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Abstract: Collaboration between edge devices has increased the scale of machine learning (ML), which can be attributed
to increased access to large volumes of data. Nevertheless, traditional ML models face significant hurdles in
securing sensitive information due to rising concerns about data privacy. As a result, federated learning (FL)
has emerged as another way to enable devices to learn from each other without exposing user’s data. This
paper suggests that FL can be used as a validation mechanism for finding and blocking malicious attacks such
as cross-site scripting (XSS). Our contribution lies in demonstrating the practical effectiveness of this approach
on a real-world dataset, the details of which are expounded upon herein. Moreover, we conduct comparative
performance analysis, pitting our FL approach against traditional centralized parametric ML methods, such
as logistic regression (LR), deep neural networks (DNNs), support vector machines (SVMs), and k-nearest
neighbors (KNN), thus shedding light on its potential advantages. The dataset employed in our experiments
mirrors real-world conditions, facilitating a meaningful assessment of the viability of our approach. Our
empirical evaluations reveal that the FL approach not only achieves performance on par with that of centralized
ML models but also provides a crucial advantage in terms of preserving the privacy of sensitive data.

1 INTRODUCTION

Today’s digital landscape is crowded with edge de-
vices that are multiplying at an alarming rate. As a re-
sult, an unimaginably large amount of personal data,
complete with different aspects of users’ lives, such
as multimedia content and text information, is being
accumulated. Using this private data to support ma-
chine learning (ML) in user applications has become
more common. However, the conventional approach
of centralizing the ML training process on powerful
servers presents a problem. While data originates
and applications execute on edge devices, centralized
servers amass substantial portions of user data, trig-
gering significant privacy concerns (McMahan et al.,
2017).

This centralization creates a fundamental conflict:
on the one hand, centralized servers participate in sup-
plying the computational searching ability and stor-
age for training complicated multilayer models; on
the other hand, there exist some safety risks for users.
The downside of centralization is possible data secu-
rity threats and abuse of users’ data, as well as large
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Figure 1: Federated learning scheme.

communication costs. As a result, available solutions
for on-client machine learning have had to be efficient
and privacy-preserving to avoid sending data to large
repositories. Therefore, recently, the idea of feder-
ated learning (FL) has emerged as a possible solution
to both concerns (McMahan et al., 2017). FL imple-
ments a distributed collaborative learning algorithm,
which does not necessitate storing user data in the
cloud or on a central server, as illustrated in 1. Under
this setup, each client keeps its local private training
dataset and never relinquishes control over sensitive
information. Instead of transmitting raw data, clients

Jazi, M. and Ben-Gal, I.
Federated Learning for XSS Detection: A Privacy-Preserving Approach.
DOI: 10.5220/0012921800003838
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 1: KDIR, pages 283-293
ISBN: 978-989-758-716-0; ISSN: 2184-3228
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

283



only share their local model parameters, like neural
network weights, with central servers. These models
are often structured similarly and undergo aggrega-
tion averaging before being re-distributed to clients.

In addition, nowadays, the world increasingly op-
erates with Internet-based services and web appli-
cations (Kotzur, 2022). This overreliance on web-
based communication leads to increased website at-
tacks that seek to breach a system’s vulnerabilities
and corrupt the devices and data, destroying them.
One particular threat to note is Cross-Site Scripting
(XSS), which remains one of the Open Web Applica-
tion Security Projects (OWASP) (OWASP, 2017) and
has been identified by past studies as a highly persis-
tent issue. Conventional mechanisms for patching se-
curity holes in web applications rely on a database of
information on known attack signatures(Ariu and Gi-
acinto, 2011). Nevertheless, XSS attacks usually take
advantage of vulnerabilities in user input specification
or leverage the space between client-side and server-
side defenses (Rocha and Souto, 2014; Lee et al.,
2022). FL could mitigate web-based communication
safety issues in the same way it enhances privacy by
decentralized data. Furthermore, novel strategies are
needed to mitigate these security challenges by em-
powering ML. FL can increase the resistance of web
applications against XSS attacks, leveraging its prin-
ciples to preserve user privacy and enhance security.

1.1 Contributions

We propose a novel system that employs FL to de-
tect XSS attacks, addressing the limitations of tra-
ditional methods. This innovative approach allows
users to leverage shared models while preserving de-
centralized storage’s privacy and scalability benefits.
In practical tests, where we employed various ML
models within the FL-based system, we effectively
demonstrated its capacity to detect and counter XSS
attacks. Through a series of experiments, we thor-
oughly evaluated the effectiveness of diverse ML al-
gorithms in detecting XSS attacks using accuracy
metrics. Our assessment included traditional logistic
regression (LR) and deep neural network (DNN) al-
gorithms as centralized models, allowing us to juxta-
pose their performance with that of FL. By comparing
the performances of traditional LR and DNN algo-
rithms with that of FL, our goal was to determine the
most effective and efficient approach for accurately
detecting attacks. Notably, the privacy-preserving na-
ture of FL ensures that clients do not share any private
data, addressing the key concerns associated with col-
laborative learning. Our results are based on the iid
and non-iid data distribution settings.

2 BACKGROUND

2.1 Web Applications and JavaScript

Web applications refer to software programs de-
signed to perform specific tasks and are typically re-
quested by a client’s web browser over the internet
(Ndegwa, 2016). These applications are hosted on
remote servers and accessed through web browsers.
These tools include two main components: server-
side scripts, such as Java Servlets, ASP, and PHP,
which manage the processing and retrieval of data
from the backend database; and client-side scripts,
such as HTML and Java Applets, which are respon-
sible for presenting the information to a user in their
web browser.

Examples of typical web applications include
email services and e-commerce platforms, which may
require server-side processing, as well as applications
that do not require any processing on the server. To
handle HTTP requests from a client, a web server is
necessary, an application server is needed to execute
the requested tasks, and a database is used to store
information when necessary.

Various security implications arise from poor pro-
gramming of the web applications (Meyer and Cid,
2008). These bugs can be exploited to gain unautho-
rized access to a server and its associated databases or
steal sensitive data, like credit card information. The
term “web application attacks” is used for these types
of attacks on web applications.

JavaScript is an object-oriented scripting language
commonly employed in designing and implementing
dynamic websites. It does not involve server-side pro-
cessing like other programming languages but relies
purely on a client browser to execute the source code.
However, JavaScript can also be misused by hackers
who want to distribute malicious scripts through dif-
ferent means. For example, they perform Cross-Site
Scripting (XSS), Passive Downloads, or SQL injec-
tion attacks (Wei-Hong et al., 2013).

2.2 Cross-Site Scripting Attacks

Cross-site scripting (XSS) has become a prevalent
way of attacking many websites (Lee et al., 2022).
OWASP categorizes such attacks among the top ten
in terms of how incapacitating they can be. The pur-
pose of an XSS attack is to place destructive content
within a valid web page or application and execute it
on the victim’s browser. This occurs when a blame-
less user visits a webpage or web app that includes
damaging programming, which then runs on his/her
web browser, allowing the attacker to gain unautho-
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rized entry into private information, including cook-
ies/user profiles or installing malware. Commonly
used conduits for XSS are message boards, forums,
and web pages where users leave comments.

Reflected XSS attacks, stored XSS attacks, and
DOM-based XSS attacks are the three major types
of these attacks (Galán et al., 2010). The methods
each uses to inject attacker codes into applications dif-
fer concerning these three attack types and the means
through which they affect code execution. Most au-
thors exclude DOM-based XSS attacks when catego-
rizing XSS attacks because these attacks are vulner-
able to the script used by web browsers, unlike Re-
flected and Stored XSS attacks, which exploit vulner-
abilities in web applications (Klein, 2005). Reflected
and Stored XSS attacks involve injecting script code
through an HTTP request. Reflected XSS attacks,
also known as nonpersistent XSS attacks, are com-
monly used to steal sensitive data, such as cookies, by
executing malicious scripts on the victims’ machines.
This type of attack is executed immediately in the vic-
tim’s browser since the script is included in the HTTP
response.

On the other hand, stored XSS attacks are more
dangerous because they can affect multiple users who
access the infected page. This attack entails directly
injecting the script or payload into the target page’s
database, which allows the attacker to keep running
their malicious code.

The third kind of XSS attack is DOM-based XSS,
and it is unique in that it does not rely on a vulner-
ability inherent in a web application itself. Rather,
these attacks exploit vulnerabilities within the docu-
ment object model (DOM) of a web browser to inject
malicious code inside targeted pages. The attacker
can do this by engineering a malevolent URL that,
when clicked, will insert the code straight into the
DOM of that page.

Although all kinds of XSS attacks may have dif-
ferent features and execution methods, they all aim to
exploit web applications to execute software scripts.
Consequently, developers and website administrators
must be familiar with this class of attacks and protect
their systems against them.

2.3 Data Privacy in XSS Detection and
the Role of Federated Learning

A critical aspect of XSS detection involves analyzing
the data or scripts embedded in web pages. While the
scripts might not always contain sensitive informa-
tion, they are often associated with user-specific con-
texts, such as session data, browsing history, or user
interactions with web applications. This context can

reveal users’ private information, such as their brows-
ing habits, preferences, and even personal identifiers.

Traditionally, XSS detection models have relied
on centralized servers to aggregate and analyze this
data, raising significant privacy concerns. Central-
ized storage and processing of such data can expose it
to potential breaches, misuse, or unauthorized access,
compromising user privacy. This is particularly con-
cerning in scenarios involving edge devices, where
data is generated and consumed locally, such as in IoT
environments.

Federated Learning (FL) presents an innovative
solution to this privacy challenge. By allowing de-
vices to collaboratively train models without sharing
raw data with a central server, FL ensures that sensi-
tive information remains on the user’s device. In XSS
detection, each device can contribute to improving the
detection model by sharing only model updates rather
than the underlying data.

This approach is particularly valuable for protect-
ing data privacy in edge computing environments,
where data decentralization is both a necessity and a
strength. By applying FL to XSS detection, we can
enhance the security and privacy of web applications
while still leveraging the collective intelligence of dis-
tributed devices.

These privacy considerations motivate the choice
of FL for XSS detection. Our work explores this
novel application of FL to XSS detection, providing
a framework for maintaining high detection accuracy
without compromising user privacy. Through com-
parative analysis with traditional centralized machine
learning models, we demonstrate the effectiveness of
FL in this context, highlighting its potential to revolu-
tionize the web security field.

3 RELATED WORK

3.1 Cross-Site Scripting Detection

In 2009, Likrash et al. worked on predicting mali-
cious JavaScript code using multiple ML classifiers.
These classifiers were used to determine which fea-
tures of the JavaScript code could help their model
determine potentially malicious code (Likarish et al.,
2009). The classifiers used in this study were naı̈ve
Bayes, ADTree , support vector machine (SVM), and
RIPPER classifiers. The authors of this study used a
10-fold cross-validation technique to train and test the
models; thus, the data were divided into ten segments:
9 for training and one for testing. However, this pro-
cess was performed ten times, so each segment was
utilized in the training and testing phases at least once
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(Likarish et al., 2009). In their work, the authors
achieved a precision value ((number of correctly la-
beled malicious scripts)/(total number of scripts that
are marked as malicious)) of 0.92% and a recall rate
((number of correctly labeled malicious scripts)/(total
number of malicious scripts)) of 0.787% (Likarish
et al., 2009). One concern with this study was that the
training set contained 50,000 benign codes and only
62 malicious codes without oversampling the mali-
cious code, which might explain the low recall value.

Komiya et al. (Komiya et al., 2011) used ML
techniques, such as SQL injection and XSS attacks,
adapted to changes in code characteristics to predict
malicious web code. The first stage was the learn-
ing process. In this stage, the classifier extracted
features from malicious or nonmalicious web code
from each training dataset using a feature vector. The
vector contained the weight of each feature (term),
which was the number of occurrences calculated us-
ing the term frequency-inverse document frequency
(TF-IDF) method. The second process was the classi-
fication process, which used the criteria constructed
from the learning process to classify the user in-
put. The authors constructed two separate classifiers,
one for XSS attacks and another for SQLIAs(Komiya
et al., 2011). The utilized classifiers included an SVM
(with a linear kernel), another SVM (with a polyno-
mial kernel), a third SVM (with a Gaussian kernel),
naive Bayes, and K-nearest neighbors (KNN). The
KNN classifier yielded the highest precision (0.991),
and the SVM with a Gaussian kernel yielded the high-
est accuracy (99.16%). The principal concern regard-
ing this study was that the dataset used for training
and testing was relatively small and might not have
reflected real-world web attacks(Komiya et al., 2011).
Another experiment conducted by Nunan involved
XSS attacks (Nunan et al., 2012). By depending on
web document content and URLs, the authors aimed
to detect malicious pages using ML techniques. Dif-
ferent classification algorithms were used to extract
features that helped predict XSS attacks. In this ex-
periment, the authors focused on detecting web page
obfuscation by encoding hexadecimal, decimal, oc-
tal, Unicode, Base64, and HTML reference charac-
ters. The employed classification algorithms included
naive Bayes and SVM classifiers. They also per-
formed this experiment using 10-fold cross-validation
(Nunan et al., 2012). Wei-Hong et al. worked on
detecting malicious scripts by using static analysis
techniques to extract features and an SVM to classify
scripts (Wei-Hong et al., 2013). The authors extracted
features first based on previous work performed by
other researchers and second by manually analyz-
ing the data. In their work, utilizing an SVM, they
reached an accuracy of 96.59% on the training set and

an accuracy of 94.38% on the testing set (Wei-Hong
et al., 2013). Other researchers have used ML tech-
niques to distinguish between obfuscated and nonob-
fuscated scripts (Aebersold et al., 2016). To reach this
goal, they used the following classifiers while depend-
ing on Azure ML: average perceptron (AP), Bayes
point machine (BPM), boosted decision tree (BDT),
decision forest (DF), decision jungle (DJ), locally
deep SVM (LDSVM), LR, neural network (NN), and
SVM classifiers. The authors studied the ability of
these classifiers to detect malicious scripts; however,
no malicious scripts were included in the training
dataset that was used to build the models. The BDT
classifier achieved the highest precision (100%), with
a recall of 47.71% (Aebersold et al., 2016). Mere-
ani et al. (Mereani and Howe, 2018) aimed to build
classifiers to predict a persistent (on-storage) XSS at-
tack in a Java script using ML techniques. Persis-
tent XSS attacks occur when a hacker injects his or
her code and saves it in the database of the target
web application. Whenever the web application is
accessed, the script runs on the user’s browser. The
authors used three classifiers in their work: an SVM,
a KNN, and a random forest. The conventional ap-
proach to XSS detection typically involves extracting
certain features based on experience and subsequently
determining if it constitutes an XSS attack using rule-
based matching methods. However, this methodology
struggles to identify increasingly intricate XSS attack
patterns. With the swift advancements in machine
learning, an expanding cohort of researchers has en-
deavored to address network security issues through
machine learning algorithms, with particular empha-
sis on XSS attack detection, resulting in notable ad-
vancements (Yan et al., 2022; Wu et al., 2021a; Wu
et al., 2021b; Wu et al., 2021c; Wu et al., 2019).
(ZHOU et al., 2019) proposed a model that combines
a multilayer perceptron with a hidden Markov model
(HMM). (Luo et al., 2020) developed a URL feature
representation method by analyzing existing URL at-
tack detection technologies and put forward a multi-
source fusion method based on a deep learning model.
This approach enhances the overall accuracy and sys-
tem stability of the XSS detection system.

3.2 Federated Learning

The inception of FL traces its origins to 2017,
marked by the unveiling of this innovative paradigm
by Google in their seminal paper (McMahan et al.,
2017). This pioneering endeavor introduced a de-
centralized approach, denoted FL, meticulously de-
signed to preserve the privacy of the data belonging
to participating clients. In the FL domain, a cen-
tral server or aggregator assumes a central role in or-
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chestrating a consortium of clients, enabling collab-
orative data analysis through a shared model. Cru-
cially, FL upholds the principle of data sovereignty,
ensuring that each client maintains absolute control
over their data, which remains confined within the
boundaries of their devices. Within this framework,
the model is regarded as communal property shared
among the clients, with the sole exchanges encom-
passing parameter updates. Additionally,(McMahan
et al., 2017) proposed a novel decentralized learn-
ing technique termed federated averaging that mod-
els the performance of a convolutional neural net-
work (CNN) using diverse types of data such as the
MNIST, CIFAR-10, and LSTM datasets. Numerous
studies have extended the scope of FL. For instance,
they may focus on the challenges associated with sys-
tem heterogeneity and seek to minimize the incurred
communication overhead. In their work, Bonawitz et
al. (Bonawitz et al., 2017) implemented a secure and
efficient FL algorithm with a fixed number of rounds,
ensuring low communication overhead and high ro-
bustness, especially when handling high-dimensional
data received from clients. Addressing uplink costs,
Konevcny et al. (Konečnỳ et al., 2016) introduced
methods based on structured and sketched updates,
showcasing significant communication overhead re-
ductions (by two orders of magnitude).To help with
training, they employed techniques such as correcting
the momentum and clipping the local gradient to sig-
nificantly reduce the communication bandwidth over-
head in deep gradient compression (DGC) (Lin et al.,
2017). Additionally, Hsieh et al. (Hsieh et al., 2020),
Li et al. (Li et al., 2020b), and Shamir et al. (Shamir
et al., 2014) developed novel distributed learning al-
gorithms by employing multiple minibatches and full-
batch stochastic gradient descent (SGD) to alleviate
communication overheads and improve overall effi-
ciency of FL. This is believed to be the first time that
FL has been used for user privacy protective XSS at-
tack detection (McMahan et al., 2017; Yang et al.,
2019; Li et al., 2020a; Zhang et al., 2021; Kairouz
et al., 2021).

4 PROBLEM FORMULATION

This section describes our proposed FL scheme,
which runs FL on a set of clients. We consider N
clients engaged in a classification task, where the
goal is to learn a function that maps every input
data point to the correct class out of K possible op-
tions. Each client n has access to its own private data
Dn = {xn

i }
Mn
i=1 consisting of Mn inputs and their cor-

responding labels yi. All the labels are hard-decision

vectors formed over the set of all classes. Each client
n has a model (e.g., a DNN) with p parameters (e.g.,
weights): ωn ∈ Rp. We follow conventional FL and
assume that all clients have the same architecture for
their models so they can be easily averaged.

Let l(ω,x,y). be the loss incurred on a training
data point (x,y). The local training loss function of
client n is then

Ln (ω
n)≜ ∑

x∈Dn

l (ωn,x,y(x)) . (1)

The goal of the training process in FL is to learn
a common model ω that minimizes the total loss in-
duced across all clients, which is defined as follows:

L (ω) =
N

∑
n=1

Ln (ω) . (2)

The iterations t of the employed FL algorithm
consist of two parts. First, the server collects the
client models and computes the average model:

ω(t) =
1
N

N

∑
n=1

ω
n (t) . (3)

Then, each client performs a local SGD step to update
the average model, with a momentum parameter 0 ≤
β < 1:

ω
n (t +1) = ω(t)η(t)v(t +1) (4)

where η(t) is the step size sequence and

v(t +1) = βv(t)+gn (ω(t)) (5)

Which coincides with the standard SGD strategy
for β = 0. The stochastic gradient gn (ω(t)) is ob-
tained concerning a random subset of data points
Sn ⊂ Dn of size B (i.e., the batch size):

gn (ω(t)) = ∑
x∈Sn

∇l (ω(t) ,x,y(x)) . (6)

5 EXPERIMENTAL RESULTS

The experiments were conducted using Google Co-
lab, running the datasets and models within the
Python environment. We report the percentage of ac-
curately classified data points in the test dataset (”ac-
curacy”) for the federated learning (FL) model ob-
tained after training.

5.1 Datasets

5.1.1 XSS Dataset

We utilized a balanced XSS dataset comprising
scripts from multiple sources. Two datasets contain-
ing malicious and benign JavaScript programs were
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Table 1: Datasets containing malicious and benign scripts.

Dataset Type Dataset Source
Malicious Scripts (Mereani and Howe, 2018)

Benign Scripts (Mereani and Howe, 2018)

gathered, with the sources listed in Table 1. The
dataset consists of 62 attributes and 24,097 data in-
stances.

Selecting the features to be trained by FL mod-
els is challenging due to the vast number of available
design options. Feature selection is typically divided
into two categories.

• Structural Features. This refers to the complete
set of non-alphanumeric characters, including five
additional combinations. For example, a hacker
may add unnecessary commands (¡!) or spaces
between lines.

• Behavioral Features. These are specific com-
mands or functions that may be used in a mali-
cious JavaScript, such as the (Var) function. Ta-
ble 2 outlines both the structural and behavioral
features utilized in our experiments.

5.1.2 CICIDS2017 Dataset

The CICIDS2017 dataset (Sharafaldin et al., 2018),
created by the Canadian Institute for Cybersecurity
(CIC), offers a comprehensive collection of network
traffic data representing various cyber threats and nor-
mal network behavior. The dataset consists of 85
features with 458,968 data instances. Preprocessing
steps included checking for null values, converting
categorical objects to numerical values, and normal-
izing the data to eliminate outliers.

5.2 Model Architectures and Training

We implemented and tested four machine-learning
models:

• Logistic Regression (LR): A basic linear model
used for binary classification tasks. This model
served as a baseline for our comparisons.

• Multilayer Perceptron (MLP or 2NN): A neu-
ral network with two hidden layers containing
200 units and ReLU activation functions as in
(McMahan et al., 2017). The architecture is sim-
ple yet effective for binary classification tasks in-
volving malicious and benign labels.

• Support Vector Machine (SVM): A powerful
model used for binary classification, particularly
effective in high-dimensional spaces. We used a
Radial Basis Function (RBF) kernel, which is a

common choice for non-linear classification. The
RBF kernel maps the input data into a higher-
dimensional space, which makes it easier to clas-
sify using a linear decision boundary.

• k-Nearest Neighbors (KNN): A simple yet ef-
fective non-parametric method for classification
tasks. We set k=5 as a default value, balancing
bias and variance.
All models were trained using Stochastic Gradient

Descent (SGD) where applicable (for LR and MLP)
with the following parameters:

• Learning rate: η = 0.01

• Momentum: β = 0.9

• Batch size: B = 32

• Local epochs: E = 1 (i.e., SGD operated over the
local dataset once)

• Communication rounds: 100
The KNN model’s classification is non-iterative,

so the parameters related to SGD do not apply. In-
stead, the model computes distances between data
points and assigns labels based on the majority class
among the nearest neighbors.

Each experiment was run ten times, and the results
presented are averages across these runs, with error
bars representing one standard deviation.

To simulate a realistic Federated Learning (FL)
environment, we divided the XSS and CICIDS2017
datasets into several shards, assigning each shard to
a different client and ensuring each client had its pri-
vate data. We followed an 80:20 train-test split, re-
serving 20% of the data for evaluating the model’s
performance on unseen data.

5.3 Reproducibility and Code
Availability

We implemented all models using standard libraries
in Python. To ensure reproducibility, the models’ de-
tailed architectures, preprocessing steps, and training
configurations are provided. The code, including data
preprocessing scripts, model architectures, and the FL
implementation, will be made available in a public
repository upon the paper’s acceptance. The datasets
used are publicly accessible and cited accordingly.

5.4 IID Data Distribution

The results obtained for independent and identically
distributed (IID) data are presented in Table 3. In this
setting, ten clients were utilized, each with random
data points from the specific datasets (XSS and CI-
CIDS 2017); thus, the data distributions among the
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Table 2: Behavioral and structural features (Mereani and Howe, 2018).

Features Description Type
Readability The number of alphabetical characters. Behavioral

Objects Document, window, I frame, location. Behavioral
Events Onload, Onerror. Behavioral

Methods createElement, String.fromCharCode. Behavioral
Tags DIV, IMG, <script>. Behavioral

Attributes SRC, Href, Cookie. Behavioral
Reserve Var. Behavioral

Functions eval(). Behavioral
Protocol HTTP. Behavioral

External File .js file. Behavioral
Punctuation <, #, $, @. Structural

Combinations ”¿¡”, ”==”. Structural

Table 3: Performance of FL and Traditional Centralized models in binary classification on XSS and CICIDS2017 datasets
based on IID data distribution.

Dataset Model Accuracy Precision Recall F1 Score

XSS

FL model (LR) 98.9% 99.9% 97.3% 98.6%
Traditional Centralized model (LR) 99.9% 99.9% 99.8% 99.9%

FL model (DNN) 99.9% 99.9% 99.9% 99.9%
Traditional Centralized model (DNN) 99.9% 99.9% 99.8% 99.9%

FL model (SVM) 99.9% 99.9% 99.9% 99.9%
Traditional Centralized model (SVM) 99.96% 99.96% 99.96% 99.96%

FL model (KNN) 99.7% 99.7% 99.7% 99.7%
Traditional Centralized model (KNN) 99.90% 99.90% 99.90% 99.90%

CICIDS2017

FL model (LR) 94.01% 89.36% 90.0% 89.86%
Traditional Centralized model (LR) 97.9% 94.72% 98.33% 96.49%

FL model (DNN) 98.48% 96.49% 98.33% 97.40%
Traditional Centralized model (DNN) 99.8% 99.3% 99.9% 99.6%

FL model (SVM) 98.41% 96.48% 98.09% 97.28%
Traditional Centralized model (SVM) 99.31% 99.04% 98.57% 98.80%

FL model (KNN) 96.49% 90.54% 98.09% 94.17%
Traditional Centralized model (KNN) 99.38% 98.12% 99.76% 98.93%

clients are similar. The experiment aims to identify
anomalies in the data. Our results, as an example in
Figure 2, confirmed that FL could reach a comparable
performance level to traditional centralized models
after a few communication rounds while maintaining
data privacy and never sharing any sensitive data with
the central server. Furthermore, the results for the bi-
nary classification of XSS and CICIDS2017 datasets,
presented in Table 3, include the performance of addi-
tional classifiers, such as SVM and KNN, along with
LR and DNN models. These results demonstrate that
federated learning offers superior accuracy, precision,
recall, and F1 score across multiple models address-
ing the XSS issue.

5.5 Non-IID Data Distribution

The results for non-independent and identically dis-
tributed (non-IID) data are presented in Table 4. In
this setting, each client i had data points belong-
ing to class i of the XSS and CICIDS2017 datasets,
with i = 1,2. To create the most non-IID case,
client one was assigned all the malicious data points,
while client two was assigned all the benign data
points. The results show that the federated model of-
fers slightly lower scores in some cases than the cen-
tralized model. However, the difference is not sub-
stantial, indicating that the horizontal FL system can
perform well in addressing the XSS problem using
FedAvg as the aggregating algorithm. Figure 3 pro-
vides an example of the behavior of the Logistic Re-
gression (LR) and Deep Neural Network (DNN) mod-
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Table 4: Performance of FL and Traditional Centralized models in binary classification on XSS and CICIDS2017 datasets
based on non-IID data distribution.

Dataset Model Accuracy Precision Recall F1 Score

XSS

FL model (LR) 98.77% 99.9% 97.08% 98.51%
Traditional Centralized model (LR) 99.9% 99.9% 99.8% 99.9%

FL model (DNN) 99.85% 99.9% 99.65% 99.82%
Traditional Centralized model (DNN) 99.9% 99.9% 99.8% 99.9%

FL model (SVM) 99.91% 99.90% 99.90% 99.90%
Traditional Centralized model (SVM) 99.96% 99.96% 99.96% 99.96%

FL model (KNN) 99.81% 99.95% 99.60% 99.77%
Traditional Centralized model (KNN) 99.90% 99.90% 99.90% 99.90%

CICIDS2017

FL model (LR) 95.8% 89.7% 89.8% 93.1%
Traditional Centralized model (LR) 97.9% 94.72% 98.33% 96.49%

FL model (DNN) 96.08% 97.14% 89.04% 92.91%
Traditional Centralized model (DNN) 99.8% 99.3% 99.9% 99.6%

FL model (SVM) 97.73% 97.79% 97.73% 97.74%
Traditional Centralized model (SVM) 99.31% 99.04% 98.57% 98.80%

FL model (KNN) 96.63% 89.97% 98.33% 93.97%
Traditional Centralized model (KNN) 99.38% 98.12% 99.76% 98.93%

Figure 2: Federated learning with IID data distributions. The columns correspond to the XSS and CICIDS2017 datasets. The
rows correspond to the models LR and DNN.

els during the communication rounds, supporting the
results shown in Table 4.

Our federated learning framework also supports
configurations with more than two clients. We tested
the performance of the new classifiers, SVM and
KNN, with a setup involving ten clients. Specifically,
we assigned five clients to class 0 and the remain-

ing five clients to class 1. In this setup, client i for
i ∈ {1, . . . ,5} was assigned all data points of class
0, while client j for j ∈ {6, . . . ,10} was assigned all
data points of class 1. This setup, detailed in Table
4, demonstrates the scalability and robustness of our
approach.

FL’s effectiveness tends to align with the balance

KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval

290



Figure 3: Federated learning with non-IID data distributions. The columns correspond to the XSS and CICIDS2017 datasets.
The rows correspond to the models LR and DNN.

between model and dataset complexity. Matching the
model complexity to that of the dataset is crucial to
fully benefiting from the FL effect. We can evaluate
our model against our proposed scheme’s benchmarks
provided by (Yan et al., 2022; Mereani and Howe,
2018). It is worth noting that all machine learning
models referenced in the prior studies are employed
as traditional centralized models. A key advantage of
our approach is that with federated learning, access-
ing the clients’ data is unnecessary.

6 CONCLUSION

Users’ data privacy concerns have become more im-
portant, and traditional methods face problems safe-
guarding sensitive data. Federated learning with ML
models can be used as a verification stage to ensure
privacy while training ML models. In this research,
we presented an innovative and scientifically sound
privacy-preserving FL as an alternative method to a
centralized model in detecting XSS attacks. Our ap-
proach facilitates the training of ML models on dis-
tributed devices, effectively mitigating the privacy
risks of sensitive data. We comprehensively assessed
the proposed framework using authentic, real-world
data and compared its efficacy with traditional cen-

tralized ML methodologies. The experimental find-
ings strongly indicated that the proposed FL approach
attained performance levels comparable to those of
centralized models such as LR and DNN while ensur-
ing data privacy. The outcomes affirm that FL holds
excellent promise as a viable technique for XSS de-
tection. At the same time, our framework exhibits
potential for adaptation to address other security vul-
nerabilities prevalent in web applications. Future re-
search should aim to gain a more thorough under-
standing of XSS behavior. We will expand our re-
search to include more attack types, such as SQL in-
jection and cross-site request forgery. Moreover, we
will utilize different models and investigate the com-
plexity of these strategies.
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