Train with 
up to 80 Objects, Even Values 
Only, Test with up to 80, All 
Values) 

Next we report PrCL, B{error} = 0.019 and PrSL, 

B{error} = 0.0004 as well as PrCL B{Distance > 2 | 
error} = PrSL B{Distance > 2 | error} = 0 for the 
Baseline test of this experiment, i.e. {O/O’, S/S’, 
R/R’} = {80/80, D/D, E/E}, for CL and SL 
respectively. Notice that conditional Distance 
distribution results here are reported w.r.t. a threshold 
valued 2 (rather than 1 as before) since Odds “do not 
exist” in this Baseline scenario. 

 

 

 
Figure 5: Quantity Generalization, train with Evens only, 
test with All, both up to 80 Dots images. Distance 
distribution for CL (top) and SL (bottom). CL exhibits no 
degradation w.r.t. baseline test while SL once again 
collapses. 
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The corresponding Quantity Generalization test is 
{O/O’, S/S’, R/R’} = {80/80, D/D, E/A} where 
training is conducted with even quantities (i.e. 2, 4. 
6…80) of up to 80 Dots images, and testing is done 
with all quantities (i.e. 1, 2, 3….80) of up to, again, 
80 Dots images. SL degrades its error probability 
w.r.t. baseline here, while CL this time exhibits even 
better performance than its own baseline: PrSL 

G{error} = 0.045 and PrCL G{error} = 0.00003. 
Evaluating again with our conditional Distance 

distribution metrics (please refer to Figure 5), CL 
significantly outperforms SL here too with PrCL 

G{Distance > 1 | error} = 0 and PrSL G{Distance > 1 | 
error} = 0.285, supporting once again our motivating 
conjecture. 

3.4 Quantity Dimension, Within Range  
(Super Human Range; Train with 
up to 80 Objects, Even Values 
Only, Test with up to 80, Odd 
Values Only) 

Our baseline setup here is identical to that of the last 
experiment, i.e. {O/O’, S/S’, R/R’} = {80/80, D/D, 
E/E}, for CL and SL respectively, and so are our 
results. The conditional Distance distributions results 
here (for both baseline and generalization tests) are 
once again reported w.r.t. a threshold valued 2 (rather 
than 1) for the same reason as in Subsection 3.3 
above. 

The corresponding Quantity Generalization test is 
{O/O’, S/S’, R/R’} = {80/80, D/D, E/O} where 
training is conducted with even quantities (i.e. 2, 4. 
6…) of up to 80 Dots images and testing is done with 
odd quantities (i.e. 1, 3, 5…79) of up to 79 Dots 
images. Both CL and SL exhibit good error 

probability with PrCL G{error} = 0.026 and PrSL 

G{error} = 0.026 and both show excellent Distance 
conditionals with PrCL G{Distance > 2 | error} =  PrSL 

G{Distance > 2 | error} = 0. 
It appears that once CL and SL learn the Evens 

the discriminative resolution of the resulting 
representations is good enough to predict the Odds 
with good error performance, For the SL scheme 
however, this holds only provided that the Evens are 
omitted from the testing dataset, so that they do not 
‘confuse’ the SL network as apparently occurred in 
our previous Subsection 3.3 experiment.  

Table 1 provides a concise summary of our results 
above. 

4 DISCUSSION AND TOPICS 
FOR FUTURE RESEARCH 

We have provided preliminary demonstrative 
evidence, through our selected example of quantity 
estimation at a glance, that contrastive learning 
methods can deal not only with concrete, tangible 
concepts. Our choice however of natural numbers is 
not casual. When dealing with concrete objects it is 
not difficult to identify transformation sets, with 
random properties, which efficiently span the 
distribution of a dataset; examples include crop and 
color distortion for ImageNet (Chen et al., 2020) and 
elastic distortion (Simard et al, 2003) for EMNIST 
(Nissani (Nissensohn), 2023). This is possibly not the 
case for abstract concepts in general, and identifying 
viable abstract sets and their corresponding spanning 
random transformations is a research challenge. It 
would be of interest to see other such concepts to 
follow-on our current very first step. 

Table 1: Experiments results summary. T denotes a Threshold, valued 1 for all tests, except 5, 7 and 8 for which T = 2 (see 
text). Most informative results are bolded/underlined. 

Test 
# 

EXPERIMENT TEST CL SL CL SL 
Pr{error} Pr{Distance > T | 

error} 
1 Shape, train 

miXed test Dots 
Baseline  0.042 0.007 0 0 

2 Generalized 0.31 0.30 0.036 0.041 
3 Qty, Range 

extension, train 60 
test 80 objects 

Baseline 0.029 0.004 0.035 0.002 
4 Generalized 0.24 0.23 0.12 0.80 

5 Qty, within 
Range, train 
Evens test All 

Baseline 0.019 0.0004 0 0 
6 Generalized 0.00003 0.045 0 0.285 

7 Qty, within 
Range, train 
Evens test Odds 

Baseline 0.019 0.0004 0 0 
8 Generalized 0.026 0.026 0 0 
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We find it quite remarkable that both CL and SL 
exhibit such impressive subitizing error performance 
in baseline test scenarios even at super-human ranges. 
We did not inquire into the existence of a practical 
upper bound to this range nor, more generally, into 
the error performance as function of the dataset range, 
which of course should be of interest.  

The results shown indicate that CL and SL perform 
quite similar to each other in shape generalization 
tests, both with significant error probability 
degradation but with robust figures w.r.t. conditional 
distance distribution. This might be expected since 
the natural numbers conservation principle guiding 
CL should not grant it any advantage when dealing 
with varying shapes.  

In contrast, CL alone maintains this robustness in 
quantity generalization tests as well, and in particular 
in range extension tests, where the scheme is asked to 
estimate at a glance a quantity bigger than what it was 
ever exposed to. This seems to support our motivating 
conjecture that stated that CL, because it is guided by 
the principle of conservation of natural numbers 
should obtain, after training, a more deep and 
grounded sense of ‘numberness’. And this would then 
be the second case in a row at which CL seems to 
show a fundamental superiority over SL in generating 
information rich representations  (the first being the 
forementioned capability of detection of objects 
attributes (Nissani (Nissensohn), 2023)). 

In this introductory work we have devised and 
employed a toy problem to demonstrate our ideas 
because it has better control of test bench variables 
and parameters. It should be of course important to 
evaluate whether similar results can be achieved in 
more realistic scenarios which may include clutter, 
occlusion, composite scenes with different classes of 
real-life objects, etc. Several datasets for such 
purpose are already available (Acharya et al., 2019). 
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