
An Approach for Automatic Bidirectional Mapping Between Data
Models and RDF-S

Aissam Belghiat a
LaRIA Laboratory, University of Jijel, 18000 Jijel, Algeria

Keywords: RDF, RDF-S, UML, MDA, Transformation.

Abstract: RDF and RDF-S are the normative language for describing web resource information in the context of the
Semantic Web. Constructing RDF-S from scratch is a painful task, and deriving them from existing data
sources became an important research problem. Furthermore, updating and evolving established RDF-S
documents is another problem which must be taken into account. UML is widely applied to data modeling in
many application domains. Building RDF-S from existing UML models is a promising technique that will
facilitate elaboration of RDF-S models. Moreover, mapping RDF-S to UML will allow their intuitive updating.
Thus, this work proposes an approach for mapping UML to RDF-S and RDF-S to UML. The translation
makes the data modeled in UML class diagrams available for the Semantic Web and vice versa. The aim is
facilitating building and evolving RDF-S documents using UML and vice versa.

1 INTRODUCTION

In the last decade, the Semantic Web has made giant
steps to become a reality. It is an extension of the
current World Wide Web by making the information
available in it treatable by the machine. The aim is to
constitute an environment in which data could be
shared and reused across application, enterprise, and
community boundaries. The W3C (World Wide Web
Consortium) (W3C, 2004), which is the organization
in charge of evolution of Semantic Web, has proposed
many recommendations to promote common data
formats and exchange protocols on the Web,
fundamentally the RDF (Resource Description
Framework) (W3C, 2014a) and the RDF-S (RDF
Schema) (W3C, 2014b). In fact, RDF and RDF-S are
the normative language recommended by the W3C to
describe the Web resource information and their
semantics.

RDF-S in a key language in Semantic Web. It is
used to annotate web resources in order to enable their
access by machines. In spite of its adoption and its
growing acceptance, RDF-S remains a new
technology that most information resources still did
not make their mapping to this new technology for
different reasons. Actually, building RDF-S from
scratch is a quite hard task. Therefore, how to build

a https://orcid.org/0000-0002-5968-609X

RDF-S from existing information resources is still a
research problem. The conceptual diagrams for a
specific domain, developed in the context of software
development, constitute an important and useful
source of information for RDF-S documents.

UML (Unified Modeling Language) (OMG,
2017) should help in this direction. It is a standardized
language for visualizing, specifying, building and
documenting all the aspects and artifacts of a software
system. It could give effective solutions by allowing
already existing resources modeled in this language
to be reachables by transforming their data models
represented in Class Diagrams to RDF-S. The MDA
(Model Driven Architecture) (OMG, 2014) states
how to do such transformation.

We intentionally do such mapping due to the
observed convergence between the two formalisms,
as already discussed in sources such as (Chang,
1998). In fact, UML and RDF-S comprise some
components which are similar in several aspects, such
as: classes, associations, properties, packages, types,
and instances although their different aims.

This paper aims at providing an approach to
simplify the development of RDF-S files by
transforming UML models to RDF-S and vice versa.

Mapping UML to RDF-S allows avoiding
building from scratch and takes advantage of the

258
Belghiat, A.
An Approach for Automatic Bidirectional Mapping Between Data Models and RDF-S.
DOI: 10.5220/0012952700003825
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Web Information Systems and Technologies (WEBIST 2024), pages 258-265
ISBN: 978-989-758-718-4; ISSN: 2184-3252
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

flexibility and clarity of UML models to simplify the
task. The inverse operation, i.e. from RDF-S to UML,
allows getting updating and evolving existing RDF-S
models easily by making the changes on graphical
and intuitive UML models and return back to RDF-S.

The rest of the paper is organized as follows. In
Section 2, related works are presented. In Section 3,
some preliminaries are exposed. In Section 4, the
proposed approach is explained. Section 5 presents an
example to understand the approach. Section 6
finishes the paper and gives some perspectives.

2 RELATED WORK

Many approaches have been proposed to build RDF-
S from data sources.

Since the relational model for databases is
employed widely for storing, treating and retrieving
data in almost all domains, there were multiple
attempts to make a bridge to RDF-S documents. In
(Korotkiy and Top, 2004) the authors have proposed
an approach for converting and integrating of
relational-style information resources into RDF-S-
aware systems. In (Krishna, 2006), The author made
a semantic retaining mapping of relational databases
to RDF. In (Sequeda et al., 2012), relational
databases with their integrity constraints are directly
mapped to RDF and OWL with information and
query preservation. In (Mallede, 2013), the authors
have presented algorithms to map entirety relational
databases by adopting a methodology that not only
map the data but also the domain specific knowledge.
In (Michel, 2013), a detailed review of seventeen
RDB-to-RDF translations has done, considering the
projects that developed operational tools. Other less
spread databases, such as object-oriented databases,
are also used to automatically construct RDF-S as in
(Shan et al., 2023), which presented formal mapping
rules and a tool named OODB2RDF to validate the
method. Also, (Tong, 2018) did the same work by
carrying more thorough correspondences.

Other approaches tried to take advantage of the
widespread adopting of XML in representing web
documents and transform them to RDF-S in order to
allow their semantic annotation. In (Klein, 2002), a
procedure for translating XML documents into RDF
statements via an RDF-S specification is presented to
permit semantic annotation of XML documents via
external RDF schema ontologies. In (Thuy et al.,
2007), the authors present another procedure for
transforming valid XML documents into RDF by
using RDF schema vocabularies, the integrity of the
structure and meaning of the original XML

documents while transforming are ensured. In
(Kumar and Babu, 2013), the authors give a study of
RDF characteristic, then they proposed an approach
for constructing RDF models from well formatted
valid XML document. In (Riaz et al., 2019), a method
is proposed for generating RDF metadata from legacy
software models by transforming UML models into
RDF triples through XML parsing.

Other approaches could be recalled such as in
(Amato et al., 2008), where the authors made an
approach to build RDF from semi-structured legal
documents. Also, in (Han et al., 2008) where the
authors presented the rules of constructing RDF from
spreadsheets.

Regarding establish correspondences between the
UML and the Semantic Web, multiple studies have
been done trying to make the bridge between them as
in (Cranefield, 2001) (Baclawski, 2001) (Guizzardi,
2004), while the mapping between UML and RDF-S
was done in (Chang, 1998), (Cranefield, 2000), (Kim,
2005), (Belghiat and Bourahla, 2012), (Tong et al.,
2014), and (Lieber et al., 2022).

The main contribution of our approach in
comparison with the previous presented works is that
it enables the automatic mapping from UML to RDF-
S and also the inverse translation, i.e. from RDF-S to
UML.

3 PRELIMINARIES

3.1 UML Class Diagram

The class diagram models the internal structure of a
system. It allows showing the entities of a system and
their relations. A Class diagram is essentially
composed of classes and relations. A class is used to
represent the entities of a system. It uses attributes to
represent data and operations to represent treatments.
A relation is used to represent a link between two
classes. It can be: an association, a dependence, an
inheritance, or a class association.

Nowadays, Class diagrams are becoming quite
important and unavoidable in data modeling in many
application domains. Actually, they are used in an
application domain to describe the static structure of
its information.

3.2 RDF-S

RDF-S (Resource Description Framework Schema)
(W3C, 2014b) is an extension of the RDF vocabulary
(W3C, 2014a) that provides a data-modeling
vocabulary for RDF data. Both formalisms are

An Approach for Automatic Bidirectional Mapping Between Data Models and RDF-S

259

normative languages and they are used to describe the
web resource information. RDF-S is composed
essentially of classes and properties intended to
structure RDF resources which are saved in a triple
store to reach them later with the query language
SPARQL (W3C, 2013). A class denoted “rdfs:Class”
is used to represent groups of resources, and a
member of a class is known as an instance of the class.
The classes are themselves resources, and they are
described using RDF properties. There is a difference
between a class and the set of its instances, named the
class extension. In fact, two different classes may
have the same set of instances. Properties are
instances of the class “rdf:Property”, they describe a
relation between subject resources denoted by
“rdfs:domain” and object resources denoted by
“rdfs:range”.

3.3 MDA and Tree Transformation

MDA consists of using models in all phases of
development and proceeding to their refinements and
enrichments by successive transformations. This
latter can be defined by a set of rules that allows
passing from a high abstract model (meta-model) to
another, by defining for each source elements their
equivalents among the target elements. Tree
transformation is a very common used technique to
realize Model transformations.

Tree transformation is usually based on XML
documents, where the information contained in an
XML type document is structured in a tree-like
manner. Thus, the XML transformation, in other
words the transition from one XML type document to
another, is actually an operation that transforms a tree
into another tree structure. It consists of using XSLT
(W3C, 2017a) or XQuery (W3C, 2017b) to do the
transformation. The original document is called the
source document, while the document resulting from
the transformation is called the target document as
indicated in Fig. 1.

Figure 1: XML tree transformation.

3.3.1 XMI

XMI (XML Metadata Interchange) (OMG, 2015) is
an OMG standard for model representation created to

define a way to represent a model as an XML
document in order to exchange these models between
modeling tools. Since most models are graphical and
abstract entities, OMG has decided to standardize
XMI to provide a concrete representation for models.

3.3.2 XSLT

XSLT (eXtensible Stylesheet Language for
Transformations) (W3C, 2017a) is a language that
allows the transformation of XML documents. The
transformation consists of either a modification of an
XML and save the changes, or a transformation into
another type of documents (e.g. HTML and PDF).

In our case, we use XSLT for transforming a XMI
file that represents the source model, to another XML
file that represents the target model. The source
model is the Class diagram while the target model is
the RDF-S document. The Papyrus (Lanusse et al.,
2009) editor is used to edit UML Class diagrams and
derives their corresponding XMI file. Papyrus uses a
light format of XMI named “.uml”.

4 THE APPROACH

In our approach, we build rules for the transformation
of a class diagram to an RDF-S model and vice versa.
For the implementation of these rules we develop a
XSL style sheet that translates a serialized class
diagram into an RDF-S model described in XML.

This transformation is done by an automatic
generation of the RDF-S file represented in
RDF/XML format from an UML class diagram edited
in Papyrus. This solution is implemented in Eclipse
(Eclipse, 2004), it takes place in several steps (see
Fig.2):

Figure 2: Architecture of the mapping UML, RDF-S.

• Graphical description of class diagrams in
Papyrus using a file “.umldi”.

Class
diagrams

Papyrus

XMI

XSLT RDF-S

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

260

• Saving class diagram: it is automatically
saved in two files “.umldi” and “.uml”.

• Using an XSLT processor, we apply an
XSL style sheet (UMLtordfs.xsl) on the file
“.uml” to transform it into an RDF-S file
represented in RDF/XML.

4.1 The Transformation Rules

UML and RDF-S both are modeling languages where
UML is used for object modeling and the RDF-S is
used for knowledge representation. By quick
observation of these two languages one can note the
existence of a certain number of common notions
between Class diagram and RDF-S: classes, relations,
properties, etc. Nevertheless, there are several
significant differences between these concepts.

We present here in Table 1, in a general way, the
correspondences between UML class diagrams and
RDF-S models.

Table 1: Class diagrams and RDF-S correspondances.

Class Diagram RDF-S

Package Resource
Class Class

Class, Abstract class,
Interface

Class

Inheritance Sub-class
Attribute Property

Dependency, Realization Property
Association, Property
Association,
Aggregation,
Composition

Property

Role Sub- property

4.2 The Proposed XSL Style Sheet

To succeed transforming each class diagram edited in
the UML editor of Papyrus to RDF-S, we propose an
XSL style sheet composed of a number of templates.
It should be noted that a template can contain several
transformations and we present only templates related
immediately to the transformation rules (we do not
present the templates that help to realize the
transformation rules). We take extracts from them:

Template 1: Package Transformation
 Name: get_package
 Role: This Template (see Fig.3) allows you to

transform a package into an <rdfs: resource>
element. The name of the resource is the name

of the package, and the template takes that
name from the name of the diagram package.

Figure 3: Template for the package transformation.

Template 2 : Classes, Interfaces and Generalizations
Transformation

 Name: get_class
 Role: This Template (see Fig.4) is used to

transform a class from the class diagram to an
RDF-S class. This class takes its name from the
class of the source diagram. In this Template,
we check if this class is: a specialization of
another class, connected by an association,
connected by a class-association, or realizes an
interface. If so, we proceed to treatments
according to the transformation rules. The
excerpt below shows the transformation of the
class, interface and inheritance. This
transformation is carried out by browsing the
path of the source tree and generating the
appropriate RDF-S code.

Figure 4: Template for class treatment.

Template 3: Transformation of Attributs
 Name: get_attribute
 Role: This Template (see Fig.5) is used to

transform an attribute of a class in the class
diagram to an RDF-S property. This property
takes the name of the class concatenated with
the name of the attribute. The domain and the
image are respectively defined from the class
to the type of the attribute. The code excerpt
below shows the transformation of the attribute

An Approach for Automatic Bidirectional Mapping Between Data Models and RDF-S

261

in case the attribute type is a primitive type; the
choice of the RDF-S data type is done by
calling the template "choice_datatype" which
returns us the adequate data type.

Figure 5: Template for the transformation of attributes.

Template 4: Transformation of dependances
 Name: get_dependency
 Role: This template (see Fig.6) transforms a

class diagram dependency relationship to an
RDF-S property. This property takes the name
'DependencyN', 'UseN', where N is the
sequential number of the dependency, the
realization, or the use relationship. The domain
and the image are defined according to the
direction of the dependency. The piece of code
below shows browsing the source diagram to
get dependences and transforming them.

Figure 6: Transformation of dependences.

Template 5: Transformation of Associations,
Aggregations, Compositions

 Name: get_association
 Role: This Template (see Fig.7) allows

transforming an association, an aggregation, or
a composition of the class diagram to an RDF-
S property. The transformations are performed
according to the transformation rules defined
previously. This object property takes as its
name the name of the diagram association.

Template 6: Transformation of Association’s
Roles

 Name: get_role
 Role: This template (see Fig.7) allows

transforming a role of an association of the
class diagram to an RDF-S property. It defines
at the same time that property as a sub-property
of the association property. Thus the code
below shows browsing the source diagram and
generating the properties when finding roles.

Figure 7: transformation of roles.

Main Template: Call to Templates

We used the templates as functions and we call them
as shown in Fig.8:

Figure 8: call to templates.

Inverse Transformation
The inverse translation, i.e. from RDF-S to UML is
done according to the same rules but in the inverse
direction.
Template 1: Transformation of the RDF-S class

 Name: get_classe
 Role: This template (see Fig.9) allows

transforming an RDF-S class to a UML class.
The name of the UML class is obtained from
the name of the class RDF-S.

Figure 9: Transformation of a class RDF-S to XMI.

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

262

5 CASE STUDY

To demonstrate how our proposed approach is used
for automatic bidirectional mapping between UML
Class Diagrams and RDF-S models, we provide a
case study about transforming a Course Management
System of a university. The latter illustrates the
effectiveness of our approach.

An IT department of a university needs to
transform their existing UML-based course
management system into an RDF-S model to
integrate with the Semantic Web for better data
sharing and reuse. Additionally, any updates made in
the RDF-S model should be easily incorporated in the
source UML diagrams.

5.1 UML Class Diagram

The course management system of the university is
already modeled using UML Class Diagrams, as we
suppose that the conceptual design of this system is
made by UML. Fig.10 shows a simplified version of
the class diagram. It mainly includes the following
elements:

Figure 10: UML class diagram of the system.

• Course: Represents a course provided by
the university. Attributes include courseID,
courseName, credits, and department.

• Student: Represents a student enrolled at
the university. Attributes include studentID,
studentName, and email.

• Enrollment: Represents the enrollment of
a student in a course. Attributes include
enrollmentID and grade.

• Instructor: Represents an instructor
teaching a course. Attributes include
instructorID, instructorName, and email.

• Department: Represents a department
within the university. Attributes include
departmentID and departmentName.

• Prerequisite: Represents a prerequisite
relationship between courses. Attributes
include prerequisiteID.

5.2 Transformation to RDF-S

Using our approach, the UML class diagram is
transformed into an RDF-S model. The
transformation rules defined in XSLT stylesheet are
applied to the UML class diagram saved as an XMI
file. The tool EasyRdf (EasyRdf, 2012). is used to
validate the derived RDF-S file. The full resulting
RDF-S model (in RDF/XML format) is available at
the open repository DOI: 10.5281/zenodo.13850481.

1. Course Class Transformation:
o UML Class: Course
o RDF-S Class: <rdfs:Class rdf:ID="Course">
o Attributes: Transformed into RDF properties.
2. Student Class Transformation:
o UML Class: Student
o RDF-S Class: <rdfs:Class rdf:ID="Student">
o Attributes: Transformed into RDF properties.
3. Enrollment Class Transformation:
o UML Class: Enrollment
o RDF-S Class: <rdfs:Class rdf:ID="Enrollment">
o Attributes and relationships: Transformed into

RDF properties.
4. Instructor Class Transformation:
o UML Class: Instructor
o RDF-S Class: <rdfs:Class rdf:ID="Instructor">
o Attributes: Transformed into RDF properties.
5. Department Class Transformation:
o UML Class: Department
o RDF-S Class: <rdfs:Class rdf:ID="Department">
o Attributes: Transformed into RDF properties.
6. Prerequisite Class Transformation:
o UML Class: Prerequisite
o RDF-S Class: <rdfs:Class rdf:ID="Prerequisite">

An Approach for Automatic Bidirectional Mapping Between Data Models and RDF-S

263

o Attributes: Transformed into RDF properties.
Recently, the university has become a member of

a consortium of institutions that share course
information using Semantic Web technologies.
Consequently, the course management system needs
to maintain both UML class diagrams for internal
development and RDF-S models for interoperability
with external systems.

The head of the consortium curriculum committee
is responsible for updating the course information to
include the most recent curriculum changes. They
collaborate with the IT departments to guarantee
these updates are accurately represented in the
system.

They have the need to add a new attribute
semester to the "Course" class to indicate the
semester in which a course is delivered. This change
is essential for curriculum planning and student
scheduling. Thus, they update the RDF-S model with
the new semester attribute using a web-based
ontology editor, which the curriculum committee
utilizes to manage the shared course data.

Using our approach, the IT department can
guarantee that the UML class diagram, used for
internal development, received this new attribute
which preserve consistency between the RDF-S
model and the UML diagrams.

The new updated RDF-S is changed by adding the
property "semester" as follows:

1. Course Class Transformation:
o UML Class: Course
o RDF-S Class: <rdfs:Class rdf:ID="Course">
o Attributes: <rdf:Property rdf:ID="courseID">

 <rdf:Property rdf:ID="courseName">
 <rdf:Property rdf:ID="credits">
 <rdf:Property rdf:ID="semester">

The updating RDF-S model (in RDF/XML
format) is available at the open repository
DOI: 10.5281/zenodo.13850481.

To reflect this change in the UML class diagram
using our approach, the RDF-S model is parsed and
the corresponding UML class diagram in XMI format
is updated to include the "semester" attribute. The
detailed of the XMI file is available at the open
repository DOI: 10.5281/zenodo.13850481.

This scenario illustrates the constant need for
bidirectional transformation between UML and RDF-
S. When domain experts like the head of consortium
curriculum committee make updates to the RDF-S
model, these changes must be reflected back in the
UML class diagrams to ensure consistency across the
system. This bidirectional capability guarantees that
both the internal design documents and the shared

semantic models remain aligned, facilitating accurate
system development, maintenance, and
interoperability.

6 CONCLUSION

We have presented in this paper an approach for the
automatic bidirectional mapping between UML Class
Diagrams and RDF-S models. The construction of
RDF-S documents is based on the annotation of
business models expressed in UML class diagrams,
and the inverse transformation is devoted to enable
updating existing RDF-S file to allow their evolution.
To do so, we have used a style sheet for transforming
UML models, expressed in XMI, to RDF-S
documents represented in RDF/XML and vice versa.
Eclipse's Papyrus UML editor is used to describe
UML class diagrams and generates their XMI files,
and the XSLT processor is used to process the written
style sheet in order to perform the transformation.

In future work, we plan to add other advanced
elements of UML Class diagrams to the framework.
This will provide rich models that meet the needs of
users. We intend also to add other diagrams that could
offer other information to the tool.

REFERENCES

Amato, F., Mazzeo, A., Penta, A., & Picariello, A. (2008).
Building RDF Ontologies from Semi-Structured Legal
Documents. In Proceedings of the International
Conference on Complex, Intelligent and Software
Intensive Systems (pp. 997-1002).

Baclawski, K., Kolar, M., Kogut, P., et al. (2001).
Extending UML to support ontology engineering for
the Semantic Web. In Proceedings of the Fourth
International Conference on UML (pp. 342-360).

Belghiat, A., & Bourahla, M. (2012, March). Transformation
of UML models towards OWL ontologies. In 2012 6th
International Conference on Sciences of Electronics,
Technologies of Information and Telecommunications
(SETIT) (pp. 840-846). IEEE.

Belghiat, A., & Bourahla, M. (2012). An approach based
AToM3 for the generation of OWL ontologies from
UML diagrams. International journal of computer
applications, 41(3).

Belghiat, A., & Bourahla, M. (2012). From UML Class
Diagrams to OWL Ontologies: A Graph Transformation
Based Approach. In ICWIT (pp. 330-335).

Chang, W. W. (1998). A Discussion of the Relationship
Between RDF-Schema and UML. Retrieved from
http://www.w3.org/TR/NOTE-rdf-uml/

Cranefield, S., Haustein, S., & Purvis, M. (2000). UML
Based Ontology Modeling for Software Agents. In

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

264

Proceedings of the Ontologies in Agent Systems
Workshop (pp. 21-28).

Cranefield, S. (2001). UML and the Semantic Web. In
Proceedings of the first Semantic Web Working
Symposium (pp. 113-130).

EasyRdf. (2012). http://www.easyrdf.org/
Eclipse Foundation. (2004). https://www.eclipse.org/
Guizzardi, G., Wagner, G., & Herre, H. (2004). On the

Foundations of UML as an Ontology Representation
Language. In Proceedings of the 14th International
Conference Engineering Knowledge in the Age of the
Semantic Web (pp. 47-62).

Han, L., Finin, T. W., Parr, C. S., Sachs, J., & Joshi, A.
(2008). RDF123: From spreadsheets to RDF. In
Proceedings of the 7th International Semantic Web
Conference (pp. 451-466).

Kim, J. S., Yoo, C. S., Lee, M. K., & Kim, Y. S. (2005).
Object Modeling of RDF Schema for Converting UML
Class Diagram. In Proceedings of the International
Conference on Computational Science and Its
Applications (pp. 31-41).

Klein, M. C. A. (2002). Interpreting XML Documents via
an RDF Schema Ontology. In Proceedings of the 13th
Database and Expert Systems Applications (pp. 889-
894).

Korotkiy, M., & Top, J. L. (2004). From Relational Data to
RDFS Models. In Proceedings of the 4th International
Conference on Web Engineering (pp. 430-434).

Krishna, M. (2006). Retaining Semantics in Relational
Databases by mapping them to RDF. In Proceedings of
the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology
(pp. 303-306).

Kumar, B. H., & Babu, M. S. P. (2013). Study and
Constructing RDF model for a well formatted Valid
XML document. International Journal on Computer
Science and Engineering, 5(7), 648-652.

Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C.,
Gerard, S., Tessier, P., ... & Terrier, F. (2009). Papyrus
UML: an open source toolset for MDA. In Proc. of the
Fifth European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA-
FA 2009).

Lieber, S., De Meester, B., Heyvaert, P., Brückmann, F.,
Wambacq, R., Mannens, E., ... & Dimou, A. (2022).
Visual notations for viewing RDF constraints with
UnSHACLed. Semantic Web, 13(5), 757-792.

Mallede, W. Y., Marir, F., & Vassilev, V. T. (2013).
Algorithms for mapping RDB Schema to RDF for
Facilitating Access to Deep Web. In Proceedings of the
First International Conference on Building and
Exploring Web Based Environments (pp. 32-41).

Michel, F., Montagnat, J., & Faron Zucker, C. (2013). A
survey of RDB to RDF translation approaches and
tools. Report, 1-24.

OMG. (2014). Model Driven Architecture (MDA).
https://www.omg.org/mda/

OMG. (2015). XML Metadata Interchange (XMI).
https://www.omg.org/spec/XMI/About-XMI/

OMG. (2017). Unified Modeling Language (UML),
Superstructure,v2.5. https://www.omg.org/spec/UML/
About-UML/

Poveda-Villalón, M., Chávez-Feria, S., Carulli-Pérez, S., &
García-Castro, R. (2023). Towards a UML-based
notation for OWL ontologies. In VOILA@ ISWC (pp.
18-27).

Riaz, A., Bajwa, I. S., & Ali, M. (2020). Automatic RDF,
Metadata Generation from Legacy Software Models. In
Intelligent Technologies and Applications: Second
International Conference, INTAP 2019, Bahawalpur,
Pakistan, November 6–8, 2019, Revised Selected
Papers 2 (pp. 385-397). Springer Singapore.

Sequeda, J. F., Arenas, M., & Miranker, D. P. (2012). On
directly mapping relational databases to RDF and
OWL. In Proceedings of the 21st World Wide Web
Conference (pp. 649-658).

Shan, J., Lu, J., Chen, X., Yan, L., & Ma, Z. (2023). A
Semantics-preserving Approach for Extracting RDF
Knowledge from Object-oriented Databases. Journal of
Web Engineering, 22(2), 197-220.

Thuy, P. T. T., Lee, Y. K., Lee, S., & Jeong, B. S. (2007).
Transforming Valid XML Documents into RDF via
RDF Schema. In Proceedings of the International
Conference on Next Generation Web Services Practices
(pp. 35-40).

Tong, Q., Zhang, F., & Cheng, J. (2014). Construction of
RDF(S) from UML class diagrams. Journal of
Computing and Information Technology, 22(4), 237-
250.

Tong, Q. (2018). Mapping object-oriented database models
into RDF (S). IEEE Access, 6, 47125-47130.

World Wide Web Consortium.(2004) https://www.w3.org/
World Wide Web Consortium. (2013). SPARQL 1.1

Overview.https://www.w3.org/TR/sparql11-overview/
World Wide Web Consortium. (2014a). RDF 1.1 concepts

and abstract syntax. https://www.w3.org/TR/rdf/
World Wide Web Consortium. (2014b). RDF Schema 1.1.

https://www.w3.org/TR/rdf-schema/
World Wide Web Consortium. (2017a). XSL

Transformations (XSLT) Version 3.0.
https://www.w3.org/TR/2017/REC-xslt-30-20170608/

World Wide Web Consortium. (2017b). XQuery 3.1: An
XML Query Language. https://www.w3.org/TR/
2017/REC-xquery-31-20170321/.

An Approach for Automatic Bidirectional Mapping Between Data Models and RDF-S

265

