
Semantic-Aware Validation in Model-Driven Requirements Engineering
Using SHACL

Artan Markaj1 a, Felix Gehlhoff1 b and Alexander Fay2 c

1Institute of Automation Technology, Helmut-Schmidt-University Hamburg, Hamburg, Germany
2Chair of Automation, Ruhr University Bochum, Bochum, Germany

Keywords: Ontologies, Semantic Requirements Engineering, SHACL, Traceability, Validation.

Abstract: The development and implementation of technical system concepts require validation to ensure that stake-
holder needs, goals, and requirements are fulfilled. Model-driven requirements engineering focuses on the
automatic transformation of requirements into concepts and can be supported by ontologies for semantically
unambiguous specifications. However, automated and systematic requirements validation using ontologies
remains a challenging process. In this contribution, we propose a concept consisting of a systematic work-
flow, algorithm, and templates for semantic-aware validation in model-driven requirements engineering using
Shapes Constraint Language, a formal language for constraint-based ontology validation. The workflow be-
gins with the definition of validation use cases from a requirements model. These use cases are modeled as
ontologies using the same metamodel as the requirements. By using Shapes Constraint Language templates,
shapes can be generated and enriched with use case-specific information. Lastly, engineering concepts are
validated against the requirements by using the defined shapes.

1 INTRODUCTION

Validation is one of the final steps in systems engi-
neering (before operation), ensuring that developed
and verified systems meet stakeholder requirements,
goals and needs (ISO/IEC/IEEE, 2015). However,
this process step can be cumbersome without trace-
ability between the developed systems and their cor-
responding requirements. Traceability links between
requirements and developed concepts enable require-
ments validation (Cleland-Huang et al., 2012). With
model-driven requirements engineering, an automatic
model transformation and analysis of requirements
are supported by high-level abstractions (Moreira
et al., 2022). Ontologies can be employed to ensure
that the modeled and transformed requirements are
semantically unambiguous. An ontology consists of
a vocabulary of terms and an associated specification
of their meaning (Uschold, 1998).

Ontologies serve as formalized and structured rep-
resentations of knowledge (Guarino et al., 2009).
This is particularly useful within a specific domain,

a https://orcid.org/0000-0003-1589-9584
b https://orcid.org/0000-0002-8383-5323
c https://orcid.org/0000-0002-1922-654X

enabling clear communication among stakeholders
(e.g., in requirements engineering). A distinction can
be made between stakeholders’ implicit and explicit
knowledge. Implicit knowledge is tied to individuals
as knowledge carriers (i.e., experts), making commu-
nication and formalization more challenging. Explicit
knowledge, by contrast, can be formalized, communi-
cated, and stored (VDI-Kompetenzfeld Information-
stechnik, 2009). Furthermore, the knowledge repre-
sented in ontologies can be divided into a TBox and
an ABox. The former contains general knowledge
about a domain (modeled as classes), while the lat-
ter contains specific knowledge represented for a par-
ticular use case of the domain (modeled as instances)
(Baader et al., 2008).

Knowledge related to requirements, such as as-
sumptions, is often undocumented and therefore re-
mains implicit (Maalej and Thurimella, 2013). Ad-
ditionally, in requirements engineering, knowledge
from various stakeholders and sources is integrated,
making ontologies suitable for knowledge represen-
tation (Dobson and Sawyer, 2006). Ontologies in
requirements engineering have advantages in terms
of reducing ambiguities, inconsistencies, and incom-
pleteness in requirements (Dermeval et al., 2016).
Ontologies can be used to describe and organize re-

Markaj, A., Gehlhoff, F. and Fay, A.
Semantic-Aware Validation in Model-Driven Requirements Engineering Using SHACL.
DOI: 10.5220/0012985200003838
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 2: KEOD, pages 191-198
ISBN: 978-989-758-716-0; ISSN: 2184-3228
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

191

quirements (Dobson and Sawyer, 2006). This facil-
itates the creation of a common terminology across
different stakeholders (Riechert et al., 2007). They
are applicable at TBox level (e.g., a meta-model
describing requirements engineering concepts) and
ABox level (e.g., project-specific requirements speci-
fications) (Siegemund et al., 2011).

Various methods can be used to validate sys-
tems against requirements. Testing is a suitable val-
idation technique that can be applied at this stage
(ISO/IEC/IEEE, 2015). In model-driven require-
ments engineering, ontologies can assist in formal-
izing and analyzing requirements during the testing
stage. Semantic validation enables requirements to be
implemented correctly and to be interoperable (see,
for example, the semantic validation of the correct
use of specifications from industrial standards (Ba-
reedu et al., 2023)). However, a systematic and au-
tomated semantic validation requires the generation,
execution, and analysis of test cases. Despite recent
advancements, there remains a gap in generating, ex-
ecuting, and analyzing test cases in a manner that is
aligned with the formal semantics of ontologies. Ad-
dressing this issue would streamline the validation
process, reduce human error, and enhance the consis-
tency of requirement verification in complex systems.
Thus, the primary research question addressed in this
paper is:

How can systematic and automated semantic
validation be achieved in the testing phase of
model-driven requirements engineering using

ontologies?

The paper is structured as follows: Section 2 intro-
duces the Shapes Constraint Language (SHACL) as
a possible solution for semantic-aware validation and
explains its limitations as well as the research goal
for this contribution. Section 3 provides an overview
of related approaches to semantic requirements engi-
neering and validation. In section 4 a workflow, an
algorithm, and exemplary templates are introduced.
Section 5 provides a prototypical implementation of
the algorithm. In Section 6 an exemplary application
for a robot concept is shown. Lastly, section 8 con-
cludes the paper with a summary and outlook.

2 SEMANTIC-AWARE
VALIDATION WITH SHACL

The Shapes Constraint Language (SHACL) (W3C,
2017) helps tackle several challenges in using on-
tologies for model-driven requirements validation. It
provides a formal language for defining constraints,

thereby enabling the validation ontology instances.
This is achieved by defining SHACL shapes that rep-
resent the expected structure of the ontology, which
is automatically validated. It is designed to be ex-
pressive while defining complex constraints and con-
ditions (e.g., cardinality constraints). In contrast to
Object Constraint Language (OCL) (OMG, 2014),
which is designed for Unified Modeling Language
(UML) models, SHACL can be used for ontologies.
As a result, it integrates with semantic reasoning and
is specifically tailored for use in semantic web ap-
plications. SHACL is applicable in iterative devel-
opment stages, where requirements may change and
evolve, allowing for early detection of requirement vi-
olations by concepts.

Although SHACL provides a suitable language for
ontology validation, it lacks a systematic approach
for applying it to semantic requirements validation
in model-driven requirements engineering. Thus, the
objective of this contribution is to provide a concept,
consisting of a workflow, algorithm, and templates
for model-driven and semantic-aware requirements
validation by using automatically generated SHACL
shapes. Achieving systematic and automated valida-
tion would lead to greater consistency in engineer-
ing, saving time and reducing errors caused by iter-
ation loops in testing. This leads to higher quality
in the requirements models and better communication
among stakeholders due to a common understanding
of requirements. The templates can be used across
different projects thus promoting standardization and
reusability. Lastly, the concept enables traceability
from modeling to testing requirements.

3 RELATED WORK

Semantic web technologies such as OWL, SPARQL,
and SWRL for modeling, querying, and reasoning
have been applied in requirements engineering for
several years (see, for example, (Mayank et al., 2004;
Runde and Fay, 2011)). As emphasized in section
1, potential uses of ontologies include requirement
representation and structuring as well as the appli-
cation of domain knowledge (Dobson and Sawyer,
2006). Mappings between meta models play a cru-
cial role in avoiding semantically inconsistent models
(Saeki, 2010). Various ontologies have been created
for semantic requirements engineering, for example,
SWORE (Riechert et al., 2007), CORE (Jureta et al.,
2009) or GORO (Bernabé et al., 2019). These mod-
els focus on the semantic representation of require-
ment concepts and represent a fundamental base for
semantic validation.

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

192

Several systematic methods for creating semantic
requirements models exist. In (Veleda and Cysneiros,
2019; Guizzardi et al., 2023), methods for ontology-
based requirements elicitation are presented. Boiler-
plates can be used to integrate natural language com-
ponents into ontology-based requirements engineer-
ing (as shown in (Antoniou and Bassiliades, 2024)).
Using semantic web technologies such as SWRL,
rules can be used to check completeness and con-
sistency in requirements models (Siegemund et al.,
2011). In (Banerjee and Sarkar, 2022) validation rules
for validating consistency, unambiguity, and trace-
ability in requirements specifications are proposed.
However, the approach has predefined rules that can
be adapted to other requirement meta-models only
with considerable effort. Furthermore, the rules vali-
date requirements in requirements specifications and
not developed concepts against requirements.

In conclusion, the semantic validation of system
concepts against requirements has not yet been fully
addressed. While the analysis, specification, and elic-
itation of requirements are supported by ontologies,
suitable methods for validation are lacking (Valaski
et al., 2016). First, semantic validation requires defi-
nition and preferably automated generation of valida-
tion test cases. Furthermore, a common terminology
must be established to automatically validate system
concepts against requirements. Finally, a method for
semantic validation must be independent of any spe-
cific requirements meta-model to be applicable across
different domains.

4 CONCEPT

The concept presented in this contribution consists of
a workflow for the systematic generation and appli-
cation of test cases for validating requirements using
SHACL, an algorithm for automatically generating
SHACL shapes, and exemplary templates to support
the algorithm.

4.1 Workflow

Figure 1 depicts the workflow for semantic-aware
validation in model-driven requirements engineering.
The steps have specific input artifacts (e.g., an on-
tology) and specific output artifacts (e.g., SHACL
shapes).

4.1.1 Definition of Validation Use Cases

The first step of the workflow focuses on identifying
validation requirements by formulating validation use

8

Präsentationstitel | Datum | Name | Institut für Automatisierungstechnik | Helmut-Schmidt-Universität Hamburg

Definition of
Validation Use Cases

Modeling of
Validation Use Cases

Generation of
SHACL Shapes

Engineering
Concept

Situations

Start

End

Validated
Concept

SituationsValidation
Use Cases

Req.
Ontology
(ABox)

Validate Concept using
SHACL Shapes

Situations
SituationsSHACL

Shapes

Req.
Ontology

(TBox)

SHACL
Constraints
Templates

Validation
Ontology
(ABox)

Figure 1: Workflow for semantic-aware validation of engi-
neering concepts against requirements in model-driven re-
quirements engineering.

cases. The input for this step is a requirements ontol-
ogy, specifically the ABox part, which encapsulates
concrete instances and their relationships within the
domain. Exemplary instances could be Robot Arm
Length with a certain value, or Maximum Pressure
required for a specific process step. This requirements
ontology was created at the very beginning of an en-
gineering process.

Analyzing this ontology identifies various repre-
sentative scenarios and conditions under which sys-
tem validation is necessary. These validation use
cases will guide the subsequent phases of the valida-
tion process. The result of this step is a comprehen-
sive set of validation use cases that capture the differ-
ent facets of the validation requirements.

For improved documentation, validation use cases
can be described using textual descriptions or semi-
formal means of description such as SysML use case
diagrams. In model-driven engineering, SysML fa-
cilitates consistent modeling of use cases down to
requirements. Extending this conventional model-
driven engineering with ontologies, as pursued in our
approach, allows for semantic validation of require-
ments.

4.1.2 Modeling of Validation Use Cases

After identifying and defining validation use cases,
the focus shifts to their formal representation through
the creation of a validation ontology. This step uses

Semantic-Aware Validation in Model-Driven Requirements Engineering Using SHACL

193

the TBox part of the same requirement ontology as
input, which specifies the terminology and concep-
tual framework. This ensures that requirements and
validation use cases are described using the same vo-
cabulary and semantics. Using the same TBox allows
for automated analyses without the need for mapping
between the two different TBoxes. Furthermore, this
allows people from the same domain to model the re-
quirements and subsequently test their fulfillment.

An exemplary validation use case could be a func-
tionality test, for example, validating if a robot can
reach objects within a certain range in a certain rotat-
ing angle. This is validated by checking the parame-
ters Robot Arm Length and Rotation Angle.

This validation ontology, which contains specific
instances of validation use cases, serves as a struc-
tured model that encapsulates relevant concepts, re-
lationships, and constraints necessary for automatic
validation.

4.1.3 Generation of SHACL Shapes

In the next step, the validation process continues with
the generation of SHACL shapes that encode valida-
tion constraints derived from the validation ontology.
The input for this step consists of pre-defined SHACL
constraint templates that contain the constraints to
be applied during the validation process. Utiliz-
ing the information encoded in the validation ontol-
ogy, SHACL shapes are generated automatically. A
generic template with placeholders is used to gener-
ate the SHACL shapes. Specific information is then
retrieved from the validation ontology and inserted
into the placeholders of the shapes. These shapes for-
mally represent the validation criteria, facilitating an
automated validation process. The output of this step
consists of a comprehensive set of SHACL shapes.

4.1.4 Validate Concepts Using SHACL Shapes

In the final step of the workflow, engineering concepts
are validated against the constraints encoded in the
SHACL shapes. The input for this step consists of the
engineering concept or artifact to be validated. Using
the generated SHACL shapes, the automated valida-
tion of the engineering concept to the specified vali-
dation criteria can be performed. The output of this
step is a validated concept that indicates the extent
to which it conforms to predefined validation require-
ments. The output includes a validation report and
results indicating which constraints are not fulfilled.
Similar to test case validation in software engineer-
ing, the expected results can be checked. If the test
fails, the engineering concept does not meet the de-
sired criteria.

4.2 Algorithm

To generate SHACL shapes from a validation on-
tology, an algorithm is required to perform this
step automatically. Algorithm 1 illustrates possible
pseudocode for an automatic generation of SHACL
shapes.

Algorithm 1: Generation of SHACL Shapes from
Ontologies.

Input : Validation Use Cases in Validation
Ontology V ∈ V
SHACL Constraints Templates

T ∈ T
Output: SHACL Shapes S ∈ S

1 M – Create or Import Mapping between
OWL and SHACL concepts

2 foreach V ∈ V do
3 tV – Identify all Triples in V
4 foreach tV ∈V do
5 Select Template T for tV based on M
6 Insert T into S
7 Insert Triple-specific information

from tV into T
8 end
9 Append S to S

10 end
11 return S

As shown in Figure 1, the step Generation of
SHACL Shapes takes validation uses cases from the
validation ontology V ∈ V and SHACL constraints
templates T ∈ T as inputs, returning SHACL shapes
S ∈ S . First, mappings between OWL and SHACL
must be created (Line 1). These mappings can also
be predefined and imported. The mappings spec-
ify which concepts from OWL (and RDFS) can be
mapped to SHACL concepts (e.g., owl:Class to
sh:targetClass). For each validation use case, all
triples (subject-predicate-object or subject-predicate-
literal) tV are identified by querying the ontology us-
ing SPARQL (Lines 2-3). The triples specify the
constraints that the engineering concept must satisfy
to pass the validation test. For each triple, suitable
templates are selected and inserted into the SHACL
shape. These templates are enriched with triple-
specific information (Lines 4-8). The selection of
a suitable template is based on the provided map-
pings. Assume there is a triple stating that a robot
arm should cover an angle of 270 degrees around its
axis. If the mapping includes relational operators with
SHACL property pair constraints (e.g., sh:equals),
suitable templates containing these constraints can be

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

194

searched for. The triple-specific information (subject
= RobotArmLengthAngle, predicate = hasValue, lit-
eral = 270°) is inserted intro the template. Exemplary
templates will be provided in the upcoming subsec-
tion. The shape is appended to the set of all SHACL
shapes, which are returned at the end (Line 9-11).

Various approaches for the transformation into
SHACL shapes exist, including (Pandit et al., 2018;
Cimmino et al., 2020; Delva et al., 2021). In this con-
tribution, we consider using the mapping from (Cim-
mino et al., 2020), because it automatically extracts
SHACL shapes from ontologies and provides a suit-
able open-source implementation. The mappings be-
tween OWL and SHACL are predefined and embed-
ded into Algorithm 1.

4.3 Templates

To generate SHACL shapes from OWL ontologies,
templates for specific constraint types are used. These
templates define a structure in which the triples are
embedded and enhanced with additional restrictions.

An initial set of templates for SHACL constraints
is developed. One example of a constraint is the Car-
dinality Constraint, which enforces that a certain el-
ement (subject) may be connected to more, fewer, or
exactly a specified number of other elements or liter-
als (objects) via an ObjectProperty or DatatypeProp-
erty (predicate). The corresponding code is shown in
Listing 1. The ABox-specific content of the valida-
tion ontology is integrated into the placeholders (rep-
resented by the brackets < >).
e x : C a r d i n a l i t y C o n s t r a i n t S h a p e

a sh:NodeShape ;
s h : t a r g e t C l a s s e x :<CLASS> ;
s h : p r o p e r t y [

s h : p a t h e x :<PROPERTY> ;
sh :maxCount <INTEGER> ;
sh :minCoun t <INTEGER> ;
s h : s e v e r i t y s h : V i o l a t i o n ;
] .

Listing 1: Cardinality Constraint Template.

Another example is the Negation Constraint,
which specifies conditions under which certain ele-
ments should not hold. Listing 2 provides the corre-
sponding code. It specifies that a specific class should
not have one or more properties of a particular type.
If this occurs, the concept violates the requirement.
e x : N e g a t i o n C o n s t r a i n t S h a p e

a sh:NodeShape ;
s h : t a r g e t C l a s s e x :<CLASS> ;
s h : p r o p e r t y [

s h : n o t [
s h : p r o p e r t y [

s h : p a t h e x :<PROPERTY> ;
sh :minCoun t 1 ;

] ;
] ;

] ;
s h : s e v e r i t y s h : V i o l a t i o n .

Listing 2: Negation Constraint Template.

These templates enable the automated creation of
SHACL shapes and allow them to be populated with
content from the ontology.

5 IMPLEMENTATION

Figure 2 shows a simplified architecture of the pro-
totype implementation that supports the generation
of SHACL shapes and the execution of the al-
gorithm. The components of the SHACL Valida-
tor Tool are illustrated in the architecture. The
Methods component describes the methods that are
used to import, manipulate, and execute SHACL
shapes. A total of five methods are employed.
First, the importMappingTable() method imports
the Mapping table from an Excel file. The two on-
tologies, Requirements Ontology and Validation
Ontology, are also imported. The getAllTriples()
method is used to retrieve all relevant triples in the
validation ontology using SPARQL. The two methods
selectSHACLTemplate and fillSHACLTemplate
are executed to select SHACL templates and param-
eterize them using content from the triples. The re-
sult is a SHACL shape, which can be executed using
executeSHACLShape.

A mapping table is used to establish a relationship
between OWL concepts and SHACL concepts. Based
on this table, the triples can be examined to determine
which SHACL templates are relevant and how the
template parameterization is carried out. Currently,
the selection of a suitable SHACL shape is performed
manually, but it should be implemented automatically
in the future development of the prototypical imple-
mentation. For this selection, the mapping table from
(Cimmino et al., 2020) will be utilized. Table 1 shows
an excerpt of the mapping table.

The prototypical implementation is realized in
Python. In particular, the library owlready21 is used
to import, query, and manipulate ontologies. Fur-
thermore, re2 is used to replace text snippets in the
SHACL templates with the contents of the triples us-
ing regular expressions. Finally, pyshacl3 can be used
to execute the SHACL shapes directly in Python. This
is not yet available in the current prototypical imple-
mentation but will be included in future work.

1https://pypi.org/project/owlready2/
2https://docs.python.org/3/library/re.html
3https://pypi.org/project/pyshacl/

Semantic-Aware Validation in Model-Driven Requirements Engineering Using SHACL

195

SHACL Validator

+ importMappingTable(filePath)
+ getAllTriples(valOntology)
+ selectSHACLTemplate(triples,

mappingTable)
+ fillSHACLTemplate(templatePath,

shapePath, template, triple)
+ executeSHACLShape(shape)

Methods

+ initiate()

Setup

call

SHACL Templates

import

return
result

ex:CardinalityConst
raintShape
 a sh:NodeShape ;
 sh:targetClass
ex:<CLASS> ;
 sh:property [
 …
] .

ex:CardinalityConst
raintShape
 a sh:NodeShape ;
 sh:targetClass
ex:<CLASS> ;
 sh:property [
 …
] .

ex:CardinalityConst
raintShape
 a sh:NodeShape ;
 sh:targetClass
ex:<CLASS> ;
 sh:property [
 …
] .

Mapping

import

Requirements Ontology

Validation Ontology

OWL Concepts

SHACL Concepts

Figure 2: Logical software architecture illustrating the components of the SHACL Validator Tool.

Table 1: Excerpt from mapping table showing exemplary mappings between OWL constructs and SHACL constructs (Cim-
mino et al., 2020).

OWL Construct Topic OWL Construct SHACL Construct SHACL Construct Topic

Class definition owl:Class sh:NodeShape,
sh:targetClass

Logical Constraint Con-
straints

Cardinality owl:Class,
rdfs:subClassOf,
owl:Restriction,
owl:cardinality,
owl:onProperty

sh:NodeShape,
sh:property,
sh:PropertyShape,
sh:maxCount,
sh:minCount

Cardinality Constraints

Object Property defini-
tion

owl:ObjectProperty sh:PropertyShape,
sh:nodeKind,
sh:BlankNodeOrIRI

Value Type Constraints

...

6 EXEMPLARY APPLICATION

To illustrate the method presented in this article, we
use an exemplary application. A robotic arm is to
be configured and developed to fulfill certain require-
ments. These requirements are modeled in a require-
ments ontology.

Consider the requirement Req:Reaching-
Capability which defines the reaching capability
of a robot. It should have a value of at least 1 meter
(Req:hasValue ⩾ 1m). The validation use case
defined for this could be ”Validate if arm length of
developed robot concept is at minimum 1 meter”.

The corresponding validation ontology instance
Val:Length has a value of at least 1 meter
(Req:hasValue ⩾ 1m). It uses the same ObjectProp-
erty from the requirements ontology.

The generated SHACL shape is shown in
Listing 3. Further details, such as the tar-
get class, can be added (e.g., sh:targetClass
ex:RobotArmLength) if known.

e x : L e n g t h S h a p e
a sh:NodeShape ;
s h : p r o p e r t y [

s h : p a t h e x : h a s V a l u e ;
s h : d a t a t y p e x s d : d e c i m a l ;
s h : m i n I n c l u s i v e 1 . 0 ;
] .

Listing 3: Exemplary SHACL shape - Arm Length.

Another requirement Req:Mobility addresses
the mobility of a robot. A possible validation use case
could be ”Validate if the robot concept has six degrees
of freedom”. The corresponding validation ontology
instance Val:DegreesOfFreedom has a value of 6
(Req:hasValue = 6). The generated SHACL shape
is shown in Listing 4.
ex :DegreesOfFreedomShape

a sh:NodeShape ;
s h : p r o p e r t y [

s h : p a t h e x : h a s V a l u e ;
s h : d a t a t y p e x s d : i n t e g e r ;
s h : h a s V a l u e 8 ;
] .

Listing 4: Exemplary SHACL shape - Degrees of Freedom.

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

196

Furthermore, the robot should fulfill existing con-
nectivity requirements to be integrated into the com-
pany’s IT/OT system (Req:Connectivity). A possi-
ble validation use case could be ”Validate if the robot
is capable of connecting via OPC UA and MQTT”.
The generated SHACL shape is shown in Listing 5.
ex:OPCUAandMQTTShape

a sh:NodeShape ;
s h : p r o p e r t y [

s h : p a t h e x : h a s V a l u e ;
s h : i n (”OPCUA” ”MQTT”) ;

] .

Listing 5: Exemplary SHACL shape - Connectivity.

7 DISCUSSION

Using semantic web technologies such as SHACL for
semantic-aware validation has several implications
for model-driven requirements engineering. Formal
representations improve interoperability, traceability,
and consistency in model-driven requirements engi-
neering. However, the presented approach requires
an ontology-based modeling of requirements and en-
gineering concepts. This is still challenging, as on-
tologies are still not fully adopted in an industrial con-
text. This process can be supported by model-driven
approaches that transform ontologies into discipline-
specific data exchange formats like XML. As shown
in (Köcher et al., 2022), a mapping language and
mapping algorithm called RDFex can achieve this
transformation. We will explore how RDFex can be
integrated into the current implementation and used to
generate and enrich SHACL shapes from ontologies.

In comparison to other approaches discussed in
Section 3, we present a systematic workflow for se-
mantic validation. While requirements engineering
ontologies such as SWORE (Riechert et al., 2007),
CORE (Jureta et al., 2009), and GORO (Bernabé
et al., 2019) primarily focus on semantic representa-
tion, our approach integrates these ontologies into the
validation phase of engineering. Several approaches,
including (Veleda and Cysneiros, 2019) and (Guiz-
zardi et al., 2023), address requirements elicitation
but omit validation. In (Banerjee and Sarkar, 2022),
predefined validation rules for consistency, clarity,
and traceability in requirements specifications are
proposed. However, these rules are difficult to adapt
to other meta-models and do not validate developed
concepts against the requirements, that our approach
aims to achieve.

Two limitations of the current approach should be
addressed in future work. First, while the method
aims to support semantic validation of engineer-
ing concepts against requirements, several steps are

still performed manually, making the process time-
consuming. To fully realize the benefits of semantic-
aware validation, greater automation is essential to
improve efficiency and increase the return on mod-
eling effort. Second, scalability remains a chal-
lenge for this approach. The method has so far only
been validated on a small example, and its perfor-
mance on larger, more complex use cases has not
yet been tested. Without sufficient automation, scal-
ing to larger use cases may result in significantly in-
creased validation time, undermining the economic
viability of the approach. To address these limita-
tions, the reuse of templates and the automation of
use case modeling will be necessary. These measures
can help minimize modeling efforts and duplication
across projects. While some steps of the method al-
ready incorporate templates and partial automation,
we plan to extend these features in future work.

8 CONCLUSION

In this contribution, we presented a concept that ad-
dresses the research question by offering a solution
for systematic and automated semantic validation dur-
ing the testing phase of model-driven requirements
engineering. The approach includes a structured
workflow, algorithm, and templates specifically de-
signed for semantic-aware validation using SHACL.
The workflow comprises four consecutive steps, be-
ginning with the definition of validation use cases,
followed by their modeling as an ontology, the gen-
eration of SHACL shapes using SHACL constraints
templates, and the validation of engineering concepts.

The presented approach is still a work in progress
and currently lacks suitable evaluation. In future con-
tributions, we intend to evaluate the concept using
specific industrial examples from the process indus-
try, such as oil, gas, and water separation, where se-
mantic validation is crucial for compliance and safety.
These industrial use cases can be used to test the
scalability of the approach. Additionally, the proto-
typical implementation will be improved to support
all automated steps, including the automatic gener-
ation of SHACL shapes from existing requirements
and the integration of a user-friendly interface for a
more streamlined validation workflow. This will al-
low users to effortlessly define validation use cases,
model them as ontologies, and execute the validation
process without manual intervention.

Semantic-Aware Validation in Model-Driven Requirements Engineering Using SHACL

197

ACKNOWLEDGEMENTS

This research is funded by dtec.bw – Digitalization
and Technology Research Center of the Bundeswehr.
dtec.bw is funded by the European Union – NextGen-
erationEU.

REFERENCES
Antoniou, C. and Bassiliades, N. (2024). A tool for require-

ments engineering using ontologies and boilerplates.
Automated Software Engineering, 31(5).

Baader, F., McGuinness, D. L., Nardi, D., and Patel-
Schneider, P. F., editors (2008). The Description Logic
Handbook. Cambridge Univ. Press.

Banerjee, S. and Sarkar, A. (2022). Domain-specific re-
quirements analysis framework: ontology-driven ap-
proach. International Journal of Computers and Ap-
plications, 44(1):23–47.

Bareedu, Y., Frühwirth, T., Niedermeier, C., Sabou, M.,
Steindl, G., Thuluva, A., Tsaneva, S., and Ozkaya, N.
(2023). Deriving semantic validation rules from in-
dustrial standards: An opc ua study. Semantic Web,
15:1–38.

Bernabé, C. H., Silva Souza, V. E., de Almeida Falbo,
R., Guizzardi, R. S. S., and Silva, C. (2019). Goro
2.0: Evolving an ontology for goal-oriented require-
ments engineering. In Guizzardi, G., Gailly, F., and
Suzana Pitangueira Maciel, R., editors, Advances in
Conceptual Modeling, volume 11787, pages 169–179.
Springer International Publishing.

Cimmino, A., Fernández-Izquierdo, A., and Garcı́a-Castro,
R. (2020). Astrea: Automatic generation of shacl
shapes from ontologies. In Harth, A., Kirrane, S.,
Ngonga Ngomo, A.-C., Paulheim, H., Rula, A., Gen-
tile, A. L., Haase, P., and Cochez, M., editors, The
Semantic Web, pages 497–513. Springer International
Publishing.

Cleland-Huang, J., Zisman, A., and Gotel, O. (2012). Soft-
ware and Systems Traceability. Springer.

Delva, T., Smedt, B., Oo, S., Assche, D., Lieber, S., and
Dimou, A. (2021). Rml2shacl: Rdf generation taking
shape. Proceedings of the 11th Knowledge Capture
Conference, pages 153–160.

Dermeval, D., Vilela, J., Bittencourt, I. I., Castro, J., Isotani,
S., Brito, P., and Silva, A. (2016). Applications of
ontologies in requirements engineering: a systematic
review of the literature. Requirements Engineering,
21(4):405–437.

Dobson, G. and Sawyer, P. (2006). Revisiting ontology-
based requirements engineering in the age of the se-
mantic web. 2006.

Guarino, N., Oberle, D., and Staab, S. (2009). What is an
ontology? In Staab, S. and Studer, R., editors, Hand-
book on ontologies, International handbooks on infor-
mation systems, pages 1–17. Springer.

Guizzardi, R., Amaral, G., Guizzardi, G., and Mylopoulos,
J. (2023). An ontology-based approach to engineering
ethicality requirements. Software and Systems Model-
ing, 22.

ISO/IEC/IEEE (2015). ISO/IEC/IEEE 15288. Systems and
software engineering. System life cycle processes.
(15288).

Jureta, I. J., Mylopoulos, J., and Faulkner, S. (2009). A
core ontology for requirements. Applied Ontology,
4(3-4):169–244.

Köcher, A., Markaj, A., and Fay, A. (2022). Toward
a generic mapping language for transformations be-
tween rdf and data interchange formats. In 2022 IEEE
27th International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), pages 1–4.
IEEE.

Maalej, W. and Thurimella, A. K., editors (2013). Manag-
ing requirements knowledge. Springer.

Mayank, V., Kositsyna, N., and Austin, M. (2004). Re-
quirements engineering and the semantic web, part ii.
representaion, management, and validation of require-
ments and system-level architectures.

Moreira, A., Mussbacher, G., Araújo, J., and Sánchez, P.
(2022). Theme section on model-driven requirements
engineering. Software and Systems Modeling, 21.

OMG (2014). Object constraint language (ocl).
https://www.omg.org/spec/ocl/2.4/pdf. accessed
2024-06-13.

Pandit, H. J., O’Sullivan, D., and Lewis, D. (2018). Using
ontology design patterns to define shacl shapes. In
WOP@ ISWC, pages 67–71.

Riechert, T., Lauenroth, K., Lehmann, J., and Auer, S.
(2007). Towards semantic based requirements engi-
neering. Proceedings of the 7th International Confer-
ence on Knowledge Management.

Runde, S. and Fay, A. (2011). Software support for building
automation requirements engineering—an application
of semantic web technologies in automation. IEEE
Transactions on Industrial Informatics, 7(4):723–730.

Saeki, M. (2010). Semantic requirements engineering. In
Nurcan, S., Salinesi, C., Souveyet, C., and Ralyté, J.,
editors, Intentional Perspectives on Information Sys-
tems Engineering. Springer Berlin Heidelberg.

Siegemund, K., Thomas, E. J., Zhao, Y., Pan, J., and Ass-
mann, U. (2011). Towards ontology-driven require-
ments engineering. The 10th International Semantic
Web Conference.

Uschold, M. (1998). Knowledge level modelling: concepts
and terminology. The Knowledge Engineering Re-
view, 13(1):5–29.

Valaski, J., Reinehr, S., and Malucelli, A. (2016). Which
roles ontologies play on software requirements engi-
neering? a systematic review.

VDI-Kompetenzfeld Informationstechnik (2009). VDI
5610-1. Knowledge management for engineering -
Fundamentals, concepts, approach.

Veleda, R. and Cysneiros, L. M. (2019). Towards an
ontology-based approach for eliciting possible solu-
tions to non-functional requirements. In Giorgini, P.
and Weber, B., editors, Advanced Information Sys-
tems Engineering, pages 145–161. Springer Interna-
tional Publishing.

W3C (2017). Shapes Constraint Language (SHACL).
https://www.w3.org/TR/2017/REC-shacl-20170720/.
Accessed 2024-03-19.

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

198

