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Abstract: Motion analysis utilizing human pose estimation has garnered increasing attention within sports science, serv-
ing both preventive medicine and skill enhancement purposes. While techniques using 3D trackers and RGB-
D cameras to estimate human poses are gaining attention, the widespread adoption is hindered by the require-
ment for extensive space and specialized equipment. This paper introduces a novel method to estimate the 3D 
human pose using RGB video data captured from 'pseudo' two-viewpoints. This approach involves perform-
ing the same motion in different directions and recording with a single camera. We confirm that the accuracy 
of 3D human pose estimation from video taken by a single camera is improved by the pseudo-two-viewpoints 
recording compared to existing methods using a single monocular RGB camera. 

1 INTRODUCTION 

This paper proposes a shooting video method called 
"pseudo-two-viewpoints recording" to achieve hu-
man pose estimation with sufficient accuracy for 
movement analysis. As illustrated in Figure 1, 
Pseudo-two-viewpoints recording involves using a 
single RGB camera to record the same movement 
performed twice but in different orientations by the 
same individual. 

In sports science, performance analysis is a crucial 
component of preventive medicine and technical im-
provement. Movement analysis is typically based on 
human pose estimation, which utilizes videos to ac-
curately capture and analyze athlete movements. This 
paper introduces a novel video capturing and pro-
cessing method for human pose estimation and 
demonstrate our method using jumping as a specific 
example, which is closely tied to lower body perfor-
mance and correlates with the risk of lower body in-
juries (Hewett et al. 2005). 

Existing methods for 3D human pose estimation 
include marker-based methods (Bodenheimer et al. 
1997), RGB-D camera-based methods (Zimmermann 
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et al. 2018), monocular camera image-based methods 
(Liu et al. 2020), and multi-viewpoint image-based 
methods (Chen et al. 2020). While marker-based and 
RGB-D camera-based methods offer high accuracy in 
pose estimation, they require extensive space and spe-
cialized equipment, posing challenges for use beyond 
professional athletes. Conversely, the field of exer-
cise physiology is increasingly recognizing the im-
portance of preventive medicine for a diverse range 
of athletes, including amateur and junior athletes in 
addition to professionals. 

Using a monocular camera to estimate human 
pose information is advantageous for acquiring meas-
urement data easily. However, the accuracy of depth 
information derived from single-viewpoint observa-
tions is insufficient, posing challenges for movement 
analysis applications. By capturing motion from mul-
tiple viewpoints, we can estimate the 2D coordinates 
of the joints at each viewpoint and triangulate the 3D 
coordinates from matched joints in different views. In 
this way, the ambiguity in depth estimation can be re-
solved, leading to more accurate human pose estima-
tion compared to the monocular video. However, this 
approach requires the use of multiple synchronized 
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Figure 1: Two-viewpoints recording (left) and pseudo-two-viewpoints recording (right). In two-viewpoints recording, a 
frontal image and a side image are captured using two RGB cameras. In pseudo-two-viewpoints recording, the frontal and 
side images are obtained by changing the direction of the body and recording twice with a single RGB camera.  

RGB cameras, which lead to extra cost and the setup 
process can be cumbersome. We therefore propose a 
new approach to solve this problem by estimating 3D 
human pose information from multi-view (pseudo-
two-viewpoints) video data acquired using only a sin-
gle stationary RGB camera. 

The primary challenge in achieving human pose 
estimation through pseudo-two-viewpoints recording 
lies in temporal and spatial alignment. Temporal de-
viations occur due to varying movement timings, 
while spatial deviations arise from changes in camera 
and subject orientation. To address these issues, we 
introduce a time-warping method to correct temporal 
misalignment, along with camera calibration and joint 
triangulation, to consistently produce a 3D pose from 
two RGB videos. Our method achieves sufficient ac-
curacy for movement analysis without requiring ex-
tensive space or specialized equipment, thus simpli-
fying the process for various athletes. 

2 RELATED WORKS  

3D human pose estimation can be broadly classified 
into marker-based and marker-less methods. Timothy 
et al. utilized 25 reflective markers on the lower body 
to measure the posture and load on the knee during a 
jump landing, recording the 3D coordinates of the 
joints (Hewett et al. 2005). 

Marker-less posture estimation methods can be 
divided into two types: those that estimate joint posi-
tions as 2D coordinates (2D posture estimation) and 

those that estimate 3D coordinates (3D posture esti-
mation). An example of a 2D pose estimation method 
is HR-Net (Sun et al. 2019). This top-down method 
maintains high resolution throughout the process by 
adding subnetworks from high resolution to low res-
olution and connecting multi-resolution networks in 
parallel, achieving better results than bottom-up 
methods for single-person pose estimation. However, 
2D pose information alone is insufficient for analyz-
ing sports movements performed in 3D space, neces-
sitating 3D pose estimation.  

3D pose information is generally estimated by ap-
plying triangulation based on camera position and 
pose information to 2D pose data obtained from im-
ages taken from different viewpoints. This method, 
however, requires considerable time and expertise to 
set up and synchronize cameras. 

GAST-Net (Liu et al. 2020) exemplifies a solution 
to this issue. By applying Graph Convolution Net-
works (GCN) to the time series information of the 
skeleton, it addresses the self-occlusion problem 
where joints are obscured by the subject's own body. 
Nevertheless, the accuracy of 3D human pose estima-
tion using a monocular camera remains insufficient 
for sports motion analysis when compared to estima-
tion from multiple viewpoints.  

In this research, we propose a human pose estima-
tion method that ensure both ease of photography and 
accuracy of pose estimation using pseudo multiple 
viewpoints captured by a monocular RGB camera. 

1st jump 2nd jump

two-viewpoints 
video

pseudo-two-viewpoints 
video
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3 PROPOSED METHOD 

Figure 2 illustrates the processing flow of the pro-
posed method. A single fixed camera is used to cap-
ture images from two different angles (pseudo-two-
viewpoints recording) by changing the subject's body 
direction and repeating the same action twice. The 
camera position and orientation (extrinsic parame-
ters) are estimated based on landmarks set in the 
scene. 2D pose estimation is first performed on the 
two captured videos separately. Dynamic Time 
Warping (DTW) (Müller 2007) is then applied to the 
estimated 2D pose time series information to compen-
sate for the temporal misalignment between the two 
series. Finally, the 3D positions of the joints are esti-
mated by triangulating the corresponding 2D joints 
using the camera intrinsic and extrinsic parameters 
estimated in advance. 

3.1 Definition of Coordinate Systems 

Figure 3 shows the coordinate system defined this pa-
per. The origin of the world coordinate system 𝑊 is 
the center of the hula hoop placed in the scene. The 𝑋-axis is parallel to the horizontal axis of the image 
plane of camera 1, and the 𝑌-axis is parallel to the 
horizontal component of the optical axis of camera 1. 
The 𝑍-axis is obtained by the cross product of the 𝑋 
and 𝑌 axes and is orthogonal to the ground on which 

the hula hoop is placed. The camera coordinate sys-
tem 𝑐ଵ  takes the optical center of camera 1 as the 
origin, with the horizontal axis of the image plane as 
the 𝑋ଵ-axis (points to the right), the vertical axis as 
the 𝑌ଵ-axis (points downward), and the optical axis as 
the 𝑍ଵ -axis (points forward). Let (𝑡௫, 𝑡௬, 𝑡௭)  be the 
world coordinate of the optical center of camera 1, 
and given that 𝑡௫ is always zero, the rigid body trans-
formation from world frame basis 𝑊 to camera frame 
basis 𝑐ଵ in homogenous coordinates is expressed by 
Equation (1). 

𝒄ଵ = ൦1 0 0 𝑡௫0 0 −1 𝑡௭0 1 0 −𝑡௬0 0 0 1 ൪ 𝑾 (1)

In the pseudo-two-viewpoints recording, the po-
sition and orientation of the virtually positioned cam-
era 2 need to be determined based on the viewport of 
camera 1, as it is virtually moved due to the subject's 
orientation change. Assuming that the camera 2 is a 
rotation of camera 1 by an angle 𝜃 around the 𝑍-axis 
of the world coordinate system, the rotation matrix 𝑅ଵଶ between 𝑐ଵ and 𝑐ଶ are expressed by Equation (2). 

𝑹ଵଶ = ൥cos 𝜃 −sin 𝜃 0sin 𝜃 cos 𝜃 00 0 1൩ (2)

 
Figure 2: The 3D human pose is estimated using two videos of jumps in different directions as input. The 3D coordinates of 
the joints are estimated by applying joint-based time alignment and joint coordinate triangulation. 
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3.2 Spatial Alignment 

3.2.1 Camera Position Estimation 

The position and orientation (extrinsic parameters) of 
camera 1 are obtained using landmarks whose 3D co-
ordinates are known. In this research, a hula hoop 
with markings is used as a landmark, as shown in Fig-
ure 4. Using the correspondence information between 
the 3D coordinates of the four landmark points and 
their 2D coordinates observed in the image, a rotation 
matrix 𝑹ଵ and a translation matrix 𝒕ଵ are obtained us-
ing the IPPE method (Collins and Bartoli 2014). The 
intrinsic parameters 𝑲  are determined based on 
Zhang's method(Zhang 2000). The projective trans-
formation matrix 𝑷 ଵ = 𝑲(𝑹ଵ|𝒕ଵ) is then obtained by 
combining the intrinsic parameters 𝑲 with the extrin-
sic parameters. 

3.2.2 Pseudo-Camera Position Estimation 

The intrinsic parameters of the second viewpoint 
camera are the same as those for the first viewpoint. 
From rotation in Equation (2), the perspective projec-
tion matrix of the second viewpoint can be obtained 
by Equation (3). 

𝑷 ଶ = 𝑲 ൭𝑹ଵ ൥cos 𝜃 −sin 𝜃 0sin 𝜃 cos 𝜃 00 0 1൩ อ𝒕ଵ൱ (3)

The rotation angle 𝜃 of the camera is considered to 
coincide with the rotation angle of the subject's head 
around the 𝑍-axis. Therefore, we first estimate the 
head posture using 6DRepNet360 (Hempel, 
Abdelrahman, and Al-Hamadi 2023) when the sub-
ject is standing upright in both videos (Figure 5),  and 
estimate 𝜃  as the relative rotation of head around 𝑍-
axis.  

 
Figure 3: World coordinate system and camera coordinate 
system. 

 
Figure 4: A hula hoop with target markers. 

3.3 Temporal Alignment 

The difference in the timing of the start of movement 
and the length of the dwell time causes a temporal 
posture shift between the videos. Figure 6 illustrates 
the processing flow of the temporal alignment. To 
correct the temporal misalignment, we focus on the 
head movement, which usually has minimum occlu-
sion and allows us to obtain relatively stable coordi-
nates of the joint points. In detail, HR-net (Sun et al. 
2019) is applied to the video frames and extract the 
vertical coordinates of the subject’s head over time. 
Using these coordinates, three key frames in both vid-
eos are detected: the maximum bending point before 
the jump, the maximum reaching point, and the max-
imum bending point after the landing. After that, 
DTW is applied to match these three key frames and 
dynamically adjust the speed of the virtual viewport 
video to align it with the actual viewport video. By 
doing this, we obtain a pair of time-aligned 2D pose 
data for the subject’s jump.  

 
Figure 5: Visualization of head pose estimation results us-
ing 6DRepNet360. 
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Figure 6: Time alignment using head vertical coordinates: the head vertical coordinates are taken from the 2D pose estimation 
results and matched by DTW for temporal alignment. 

3.4 Estimation of 3D Coordinates of 
Joint Points 

The 3D coordinates of the joints are calculated from 
the time-corrected 2D skeleton using the method de-
scribed in section 3.2 and the camera parameters ob-
tained in section 3.1. Let 𝑿 be the world coordinate of 
the joint point and (𝑢ଵ,  𝑣ଵ) and (𝑢ଶ,  𝑣ଶ) be the coor-
dinates on the images from cameras 1 and 2, respec-
tively. The following equation holds: 

⎩⎪⎨
⎪⎧𝑢ଵ 𝑷ଷ் ଵ 𝑿 = 𝑷ଵ் ଵ 𝑿𝑣ଵ 𝑷ଷ் ଵ 𝑿 = 𝑷ଶ் ଵ 𝑿𝑢ଶ 𝑷ଷ் ଶ 𝑿 = 𝑷ଵ் ଶ 𝑿𝑣ଶ 𝑷ଷ் ଶ 𝑿 = 𝑷ଶ் ଶ 𝑿 (4)

By solving this system of equations, we can ob-
tain the 3D coordinates 𝑿 of the joint points. This 
process takes as input the 2D coordinates correspond-
ing to each of the seven joint points in each frame of 
the two scenes and the camera parameters obtained in 
section 3.1. The output includes 17 joints, and the 
skeletal connections between joints are drawn for 
each frame to generate the 3D skeletal time series data 
of the jumping motion. 

4 EXPERIMENTS 

4.1 Experimental Setup 

In the experiment, a RGB camera mounted on Apple 
iPadPro 12.9 (6th generation) is used to capture the 
videos. We note that the iPad is frequently used to 

record video in sports scenes. The camera is fixed on 
a tripod so that the optical center is 1.14 meters above 
the ground. The roll and tilt angles of the camera are 
set to zero, and the pan angle is adjusted so that the 
subject appears at the center of the screen. A white 
hula hoop with a diameter of 0.8 meters is used as a 
landmark for calibration and as a marker for the jump 
position. The motion video is captured with a resolu-
tion of 3840 pixels × 2160 pixels and a frame rate of 
60 fps with no zooming (maximum wide angle). 

As shown in Figure 7, the participant stands up-
right in the center of the hula hoop and performs a 
vertical jump with the camera facing forward. Before 
and after each jump, the participants were instructed 
to stand still in the upright position for about 3 sec-
onds. 

 
Figure 7: Scene of the shooting experiment. Participants 
stand upright in the center of the hula hoop and perform a 
vertical jump. 
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4.2 Evaluation Metrics 

As an index of 3D human pose estimation accuracy, 
we use Mean Per Joint Position Error (MPJPE), 
which is the average distance between the predicted 
and reference positions of a joint point, and P-MPJPE, 
which is calculated after a rigid body transformation 
of the ground truth (GT) for translation, rotation, and 
scale. P-MPJPE is calculated with respect to a coor-
dinate system transformed with the coordinates of the 
waist as the origin. The Percentage of Correct 3D 
Keypoints (3DPCK) is an index that indicates the per-
centage of successfully detected joints, where the dis-
tance between the predicted position of a joint and the 
reference position is within a predefined threshold. In 
this experiment, the threshold for 3DPCK is 150 mm, 
which is commonly used. 

4.3 Results 

4.3.1 Quantitative Evaluation 

Table 1 shows the estimation accuracy of the 3D 
skeleton from the pseudo-two-viewpoints video. 
The MPJPE and 3DPCK of the proposed method are 
106.5 mm and 86.0%, respectively. The P-MPJPE 
of the proposed method is less than half that of the 
baseline method. This confirms that the proposed 
method improves the accuracy of 3D skeleton esti-
mation. The standard deviation of P-MPJPE has also 
decreased, indicating that the proposed method is 
stable with less variation in the estimated result.  
Figure 8 shows the P-MPJPE for each joint. The 
MPJPE of the proposed method is smaller for all 
joints. The standard deviations are also smaller for 
all joints, indicating that the proposed method is sta-
ble. In particular, the MPJPE of the lower body (hips, 
knees, and ankles), which is an important index in 
jump motion analysis, is kept low, suggesting that 
the 3D skeletal posture estimation from the pseudo-
two-viewpoints video is effective for performance 
analysis purposes. 

Table 1: Accuracy of 3D skeleton estimation. The proposed 
method demonstrates greater accuracy compared to the ex-
isting method. 

 
MPJPE 
[mm]↓ 

P-MPJPE 
[mm]↓ 

P-MPJPE 
std↓ 

3DPCK 
[%]↑ 

GAST-
Net - 163.8 144.2 - 

Ours 97.99 53.41 72.52 89.6 

 
Figure 8: Comparison of P-MPJPE for each joint between 
the estimation results of the existing method (GAST-Net) 
and the proposed method. Error bars indicate standard de-
viations. The proposed method demonstrates greater accu-
racy for all joints. 

4.3.2 Qualitative Evaluation 

The estimated 3D poses are evaluated qualitatively. 
The three estimation results compared are the refer-
ence image estimated by the two-viewpoints record-
ing (ground truth), the image estimated by the pre-
trained GAST-Net, and the image estimated by the 
proposed method. The estimation results at two rep-
resentative time points are shown in Figure 9. The re-
sults show that both GAST-Net and our method pro-
duce sufficiently accurate results at the reaching point, 
while our method significantly outperformed GAST-
Net for forward-leaning and knee-bending motions, 
such as the maximum bending before jumping and 
bending after landing. 

5 LIMITATIONS 

The accuracy of human pose estimation in this system 
depends on the similarity between the two repeated 
motions. If the similarity between the two motions is 
not enough, some errors may occur during time align-
ment and triangulation. Acceptable thresholds for mo-
tion repeatability errors are currently under investiga-
tion and require verification using a larger dataset. Re-
peating the motion multiple times may also reduce re-
producibility due to fatigue or other factors. Moreover, 
since this system replaces traditional two-viewpoint re-
cordings with two separate recordings of the same mo-
tion, it requires twice the number of recordings com-
pared to conventional two-viewpoint motion analysis.  
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Figure 9: Visualization of 3D human pose estimation results for bending (top) and reaching point (bottom). The accuracy of 
GAST-Net is good at the reaching point but significantly decreases during bending motions, while the proposed method 
accurately estimates the 3D coordinates of joints in both situations. 

6 CONCLUSIONS 

This paper proposed a method for estimating the 3D 
human pose from pseudo-two-viewpoints video using 
only a single monocular RGB camera, to construct a 
3D human pose estimation system that could easily 
capture images. Spatiotemporal deviations caused by 
the use of pseudo-two-viewpoints images were com-
pensated by camera calibration and Dynamic Time 
Warping (DTW). Experimental results showed that 
the proposed method improves estimation accuracy 
compared to existing methods.  
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