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Abstract: This paper presents a sophisticated tool designed to teach Evolutionary Neural Architecture Search (ENAS)
in time series analysis. The goal is to create a flexible and modular algorithm that helps to understand evo-
lutionary algorithms in the context of neural architecture optimization. The tool allows parameter tuning and
search space exploration. Its initial setup can include a population size of 20 individuals, spanning 5 genera-
tions, with an elitism rate of 20% and crossover and mutation probabilities set to 90% and 10%, respectively.
However, these hyperparameters are completely modular, so that the effect on the algorithm can be studied.
The parameter ranges from 1 to 20 for neurons and delays. The neural networks are extensively trained us-
ing the MATLAB narnet function and the PJM hourly energy consumption dataset, which is split into 70%
for training, 15% for validation, and 15% for testing. The goal is to maximize the correlation coefficient r
obtained from the test dataset. This approach offers an interactive platform for experimentation and learning
about the evolutionary process of neural architectures, thus improving the understanding of evolutionary al-
gorithms applied to Neural Architecture Search (NAS). Our experiments show efficiency due to the limited
search space and the absence of specialized hardware requirements such as GPU, making it accessible and
practical for educational and research environments. Using only an AMD Ryzen 7 7800X3D CPU, all ar-
chitectures within the search space were trained in less than 3 hours, demonstrating the agility of ENAS in
various configurations and its effectiveness in facilitating practical understanding of the evolutionary process
in NAS. All datasets, tutorials and essential codes to apply this work are publicly accessible at the following
link: https://github.com/SergioSarmientoRosales/ENAS-Time-Series.

1 INTRODUCTION

Evolutionary Neural Architecture Search (ENAS) is a
cutting-edge approach to optimizing neural networks
that has garnered significant attention and success,
particularly in fields like image classification and
restoration. Now, its application in the intricate do-
main of time series analysis presents new opportuni-
ties and challenges (Elsken et al., 2019). Time series
data is characterized by its sequential nature, evolv-
ing and requiring models that can accurately capture
and adapt to subtle patterns and trends (Fadlalla and
Lin, 2001). ENAS, drawing inspiration from natu-
ral evolutionary processes, navigates through a vast
landscape of potential neural network architectures. It
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identifies and refines configurations that demonstrate
superior performance in handling the unique com-
plexities of time series data, such as trends, season-
ality, and irregularities, ensuring more accurate pre-
dictions and better model adaptability. (Pham et al.,
2018).

The application of ENAS in time series analysis
opens up avenues for tackling challenges such as fore-
casting, anomaly detection, and pattern recognition
within temporal data streams (Rosenberger, 2022).
However, despite the promising outcomes, the intri-
cacies inherent in evolutionary algorithms can pose
barriers to understanding and practical implemen-
tation, particularly in educational settings (Miikku-
lainen et al., 2024). Bridging this gap requires a di-
dactic approach that simplifies the core concepts of
ENAS while retaining its efficacy in optimizing neu-
ral architectures for time series tasks.
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Despite the promising outcomes of ENAS, its
complexity, rooted in evolutionary algorithms, can
present challenges in terms of understanding and
practical implementation, especially in educational
contexts (Miikkulainen et al., 2024)). This complex-
ity often stems from the intricate optimization pro-
cesses and the myriad of parameters and configura-
tions involved in training neural architectures using
evolutionary methods.

By delving into the fundamental principles of
ENAS and its application in the context of time series,
this endeavor aims to elucidate the intricacies of evo-
lutionary neural architecture search in a comprehensi-
ble manner (Li and Talwalkar, 2020). Through prac-
tical demonstrations and interactive learning experi-
ences, learners can grasp the nuances of ENAS and its
implications for enhancing the capabilities of neural
networks in handling time-dependent data structures.

To address these challenges and bridge the gap be-
tween theoretical concepts and practical applications,
a didactic approach is essential. This approach in-
volves breaking down the core concepts of ENAS into
understandable components while preserving its ef-
fectiveness in optimizing neural architectures for time
series tasks. By simplifying the learning curve and
providing interactive learning experiences, students
and practitioners can grasp the nuances of ENAS
more effectively and apply this knowledge to real-
world scenarios.

In this study, our aim is to delve deeper into the
fundamental principles of ENAS and explore its spe-
cific application in the context of time series anal-
ysis. We aim to elucidate the intricacies of evolu-
tionary neural architecture search in a comprehensi-
ble manner, making it accessible to a wider audience.
Through practical demonstrations, interactive tools,
and real-world examples, we seek to enhance under-
standing, facilitate learning, and encourage further re-
search in the field of time series forecasting using evo-
lutionary techniques.

2 BACKGROUND

Time series forecasting is a critical task in various
fields, such as finance (Fadlalla and Lin, 2001; El-
liott and Timmermann, 2016), weather forecasting
(Abhishek et al., 2012; Gneiting and Raftery, 2005),
and stock market analysis (Shah et al., 2019; Chong
et al., 2017). In finance, accurate forecasting can in-
fluence investment strategies, risk management, and
economic planning (Fadlalla and Lin, 2001). For in-
stance, predicting future stock prices or economic in-
dicators can provide significant advantages to traders

and policy makers. In weather forecasting, predict-
ing climatic conditions like rainfall, temperature, and
extreme weather events helps in disaster prepared-
ness and agricultural planning. Similarly, in the stock
market, understanding future price movements based
on historical data is crucial for developing trading
strategies and mitigating financial risks (Chong et al.,
2017). The ability to accurately predict future trends
and patterns based on historical data is essential for
making informed decisions.

Traditional methods for time series forecasting of-
ten rely on statistical techniques, mathematical mod-
els, physical models, or simplistic machine learning
models. These methods include approaches like Au-
toregressive Integrated Moving Average (ARIMA),
Exponential Smoothing, and various regression mod-
els (Box et al., 2015; Hamilton, 2020). Although
these methods have been widely used and have proven
effective in many scenarios, they often struggle with
the increasing complexity of modern data. These tra-
ditional methods typically assume linear relationships
and may not adequately capture the non-linear and
complex dependencies present in real-world time se-
ries data (Hyndman and Athanasopoulos, 2018). As
a result, there is a growing need for more advanced
techniques that can handle the complexities of time
series data, providing more accurate and reliable pre-
dictions (Lim et al., 2021).

ENAS has emerged as a promising approach to
optimizing neural networks for time series forecasting
(Liu et al., 2021). Unlike manual design or traditional
hyperparameter tuning methods, ENAS leverages the
principles of natural evolution to automatically dis-
cover and optimize architectures of neural networks.
This approach reduces the burden of manual interven-
tion and improves the performance of neural networks
in capturing complex temporal dependencies and pat-
terns present in time series data (Liu et al., 2021;
Pham et al., 2018). By automating the design process,
ENAS can explore a vast search space of potential
architectures, identifying the most effective configu-
rations without extensive human input (Elsken et al.,
2019).

ENAS offers a significant advantage in the domain
of time series forecasting due to its ability to adapt
and evolve neural architectures specifically tailored
to handle the intricate dynamics of time-dependent
data (Liang and Sun, 2024). Traditional forecast-
ing methods may overlook optimal configurations due
to their limited exploration of the search space. In
contrast, ENAS explores a diverse range of architec-
tures and hyperparameters, uncovering configurations
that may offer superior performance (Liang and Sun,
2024). This adaptability and optimization potentially
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make ENAS a valuable tool for researchers and practi-
tioners aiming to enhance the accuracy and reliability
of time series forecasting models (Zoph et al., 2018;
Real et al., 2019).

However, the main challenge of ENAS lies in its
practical application. ENAS commonly focuses on
deep neural networks in vast search spaces, leading to
computationally expensive evaluation processes (Ren
et al., 2021). This often makes its use in real sce-
narios prohibitive. Efficient evaluation methods exist,
but there is still a need to theoretically understand how
these methods work, which often requires specialized
techniques and knowledge that are usually available
only to expert researchers (Xie et al., 2023; Liu et al.,
2021). This combination of factors and the associated
high computational cost significantly limit the access
and widespread adoption of ENAS in the scientific
and professional community.

While ENAS presents a promising avenue for op-
timizing neural networks in time series forecasting,
its practical implementation faces notable challenges.
The inherent complexity of deep neural networks in
vast search spaces requires computationally intensive
evaluation processes, often making their application
in real-world scenarios impractical due to prohibitive
computational costs and time requirements (Liu et al.,
2021). Despite the availability of efficient evaluation
methods, there remains a crucial need for comprehen-
sive theoretical understanding and specialized exper-
tise, creating barriers to widespread adoption among
researchers and practitioners. Addressing these chal-
lenges will be critical to unlocking the full potential of
ENAS and harnessing its benefits to improve the accu-
racy and reliability of time series forecasting models
in various domains.

3 METHODOLOGY

Our methodology for developing the advanced ENAS
teaching tool applied to time series involves several
key steps aimed at creating an agile and modular algo-
rithm that improves the understanding of evolutionary
algorithms in neural architecture optimization.

We define clear objectives and requirements for
our ENAS teaching tool. These objectives include
enhancing the accessibility and effectiveness of time
series forecasting through ENAS, improving user ex-
perience, and ensuring scalability and flexibility.

Based on these objectives, we design and imple-
ment a modular and agile algorithm that can adapt
to different user needs and scenarios. This involves
developing intuitive interfaces, integrating interactive
features, and incorporating educational elements to

facilitate learning and understanding.
Throughout the development process, we continu-

ously evaluate and iterate on our tool, gathering feed-
back from users. This iterative approach allows us to
refine and enhance the tool’s functionality, usability,
and educational value.

Additionally, we leverage the strengths of ENAS,
such as its ability to navigate complex search spaces
and identify optimal neural architectures. By harness-
ing these capabilities, we aim to advance the state-of-
the-art in time series forecasting, making it accessible
and effective for a broader range of applications.

Overall, our methodology emphasizes a system-
atic and iterative approach, combining thorough anal-
ysis, user-centered design principles, and the utiliza-
tion of ENAS strengths to develop an advanced teach-
ing tool for time series forecasting.

3.1 Initial Configuration Settings

The algorithm can start its execution in different ini-
tializations, from choosing the population type with
a random seed, a crucial step to ensure reproducibil-
ity of the results in subsequent runs. This random
seed serves as a starting point to generate random se-
quences and numbers, maintaining consistency and
reproducibility in different runs of the algorithm. The
default configuration serves as a starting parameter,
however it is recommended to play with each of the
parameters in order to understand the contribution of
each hyperparameter. The ”default” values are se-
lected based on established standards and best prac-
tices observed in the literature, ensuring a robust and
effective optimization process (Liu et al., 2021).

One of the key features of our algorithm is its flex-
ibility and adaptability. Each of these parameters can
be easily modified without any programming knowl-
edge. This flexibility allows researchers and practi-
tioners to fine-tune the algorithm to specific require-
ments and goals, making it a versatile tool for explo-
ration and experimentation.

To address concerns about computational com-
plexity and execution time, we strategically designed
a small search space for the algorithm. Specifically,
the search space ranges between 1 and 20 for both the
number of neurons and the delays in the neural archi-
tectures. This design choice limits the total number
of possible architectures to only 400, significantly re-
ducing the computational load (López et al., 2019).

By restricting the search space, we can perform
a comprehensive exploration of architectural config-
urations while keeping the computational cost man-
ageable. This approach allows us to perform multiple
experiments in a reasonable period, avoiding the need
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for specialized hardware such as GPU. As a result,
researchers and educators can efficiently run experi-
ments, analyze results, and gain insights without sig-
nificant hardware dependencies.

3.2 Evolutionary Algorithm

The generation of the population signifies the com-
mencement of the evolutionary process within our
algorithm. Each individual in the population is as-
signed a genotype, which contains crucial informa-
tion regarding the architecture of the neural network,
specifically the number of neurons in the hidden layer
and the delays in the time series data. This genotype
serves as a blueprint for constructing the artificial neu-
ral network (ANN).

To ensure smooth transitions and effective explo-
ration of the search space, the generated genotype
is encoded using Gray code. This technique, com-
monly used in evolutionary algorithms, minimizes
abrupt changes between adjacent genotypes. By re-
ducing these sudden changes, gray code facilitates
a more systematic exploration of the search space,
which enhances the algorithm’s ability to find opti-
mal solutions (Fogel and Computation, 1995; Eiben
and Smith, 2015).

Each individual, along with its decoded version
using the Gray code, is stored in a data structure for
subsequent manipulation and evaluation during the
evolutionary process. As the algorithm progresses
through generations, it undergoes selection mecha-
nisms to identify the best individuals based on prede-
fined evaluation metrics. This selection process, of-
ten implemented through techniques like tournament
selection or roulette wheel selection, aims to retain
and promote individuals with favorable characteris-
tics (Ahn and Ramakrishna, 2003).

To prevent premature convergence and maintain
diversity within the population, the evolutionary pro-
cess introduces random individuals in each genera-
tion. Additionally, crossover and mutation operations
are employed to generate diverse and adaptive off-
spring over multiple generations. Crossover involves
selecting two parent individuals through tournament
selection and combining their genetic information to
produce new offspring. This process blends features
from both parents, creating a diverse range of poten-
tial solutions. Mutation, on the other hand, introduces
small random changes to the genetic material of indi-
viduals, which helps explore new areas of the solution
space and promotes innovation. These techniques col-
lectively support the evolution of solutions by ensur-
ing ongoing variation and adaptation (De Jong, 2017).

These evolutionary mechanisms collectively con-

tribute to the search for optimal solutions for the
given problem. By maintaining diversity, promoting
favorable traits, and introducing variability through
crossover and mutation, the algorithm continuously
explores and refines solutions, ultimately aiming
to converge toward the most effective and efficient
ANNs for time series analysis.

3.3 Datasets

We use the Pennsylvania-New Jersey-Maryland
(PJM) Hourly Energy Consumption Dataset from
PJM Interconnection LLC, a regional transmission or-
ganization (RTO) in the United States that is part of
the Eastern Interconnection grid (Robikscube, 2024;
panambY, 2024). PJM operates an electric transmis-
sion system that covers Delaware, Illinois, Indiana,
Kentucky, Maryland, Michigan, New Jersey, North
Carolina, Ohio, Pennsylvania, Tennessee, Virginia,
West Virginia and the District of Columbia. The
choice of this dataset for our research is due to its
notable advantages for experimentation and research.
The free availability of this data makes it a versatile
and convenient option for carrying out comparative
studies and analyses in different regions, thus giving
researchers the freedom to conduct experiments and
validate their discoveries using diverse data sets. This
approach contributes to the robustness and generaliza-
tion of the results, especially in the analysis of energy
demand and electrical efficiency. However, our ap-
proach is not limited to this dataset but can be substi-
tuted by any other time series data set. We highly rec-
ommend using data sets that exhibit seasonality prop-
erties, as this can lead to more accurate results (Hyn-
dman and Athanasopoulos, 2018; Shumway et al.,
2000). On the other hand, it should be noted that sea-
sonality is not a strict requirement, since our main ob-
jective is to be didactic and not necessarily obtain the
best results in terms of predictive performance.

3.4 Neural Network Training

During the training process within our evolutionary
algorithm, each individual in the population under-
goes a decoding step to extract information regarding
the number of neurons and delays specified by their
genotype. This decoding process is crucial for config-
uring the neural network architecture accurately. Fol-
lowing this, adjustments are made to ensure that nei-
ther the number of neurons nor the delays fall below
1. This precaution is necessary due to the possibility
of mutations occurring during the evolutionary pro-
cess, and it helps avoid any parameter from becoming
0, which could lead to invalid configurations.
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Subsequently, a neural network model is created
using MATLAB’s narnet version 5 (See Figure 1), a
powerful tool provided by MathWorks (MathWorks,
2024). This function takes the decoded parameters as
inputs and constructs a neural network model tailored
to the specified architecture. The time series data set
is then prepared for training, validation, and testing
stages, ensuring that the data is appropriately parti-
tioned to facilitate robust model evaluation.

The neural network is trained using the
Levenberg-Marquardt algorithm, a widely used
optimization technique for training ANNs. Through-
out the training process, the algorithm monitors the
progress of the neural network, adjusting weights and
biases to minimize errors and improve performance.

Once training is complete, the trained neural net-
work model undergoes a thorough evaluation using an
independent test dataset. Evaluation metrics such as
the correlation coefficient ”r” are computed and we
use the objective to maximize the evolutionary algo-
rithm. These results are stored for further analysis and
comparison, providing a comprehensive and system-
atic approach to training and evaluating neural net-
work models within the framework of evolutionary
search for neural architectures applied to time series
analysis.

This process ensures that the trained models are
rigorously evaluated and optimized, leading to the
discovery of effective neural network architectures for
time series forecasting and analysis.

Figure 1: ANN Model Architecture.

4 RESULTS

This work introduces an advanced tool designed to
teach ENAS applied to time series data. The tool aims
to provide a flexible and modular algorithm that aids
in understanding evolutionary algorithms for optimiz-
ing neural architectures. Its modular design allows
users to easily adjust parameters and the search space,
enabling the exploration of various configurations and

optimization strategies.
The optimization problem tackled here involves

both the number of neurons in the hidden layer and
the number of delays, showcasing the complexity and
versatility of the neural architectures that can be ex-
plored with this tool.

The tool offers an interactive and educational
platform for experimenting with and learning about
neural architecture evolution, enhancing comprehen-
sion of evolutionary algorithms in Neural Architec-
ture Search (NAS). Its efficiency is underscored by a
constrained search space and no need for specialized
hardware, such as GPUs, making ENAS both acces-
sible and practical for educational and research pur-
poses.

Our code serves as a robust resource for under-
standing evolutionary algorithms in ENAS. The mod-
ular nature of the tool allows for a virtually infinite
number of experiments by adjusting parameters such
as population size, number of generations, population
type, crossover, mutation, elitism probability, and di-
versity addition.

We extended our research to multiple datasets to
gain a comprehensive view. The results were highly
competitive, demonstrating our approach’s effective-
ness in automatic neural network searches.

Throughout the study, the evolutionary algorithm
proved capable of identifying optimal solutions even
when surpassing the initial limits, such as exceeding
the proposed limit of 20 neurons or delays. Notably,
the correlation coefficient r was around 0.99 for the
test data set across all results. This emphasizes the ef-
fectiveness of our educational tool, which is designed
to be intuitive and accessible, making it valuable for
both students and researchers, including those with-
out advanced programming expertise.

In Table 1, we present the detailed results of the
best individuals obtained for each data set. It is im-
portant to note that we chose to use the default hyper-
parameters during the search process. This decision
was made with the purpose of establishing a standard
comparison point and evaluating the effectiveness of
our algorithm in different scenarios in a consistent and
equitable manner. These results offer a broader and
more detailed view of how our approach performs
on the task of automatic neural network search on a
variety of data sets, supporting our tool’s ability to
adapt and generate competitive solutions in various
contexts.
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Table 1: Best Individuals in Different Datasets.

Dataset r Test Hidden Neurons Lags Generation Time (Approx hours)
PJM Load hourly 0.99423 17 21 3 0.5

PJME hourly 0.99661 21 27 5 3
PJMW hourly 0.99388 17 27 3 2

NI hourly 0.99624 17 28 3 3
FE hourly 0.99506 17 27 2 1

EKPC hourly 0.98426 17 27 3 2
DUQ hourly 0.99413 18 26 3 1.5
DOM hourly 0.99286 18 28 5 1
DEOK hourly 0.99038 18 19 5 1

DAYTON hourly 0.99417 30 27 5 3
COMED hourly 0.99440 17 27 3 1

AEP hourly 0.9948 17 27 4 1.5

5 CONCLUSIONS

In conclusion, this work introduces an advanced tool
tailored specifically for teaching ENAS in the context
of time series analysis. The primary goal of this tool
is to develop a flexible and modular algorithm that
enhances comprehension of evolutionary algorithms
in optimizing neural architectures. The modularity of
the algorithm allows for dynamic adjustments in pa-
rameters and search space, empowering users to ex-
plore various configurations and optimization strate-
gies.

A notable aspect of our approach is the consider-
ation of the optimization problem, which depends on
both the number of neurons in the hidden layer and
the number of delays. This reflects the complexity
and versatility of neural architectures that can be ex-
plored and optimized using our tool.

The interactive and educational platform pro-
vided by this approach facilitates experimentation and
learning about the evolution of neural architectures,
thereby enhancing understanding of evolutionary al-
gorithms applied to NAS. Moreover, the efficiency
demonstrated in our experiments is attributed to the
restricted search space and absence of specialized
hardware requirements like GPUs, making ENAS ac-
cessible and practical in educational and research set-
tings.

Our code serves as a robust tool for comprehend-
ing evolutionary algorithms in ENAS, allowing for a
wide range of experiments due to its modular nature.
Examples presented in this paper showcase results ob-
tained from experiments using different population
types, demonstrating the versatility and effectiveness
of our approach.

In the experiment with a random population, we
observe convergence in architectures sharing simi-

lar characteristics, highlighting the evolutionary pro-
cess’s effectiveness. The experiment with a uniform
population also yields promising results, especially in
exploring the search space comprehensively in the ini-
tial generation.

Overall, this work contributes significantly to the
field of ENAS by providing a comprehensive tool for
understanding and optimizing neural architectures in
time series analysis. The future of this research lies in
further refining and expanding the capabilities of our
approach, potentially leading to significant advance-
ments in neural architecture optimization and appli-
cation.

6 BROADER IMPACT AND
FUTURE WORK

Our work is focused on democratizing the learning
and application of ENAS for students, profession-
als, or enthusiasts who are not familiar with evolu-
tionary algorithms. With this goal in mind, we have
developed easy-to-use and highly customizable code.
This code allows users to configure the system specifi-
cally and efficiently, without requiring extensive prior
knowledge in the field of Neural Architecture Search
and evolutionary algorithms.

The importance of this contribution lies in the
elimination of entry barriers for those who wish to
explore and apply NAS in their research or projects.
By simplifying the process and making the technol-
ogy more accessible, we hope to encourage greater
adoption and understanding of NAS in the scientific
community. Furthermore, encouraging experimenta-
tion and active learning in this field can lead to signif-
icant discoveries and advances in the development of
more efficient and effective neural architectures.

Educational Evolutionary Neural Architecture Search for Time Series Prediction

239



An important aspect to highlight is that it is not
necessary to use specialized technologies such as
GPUs or TPUs to carry out the experiments. Al-
though these technologies can significantly speed up
the neural network training process, our approach has
been designed to be efficient and accessible, allowing
experiments to be performed effectively using only a
CPU. This is possible because the search space we
have defined contains only 400 possible architectures.
This restriction on the search space not only reduces
the computational complexity but also makes the opti-
mization process manageable even with limited hard-
ware resources. Furthermore, this feature of our
method allows for greater reproducibility and scala-
bility, since experiments can be performed in more
common and affordable hardware environments. This
facilitates the adoption of our approach in various aca-
demic and research institutions, where computational
resources may be limited.

On the other hand, our work has several limita-
tions. Firstly, our code has been developed in MAT-
LAB which, although it is specialized research soft-
ware, is not accessible to the general public. For this
reason, in future work it is proposed to translate the
code to Python using libraries such as PyTorch or Ten-
sorFlow. This will allow the code to be used in open
source environments, thus expanding its accessibility
and potential to a broader community of students, re-
searchers and professionals.

Also, it’s important to know that our current ap-
proach is specifically designed to work with time se-
ries. However, to achieve a completely modular ap-
proach adaptable to a wide range of applications, we
propose the development of a modular NAS. This new
approach would allow users to select the specific task
they want to tackle, such as image restoration, image
classification, or natural language processing.

By adopting a modular approach, users could ex-
change data sets and search spaces in a flexible and
customizable manner. This would not only increase
the versatility of our approach but also make it appli-
cable to a variety of domains and specific needs.

Finally, new efficient evaluation methods can be
successfully applied in our approach. For exam-
ple, implementing a Population Memory ((Xie et al.,
2023; Liu et al., 2021)) could prevent retraining of
the same models. In the current state of our code, the
evolutionary algorithm, upon converging, can con-
tinue training the same architectures until the speci-
fied number of generations is completed. This is due
to the limited range of the search space and in some
cases can even result in overflows, where variable val-
ues exceed the defined range of 1 to 20.
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