
A Model Driven-based Approach for Converting Feature Models of
Software Product Lines to OWL Ontologies

Aissam Belghiat a, Mohamed Boubakir b, Ghada Chouikh and Djamila Kemmache
LaRIA Laboratory, University of Jijel, 18000, Jijel, Algeria

Keywords: Software Product Line, Feature Model, OWL, Ontology, Verification.

Abstract: Software product line engineering has gained recognition as a promising approach to developing families of
software systems. A Software Product Line (SPL) is a set of software products that share and support a set of
Features. The variabilities and commonalities of the features of a software product line are modeled by Feature
models (FM). The lack of formal semantics for these models has hindered their analysis and verification, and
consequently their correction and evolution. The use of Ontology Web Language (OWL) ontologies should
solve the problem. They accurately allow capturing the interrelationships between features in a FM, and to
proceed, thereafter, to the analysis and the verification of these models by using the formal semantics of the
OWL which is based on the description logic. In this paper, we propose to convert Feature Models into OWL
ontologies using Model Driven Engineering (MDE). We have firstly proposed numerous semantic rules to
enable the transformation. After that, meta-modeling and model transformation are used to implement and
automate the rules. Specialized MDE tools are used (e.g. Acceleo, Eclipse modeling framework). The
Protéger tool is used for reasoning on the generated OWL ontology. A case study is given to show the
effectiveness of our approach.

1 INTRODUCTION

Product Line Engineering (PLE) (Van der Linden,
2002) is an approach in software development that
aims to enhance efficiency by reusing and managing
both commonalities and variabilities across a line of
products. By using this method, companies can create
new products faster while keeping costs and time to
market as low as possible.

An SPL (Software Product Line) (Clements,
2002) is a set of software products that share and
support a set of Features. Feature models (FMs) are
widely used to represent the commonalities and
variabilities within a product line (She, 2011) (Rubin,
2012). Feature models offer a clear way to represent
features and their relationships, which facilitates the
configuration of various product variants (Acher,
2013). However, these diagrams, often used for
specifying these features, have some shortcomings
regarding their formal structure (Batory, 2005). In
fact, because they lack strict formal semantics,
conducting automated analysis and reasoning can be

a https://orcid.org/0000-0002-5968-609X
b https://orcid.org/0000-0003-3890-4913

difficult. This lack of formality may result in issues
related to ensuring the consistency, completeness,
and correctness of the feature model.

Several approaches have been proposed both by
researchers and practitioners to overcome this
limitation by formalizing Feature Models, such as
using formal languages (Batory, 2005). These efforts
are aimed to improve the reliability of Feature model
and enable better whole complex system analysis and
verification.

The formal language OWL (Ontology Web
Language) (W3C, 2012) is a central component in the
context of Semantic Web and ontologies. OWL
provides a powerful and rich framework for
representing and reasoning about knowledge, which
facilitates machine-understandable representations
and interoperability. Transforming Feature Models to
OWL Ontologies is a promising path to help the
practitioners of Software Product Lines creating
formal ontologies, which capture the semantics of
features, relationships, and variabilities within a
product line.

266
Belghiat, A., Boubakir, M., Chouikh, G. and Kemmache, D.
A Model Driven-Based Approach for Converting Feature Models of Software Product Lines to OWL Ontologies.
DOI: 10.5220/0012953000003825
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Web Information Systems and Technologies (WEBIST 2024), pages 266-273
ISBN: 978-989-758-718-4; ISSN: 2184-3252
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

By combining the intuitiveness of Feature
Modeling, and the expressiveness and formal power
of OWL ontologies, software engineers can achieve a
higher level of precision and accuracy in capturing
the variability and structure of software product lines.
This integration enables automatic analysis,
reasoning, and validation of product configurations,
leading to improved quality assurance and decision-
making processes within PLE projects.

In this study, we use the potential of Model
Driven Engineering (Schmidt, 2006) to develop an
approach for automatic converting of FMs to their
corresponding OWL ontologies. The approach firstly
proposes multiple transformation rules that
semantically relate FMs to OWL. These rules are then
implemented using a model-driven technique to
generate a tool that fully automates the transformation
process.

The Eclipse modeling project (Eclipse Modeling
Project, 2024) is adopted to realize this approach.
EMF (Budinsky, 2004) is used to meta-model FM
models. This enables generating editors for such
models. Afterwards, Acceleo (Acceleo, 2023) is used
to implement the proposed semantics rules to allow
the generation of OWL ontologies which are then
uploaded in special tools for analysis such as Protégé
(Protéger, 2023).

The rest of the paper is as follows. Section 2
presents the context of the work. Section 3 explains
the methodology adopted to develop the approach.
Section 4 applies the approach on a real example.
Section 5 presents related work. Section 6 concludes
the paper.

2 CONTEXT

2.1 FM

In PLE, Feature models are widely used to model
common and variable features of an SPL and
relationships between them. They are originally
proposed as part of FODA approach (Kang, 1990). A
FM is a set of features hierarchically structured into
multiple levels of detail (Batory, 2005). It represents
all possible products of a software product line in a
single model (Benavides, 2007). A FM is usually
represented by a feature diagram and a set of
constraints.

A feature diagram is a hierarchical tree diagram
that shows features and the relationships between
them. It has a root feature that describes the model
and all its characteristics (Ghabach, 2018). This
model is represented by tree structures where each
node is a Feature and each edge can have four

possible values known as parental relationships that
are (Benavides, 2007): Mandatory, Optional,
alternative, and Or. Constraints are defined in the
feature model to ensure that the products created are
valid and correct. Constraints that are defined in
FODA are (Kang, 1990): Requires and Excludes.

An example of a Feature Model is shown in
figure9.

2.2 OWL

The web ontology language (OWL) (W3C, 2012) is
precisely an ontology language that adds more
vocabulary to describe properties and classes unlike
RDF and RDF-S that just provides classes and
properties. OWL offers advanced semantic modeling
capabilities, for example relations between classes
(e.g. disjointness), cardinality (e.g. "exactly one"),
equality, richer typing of properties, characteristics of
properties (e.g. symmetry), and enumerated classes
(W3C, 2012). OWL provides three sub-languages
with increasing expressiveness respectively: OWL
Lite, OWL DL and OWL Full. We use OWL DL
(Description Logic) because it provides more
expressiveness while maintaining computational
completeness and decidability.

An example of an OWL ontology is given in
figure 11.

2.3 MDE

Model Driven Engineering (MDE) (Schmidt, 2006) is
an approach for software development that relies on
models. Models are expressed using modeling
languages and they are conform to meta-models. A
meta-model is itself a model that defines the structure
of modeling languages. A meta-model is composed
of an abstract syntax which describes the elements of
the models and their relationships, and a concrete
syntax that describes the representation of the
elements defined by the abstract syntax (it can be
graphic, textual or mixed). Meta-models themselves
must be conformed to a Meta-Meta-Model. It is a
model that describes a meta-modeling language, i.e.
the modeling elements required for modeling
language definition.

To realize a transformation between models using
MDE, we need to define meta-models for the source
and target models. Then a model transformation,
which consists on defining corresponding semantics
rules between those meta-models is developed to
enable automatic mapping of input models to output
models.

A Model Driven-Based Approach for Converting Feature Models of Software Product Lines to OWL Ontologies

267

A

a1 a2 a3

A

a1 a2 a3

3 METHODOLOGY

3.1 Converting Rules

Feature models and OWL ontologies have shown
several similarities. To enable the transformation of
Feature models into their corresponding OWL
ontologies, we have proposed multiple rules. Indeed,
we have studied the characteristics of both
formalisms and we have come up with multiple
semantics rules, which allow converting each Feature
model into its equivalent OWL ontology. Table 1
summarizes the transformation rules.

Table 1: The proposed transformation rules.

Feature
Diagram

OWL Ontology

 Feature

Owl Class
< owl:Class rdf:about=”A ”>
</owl:Class>

A FD feature is transformed into an OWL class. The name of
the class will be the same as the name of the feature.

Mandatory

<owl:Class rdf:ID=”B”>
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource=”#Has[A/]”/>
<owl:cardinality
rdf:datatype=”http://www.w3.org/2001
/XMLSchema#nonNegativeInteger”>
1
</owl:cardinality>
<owl:onClass rdf:resource=”#[A/]”/>
</owl:Restriction>
</owl:equivalentClass>
<owl:FunctionalProperty rdf:about=”#HasB” />

A mandatory feature in a feature diagram defines a restriction
on the property ”Has[B/]” with a cardinality of 1. This indicates
that instances of this class must have exactly one value for the
property. We have specified ”hasB” to be a functional property,
which means that every ”A” can have at most one ”B”.

Optional

<owl:Class rdf:ID=”B”>

<rdfs:subClassOf rdf:resource=”B” />

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=”#HasB” />

<owl:maxCardinality

rdf:datatype=”http://www.w3.org/2001

/XMLSchema#nonNegativeInteger”>

1

</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

An Optional feature is represented as a max cardinality
restriction that specifies the maximum number of instances that
can be connected to a property in a given class.

Alternative

 <rdfs:subClassOf>

 <owl:Class>

 <owl:complementOf

 rdf:resource=”#[a1/]”/>

 </owl:Class>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Class>

 <owl:complementOf

 rdf:resource=”#[a2/]”/>

 </owl:Class>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Class>

 <owl:complementOf

 rdf:resource=”#[a3/]”/>

 </owl:Class>

 </rdfs:subClassOf>

An alternative feature is transformed to a complement of.

Or

 <owl:Class rdf:about=”A”>

 <owl:unionOf

 rdf:parseType=”Collection”>

 <owl:Class rdf:about=”#a1” />

 <owl:Class rdf:about=”#a2” />

 <owl:Class rdf:about=”#a3” />

 </owl:unionOf>

 </owl:Class>

 <owl:Class rdf:about=”a1”>

 <owl:disjointWith

 rdf:resource=”#[a2/]”/>

 <owl:disjointWith

 rdf:resource=”#[a3/]”/>

 </owl:Class>

”unionOf” construct is utilized within the context of a parent
feature connected through an ”or” relation. For each individual
sub-feature of this parent, a specification is made to ensure its
disjointness from the other sub-features.

Requires

<owl:Class rdf:about=”A”>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=”#HasB”/>

<owl:allValuesFrom rdf:resource=”#B” />

</owl:Restriction>

</rdfs:subClassOf>

Required feature is represented by AllValuesFrom restriction
over hasB.

 A

A

B

A

B

A

B

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

268

Table 1: The proposed transformation rules. (cont.)

Excludes

<rdfs:subClassOf>

<owl:Class>

<owl:complementOf>

<owl:Class>

<owl:intersectionOf

rdf:parseType=”Collection”>

<owl:Restriction>

<owl:onProperty rdf:resource=”#Has[A/]”/>

<owl:allValuesFrom rdf:resource=”#[A/]”/>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource=”#Has[B/]”/>

<owl:allValuesFrom rdf:resource=”#[B/]”/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:complementOf>

</owl:Class>

</rdfs:subClassOf>

Exclude class relationship is transformed to a class that’s the
opposite of the combined intersection of two subclasses,
indicating exclusion based on certain feature connections.

3.2 Automating the Conversion of FM
into OWL

The approach proposed is to use the techniques of
MDE technology to build a tool that transforms
automatically Feature models into their
corresponding OWL ontologies. Figure 1 shows the
process of this mapping which consists on several
steps:
 Step 1: We initially proposed a meta-model for

the Feature models. We used Ecore as the meta-
modeling language, which is part of the Eclipse
Modeling Framework (EMF).

 Step 2: We utilize EMF to generate a
hierarchical editor for the proposed Feature
models. This editor enables us to describe our
Feature models easily.

 Step 3: This process is a Model2Text type
transformation. The objective here is to
generate an OWL ontology from the Feature
model established in the previous phase. For
this phase, we used Acceleo as the
transformation language.

 Step 4: this step consists of uploading the
generated OWL specification into the Protege
tool. Once the description is accepted, we can
use all the services offered by this tool,
especially simulation, verification, etc.

Figure 1: General framework of the proposed approach.

Step 1: Meta-Modeling
We have proposed a meta-model for Feature models.
This meta-model allows for the creation of valid
models conform to this type of diagram. Figure 2
illustrates the structure of this meta-model.

Figure 2: The meta-model of Feature diagram.

The proposed meta-model is composed of classes
and relations. We have proposed the following
classes for metamodeling Feature diagrams:
 FeatureDiag: This class represents a Feature

diagram. It has a key attribute named "name".
 Feature: This class represents the main element

of the diagram. It has a key attribute "name".
 Relation: This class represents the relations

between features. It has four types Mandatory,
Optional, Or and Alternative.

 The "Or" relationship between a group of
sub-features and the parent feature indicates
that one or more features from the group can
be selected in a product when the parent
feature is selected.

 The "Alternative" relationship between a
parent feature and a group of sub-features
indicates that only one sub-feature can be
selected in a product when the parent feature
is selected.

 The "Optional" relationship between a parent
feature and a sub-feature indicates that the
sub-feature can be selected in a product or not
when the parent feature is selected.

 The "Mandatory" relationship between a
parent feature and its sub-feature indicates
that the presence of the parent feature
necessitates the presence of the sub-feature in
the product.

A

B

A Model Driven-Based Approach for Converting Feature Models of Software Product Lines to OWL Ontologies

269

Step 2: Generation of the Modeling Environment
In this step, we generate a hierarchical editor for the
defined meta-model using EMF as indicated in Figure
3. This editor is used to describe different Feature
Models.

Figure 3: The generated editor for Feature models.

Step 3: Transformation
In this step, we implement the transformation rules
proposed above. The automated process generates the
"generatedFM.owl" file, including an OWL language
ontology represented in RDF/XML format. This file
is stored on hard drive, encapsulating structured
knowledge comprising concepts, entities, and
relationships from the OWL ontology. The Acceleo
code is used to realize the mapping according to the
rules in Table 1.

Due to space constraints, we only present a
screenshot that illustrates the transformation.

Figure 4 depicts the transformation process using
Acceleo of a feature of an FD into an OWL class, with
special attention to exclusion constraints. Each
feature is represented as an OWL class. In situations
where a feature is subject to an exclusion constraint,
it will be transformed into the negation intersection of
classes.

The other rules in Table 1 are implemented
similarly using templates in Acceleo. This latter has
really helped us in realizing the correspondences
between FMs meta-model and OWL ontology.

Figure 4: Extract of transformation code of a Feature model
into OWL part 1.

Step 4: The derived OWL specification is
automatically launched in Protégé to do analysis.
Section 4.2 explains more this step.

4 EXAMPLE

4.1 Mobile Phone System Description

The mobile phone system outlined here is a well-
known example frequently referenced in SPL
literature. It is a flexible system that enables users to
select various features according to their preferences.
This system comprises multiple features and sub-
features. The feature model for this mobile phone
system is organized as follows (see Figure 5):

1. Root Feature: Mobile Phone - This feature
represents the mobile phone itself, it is used as the
foundation for all other features.
2. Sub-Feature: Calls (mandatory) - This represents
essential functionalities related to calls like making
and receiving phone calls.
3. Sub-Feature: Screen (mandatory) - Related to the
display of the mobile phone, providing different
screen options.
 Sub-Feature: Basic - Represents a basic screen

option.
 Sub-Feature: Color - Represents a color screen

option.

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

270

 Sub-Feature: High Resolution - Represents a
high-resolution screen option.

Note: Following the alternative type relationship,
only one screen option can be selected.
4. Sub-Feature: GPS (optional) - Represents the
functionality of the Global Positioning System of the
mobile phone.
5. Sub-Feature: Media (optional) - Represents
multimedia features of the mobile phone.
 Sub-Feature: Camera - Represents the

functionality of camera.
 Sub-Feature: MP3 Player - Represents the

functionality of MP3 music player.
Note: Following the or-type relationship, if the Media
sub-feature is selected, either one or both options
(Camera and/or MP3 Player) can be selected.

The feature model has also two constraints:
1. GPS excludes Basic - This means that a mobile
phone cannot have both GPS and a basic screen.
2. Camera requires High Resolution - This indicates
that a mobile phone with a camera must also have a
high-resolution screen.

To ensure a valid configuration, these constraints
must be respected when selecting specific features.
By adhering to the constraints and choosing the
appropriate features, various configurations of mobile
phones can be developed to meet the needs of users.

Figure 5: The Mobile Phone case study.

Using our approach, we specify this Feature
model in our tool as shown in Figure 6.

Figure 6: Feature model of the mobile phone system.

Afterwards, we use our Acceleo code
"My.feature2owlontology" to generate the
corresponding OWL ontology "owlontology" as
illustrated in Figure 7.

Figure 7: An extract of the generated OWL ontology.

4.2 Analysis of the Ontology

We consider here two illustrative configurations. The
first configuration adheres to all the constraints
outlined in the feature model showed in the previous
diagram. In contrast, the second configuration
disregards the alternative relationship, deviating from
the established constraints within the model.

C1 = {Mobile Phone, Calls, Screen, High
Resolution, Media, Camera, MP3}

C2 = {Mobile Phone, Calls, Screen, Basic, High
Resolution, Media, Camera}

For the first configuration, Figure 8 show the lack
of response of the reasoner due to the absence of
inconsistencies.

Figure 8: First configuration absence of inconsistences.

A Model Driven-Based Approach for Converting Feature Models of Software Product Lines to OWL Ontologies

271

In contrast, the second configuration, Figure 9
clearly illustrate how the responsiveness of reasoner
is affected by the presence of inconsistencies.

The inconsistency in the reasoning process is
attributed to the exclusion rule that was not respected.
Specifically, in this scenario, the "high-resolution"
class was intended to exclude the "basic" class,
indicating that a device cannot have both high-
resolution and basic classes simultaneously.
However, in practice, both classes were assigned to
the same device, leading to a violation of this
exclusion rule.

Figure 9: Second configuration inconsistences.

5 RELATED WORK

Several studies in the literature have focused on
modeling with FMs and formalizing them for
verification purpose. This section reviews essential
research contributions.

The authors in (Benavides, 2005a) have proposed
a theoretical framework for reasoning on Feature
Models. They extended FMs to capture some non-
functional properties and they use Constraint
Satisfaction Problems (CSP) to reason on them in
(Benavides, 2005b). In (Trinidad, 2023), the same
authors improve their work by proposing an
automation of the framework to analyzing stateful
feature models. The main idea behind the work is that
they viewed the issue as an automated reasoning
problem solvable through CSP. Using CSP is great,
but it needs to add more information to enable correct
analysis operations, which become computationally
expensive and even impossible for complex models.
In (Zhang, 2013), the authors proposed not to use CSP
because of exponential complexity and instead use
contradictory feature relationships behind the errors.
In (Karatas, 2013), the authors introduce a mapping
from extended feature models to constraint logic
programming over finite domains.

In (Santoro, 2012), an approach has been
proposed to construct and manage consistent feature

models, crucial for managing valid software product
lines using OWL. The approach is specific to
multimedia domain. The research in (Duran-Limon,
2015) introduces OntoAD, a new system for
automatically creating product architectures from a
base design. Unlike existing methods focused on
features, OntoAD tackles the challenge of automating
architecture customization. It uses clever reasoning to
generate transformation rules based on selected
features, in the purpose of simplifying the process and
reduce errors. The study in (Bhushan, 2018) proposes
a method to find and explain errors (inconsistencies)
in software product designs (feature models). While
other methods can detect these errors, they often don't
explain why they happen. The authors' approach
translates feature models into a FOL predicate-based
ontology and uses rules to pinpoint both the errors and
their causes in clear language. The authors in (Wang,
2007) present an approach to modeling and verifying
feature diagrams using OWL ontologies and the
FaCT++ reasoner, however they do not provide
automated support which hinders their real-word
utilization.

Other works can be cited since they tried to use
MDE to automatic generation of OWL ontologies
from conceptual models for the purpose of reasoning,
such as the work done in (Belghiat and Bourahla,
2012).

In contrast to these contributions, we have aimed
to develop a complete framework based on model
driven engineering to transform automatically FMs to
OWL ontologies and launching the verification
process immediately. The MDE allows advanced
complex semantics transformations based on meta-
models. In our work, we have focused on features and
their relationships, and we have used OWL DL to
allow automatic analysis while maintaining
decidability using the well-known Protégér tool.

6 CONCLUSION

In this paper, we have proposed a model-driven based
approach for transforming Feature Models into their
corresponding OWL ontologies. We have started by
proposing a meta-model for FMs to generate an
adequate environment for their modeling. Next, we
have formulated a set of transformation rules. These
rules are designed to bridge the gap between FMs
meta-model and OWL ontologies. Then, we have
implemented these transformation rules to enable
automatic generation of an output OWL ontology
from an input valid Feature model. To realize the
mapping, we have used a bench of tools. EMF and

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

272

Ecore have been used in meta-modeling FMs, and
Acceleo to generate the corresponding OWL code in
RDF/XML format.

To guarantee the quality and consistency of the
generated ontologies, we thoroughly checked them
using the Protégé tool. This step is very important to
ensure that these OWL ontologies are accurate and
coherent. Furthermore, Protégé is used for more
advanced reasoning on those ontologies.

In future work, we plan to expand our
transformation capabilities to cover more advanced
aspects of Feature models, for example to include
non-functional properties. This expansion will enable
us to tackle more complex challenges, enhancing the
utility of our approach.

REFERENCES

Acceleo. https://eclipse.dev/acceleo/. Visited 09-2023.
Acher, M., Baudry, B., Heymans, P., Cleve, A., Hainaut, J.

L. (2013). Support for reverse engineering and
maintaining feature models. In VaMoS’13 Proceedings
of the seventh international workshop on variability
modelling of software-intensive systems.

Batory, D. (2005). Feature models, grammars, and
propositional pormulas. In SPLC’05 Proceedings of the
9th international conference on software product lines,
Springer, pp.7–20.

Belghiat, A., & Bourahla, M. (2012, March).
Transformation of UML models towards OWL
ontologies. In 2012 6th International Conference on
Sciences of Electronics, Technologies of Information
and Telecommunications (SETIT) (pp. 840-846).
IEEE.

Belghiat, A., & Bourahla, M. (2012). An approach based
AToM3 for the generation of OWL ontologies from
UML diagrams. International journal of computer
applications, 41(3).

Belghiat, A., & Bourahla, M. (2012). From UML Class
Diagrams to OWL Ontologies: A Graph
Transformation Based Approach. In ICWIT (pp. 330-
335).

Benavides, D., Trinidad, P., Ruiz-Cortés, A. (2005).
Automated reasoning on feature models.
In International Conference on Advanced Information
Systems Engineering (pp. 491-503). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Benavides, D., Trinidad, P., Ruiz-Cortés, A. (2005). Using
Constraint Programming to Reason on Feature Models.
In SEKE (Vol. 5, pp. 677-682).

Benavides, D. (2007). On the automated analysis of
software product lines using feature models: A
framework for developing automated tool support. PhD
thesis, Universidad de Sevilla.

Bhushan, M., Goel, S., Kaur, K. (2018). Analyzing
inconsistencies in software product lines using an

ontological rule-based approach. Journal of Systems
and Software, 137, 605-617.

Budinsky, F. (2004). Eclipse modeling framework: a
developer's guide, Addison-Wesley Professional.

Clements, P., Northrop, L. (2002). Software product lines.
Addison-Wesley. Boston.

Duran-Limon, H. A., Garcia-Rios, C. A., Castillo-Barrera,
F. E., Capilla, R. (2015). An ontology-based product
architecture derivation approach. IEEE Transactions
on Software Engineering, 41(12), 1153-1168.

Eclipse Modeling Project, https://eclipse.dev/modeling/.
Visited 04-2024.

Ghabach, E. (2018). Supporting Clone-and-Own in
software product line. PhD thesis, COMUE Université
Cote d'Azur.

Kang, C. K., Cohen, S., Hess, J. A., Novak, W. E., Peterson,
A. S. (1990). Feature Oriented Domain Analysis
(FODA) Feasibility Study, Software engineering
institute.CMU/SEI-90-TR-021.

Karatas, A. S., Oğuztüzün, H., Doğru, A. From extended
feature models to constraint logic programming.
Science of Computer Programming, vol. 78, no. 12, pp.
2295–2312.

Protéger. https://protege.stanford.edu/. Visited 09-2023.
Rubin, J., Chechik, M. (2012). Combining related products

into product lines. In FASE’12 Proceedings of the 15th
international conference on fundamental approaches to
software engineering, ACM, pp.285–300.

Santoro, G., Pino, C., Spampinato, C. (2012). A feature
model configuration for multimedia applications by an
OWL-based approach. In 2012 Federated Conference
on Computer Science and Information Systems
(FedCSIS) (pp. 263-268). IEEE.

Schmidt, D. C. (2006). Model-driven
engineering. Computer-IEEE Computer Society-
, 39(2), 25.

She, S., Lotufo, R., Berger, T., Wąsowski, A., Czarnecki,
K. (2011). Reverse engineering feature models. In
ICSE’11 Proceedings of the 33rdinternational
conference on software engineering, ACM, pp.461–
470.

Trinidad, P., Ruiz-Cortés, A., Benavides, D. (2013).
Automated analysis of stateful feature models. Seminal
Contributions to Information Systems Engineering: 25
Years of CAiSE, 375-380.

Van der Linden, F. (2002). Software product families in
europe: the esaps & café projects. IEEE software, vol.
19, no. 4, pp. 41–49.

Wang, H. H., Li, Y. F., Sun, J., Zhang, H., Pan, J. (2007).
Verifying feature models using owl, Journal of web
semantics, vol. 5, no. 2, pp. 117–129.

W3C OWL Working Group. (2012). OWL 2 Web ontology
language document overview, W3C Recommendation
11 December, https://www.w3.org/TR/owl2-
overview/, 2nd edition.

Zhang, G., Ye, H., Lin, Y. (2013). An approach for
validating feature models in software product
lines. Journal of Software Engineering, 7(1), 1-29.

A Model Driven-Based Approach for Converting Feature Models of Software Product Lines to OWL Ontologies

273

