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Abstract: Misinformation, often spread via social media, can cause panic and social unrest, making its detection crucial.
Automated detection models have emerged, using methods like text mining, usage of social media user prop-
erties, and propagation pattern analysis. However, most of these models do not effectively use the diffusion
pattern of the information and are essentially black boxes, and thus are often uninterpretable. This paper pro-
poses an ensemble based classifier with high accuracy for misinformation detection using the diffusion pattern
of a post in Twitter. Additionally, the particular design of the classifier enables intrinsic explainability. Further-
more, in addition to using different temporal and spatial properties of diffusion cascades this paper introduces
features motivated from the science behind the spread of an infectious disease in epidemiology, specially from
recent studies conducted for the analysis of the COVID-19 pandemic. Finally, this paper presents the results
of the comparison of the classifier with baseline models and quantitative evaluation of the explainability.

1 INTRODUCTION

Misinformation refers to inaccurate or misleading
news that is propagated through various digital or ana-
log communication channels. Misinformation is cor-
rosive as it has a propensity to cause panic in the pop-
ulation and social unrest. Studies point out that people
refrain from spreading misinformation if they know it
to be false (Zubiaga et al., 2016). However, identify-
ing false news is non-trivial and this motivates the ef-
fort of misinformation detection. Journalists and fact-
checking websites such as PolitiFact.com can be used
to track and detect misinformation. However, their
underlying methodology is manual, thus being prone
to poor coverage and low speed. Therefore, it is nec-
essary to develop automated approaches to facilitate
real-time misinformation tracking and debunking.

Most of the previous work related to automated
misinformation detection focuses on news content,
user metadata, source credibility and propagation cas-
cades. These methods mostly do not consider or tend
to oversimplify the structural information associated
with misinformation propagation. However, the prop-
agation patterns have been shown to provide useful
insights for identifying misinformation.

A landmark study conducted on Twitter found that
the diffusion cascades of misinformation is different
from that of true information (Vosoughi et al., 2018).

Specifically, misinformation propagates significantly
farther, faster, deeper, and broader. Moreover, in a
separate recent study (Juul and Ugander, 2021) on the
same dataset used in (Vosoughi et al., 2018), the au-
thors found that these differences in diffusion patterns
on Twitter can be attributed to the “infectiousness”
of the posts (tweets). They concluded that misin-
formation is more “infectious” than true information.
While the mentioned studies provide empirical evi-
dence that misinformation can be differentiated based
on the propagation cascades and “infectiousness”, it
remains unclear how it can be properly used to create
verifiable automated detection mechanisms.

Additionally, modern AI systems solve complex
problems but often produce unexplainable results. For
misinformation detection, user trust in the model im-
pacts their view of an article’s credibility. Explain-
able AI (XAI) models produce interpretable results
(Mishima and Yamana, 2022). Previous XAI research
on misinformation detection has mainly focused on
content and social context, often overlooking propa-
gation cascades.

This motivated us to investigate this approach fur-
ther, focusing solely on diffusion patterns to identify
misinformation and provide explanations based on the
model’s intrinsic properties. In this study, we pro-
pose an ensemble misinformation detection model us-
ing spatio-temporal and epidemiological features of
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diffusion cascades with intrinsic explanation genera-
tions for users. Then, we compare the accuracy of our
proposed model against five state-of-the-art misinfor-
mation detection models. Finally, we validate the ex-
plainability of our model using quantitative metrics.

The contributions of this paper are as follows:

• Firstly, this study only uses propagation patterns
of social media posts to develop a misinformation
detection model as opposed to most prior work
which uses additional characteristics like content-
based, source based and style-based methods.

• Secondly, we propose an ensemble system for
misinformation detection by applying three clas-
sifiers, namely, K-nearest neighbour, decision tree
and multilayer perceptron (MLP). Furthermore,
the ensemble system is designed in a specific way
to always provide intrinsic explainability.

• Thirdly, this paper uses temporal and spatial prop-
erties of diffusion cascades, along with features
inspired by epidemiology, particularly insights
from recent COVID-19 studies.

The paper is structured as follows. Section 2 de-
tails the related work. Section 3 discusses the datasets
used in the study. Section 4 explains the tweet prop-
agation structures. Section 5 discusses the method-
ology to build the misinformation detection system.
Section 6 focuses on the model’s explainability. Sec-
tion 7 discusses the experimental results. Section 8
details the explainability evaluation. Finally, Section
9 concludes the paper.

2 RELATED WORK

2.1 Automatic Misinformation
Detection

Automatic misinformation detection on social media
platforms is grounded on the use of traditional classi-
fiers that detect fake news deriving from the pioneer-
ing study of information credibility on Twitter (Car-
los Castillo and Poblete, 2011). In following works
(Xiaomo Liu and Shah, 2015) (Ma et al., 2015), dif-
ferent sets of unique features were used to classify
whether a news is credible. Most of these prior works
attempted to classify the veracity of spreading news
using information beyond the text content, such as
post popularity, user credibility features, and more.
However, these studies did not take into account the
propagation structure of a post. In this paper, we
focuses on using the diffusion cascade of the posts
(tweets).

Nevertheless, some studies have investigated cap-
turing the temporal traits of a post. One study intro-
duced a time-series-fitting model (Kwon et al., 2013),
focusing on the temporal properties of a single fea-
ture – tweet volume. Another study (Ma et al., 2015)
expanded upon this model by using dynamic time se-
ries to capture the variation of a set of social context
features. In addition, another study (Friggeri et al.,
2014) characterized the structure of misinformation
cascades on Facebook by analyzing comments.

However, these studies does not effectively take
into account the relevance of the spread of misinfor-
mation to that of an infectious disease. In this study
we took motivation from the field of epidemiology
and account for the spatio-temporal features originat-
ing from the study of the spread of infectious diseases,
specifically from the recent studies conducted for the
analysis of the COVID-19 pandemic.

2.2 Explainability of Models

Approaches to explainable machine learning are
generally classified into two categories: intrinsic
explainability and post-hoc explainability. Intrin-
sic interpretability is achieved by constructing self-
explanatory models which incorporate interpretabil-
ity directly to their structures. In contrast, the post-
hoc XAI requires creating a second model to provide
explanations for an existing model which is consid-
ered as a black-box. Studies have shown that intrinsic
XAIs provide better explanations than post-hoc XAIs
(Du et al., 2018), however they have a trade-off with
accuracy. Moreover, existing XAI models for misin-
formation detection often overlook propagation statis-
tics. This motivated us to design an XAI model that
generates explanations solely from diffusion charac-
teristics of the tweet. The proposed model offers both
intrinsic explainability and high accuracy.

Nevertheless, evaluating XAI models remains cru-
cial, yet due to the nascent nature of this field, con-
sensus on explanation evaluation is lacking. A recent
survey (Mishima and Yamana, 2022) highlighted that
many XAI models lack standardized evaluation meth-
ods; they often rely on informal assessments or even
skip evaluation altogether. In this study, we use three
quantitative metrics to evaluate the explainability of
our model.

3 DATASET

For evaluation of our model we use the popular pub-
licly available datasets (Ma et al., 2017), Twitter15
and Twitter16, which have been widely adopted as
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standard data in the field of misinformation detection.
Some important characteristics of the dataset are men-
tioned in Table 1.

Table 1: Basic Statistics of the datasets.

Statistic Twitter15 Twitter16
# Users 306,402 168,659
# Tweets 331,612 204,820
Max. # retweets 2,990 999
Min. # retweets 97 100
Avg. # retweets 493 479

4 PROPAGATION STRUCTURE
REPRESENTATIONS

Propagation networks of information on social media
are represented in various ways. For this study we
employ the following two representations,

• Hop based structure

• Time based structure

4.1 Hop Based Structure

In this type of structure, the diffusion of a post is rep-
resented as a directed acyclic graph, with the root of
the tree being the source tweet and the corresponding
children being the retweets.

The advantage of using this representation lies in
its ability to readily leverage the spatial properties of
post diffusion. Additionally, this method of represen-
tation effectively captures the user-follower relation-
ship of tweets propagation in Twitter.

4.1.1 Analysis of the Representation

Figure 1a depicts a random news dissemination sam-
ple in hop based cascade representation. The source
tweet is located at the centre of the biggest cluster and
all other nodes represents the successive retweets.

The following observations were made,

• Maximum number of retweets are made directly
from the source tweet.

• Most of the graphs have at least one dense cluster
which does not include the source tweet i.e the
tree has at least one very popular retweet.

4.2 Time Based Structure

In this cascade representation, we calculate the time
delay between a retweet and its source tweet. Using
this delay, the retweet is positioned on the relevant
stack using a sampling time. The sampling time (d)

is chosen to be 60 minutes for this study. The ad-
vantage of using this representation is the ease of us-
ing the temporal properties of the diffusion of a post.
This representation effectively captures the life-cycle,
popularity of a post and the amount of interactions
accounted by the tweet over time.

4.2.1 Analysis of the Representation

Figure 1b depicts a random news dissemination sam-
ple in time based propagation representation.
Following are some observations:

• During the first couple of hours the tweet had the
farthest spread. That is, the news penetrated with
more traction in the social media.

• Most of the plots follow an approximation of
power law distribution.

Table 2: Feature Categorization.
Number Feature Type

1 Number of Nodes Spatial Feature
2 Total Diffusion Time Temporal Feature
3 Total Peaks Temporal Feature
4 Mean of timestamps delays Temporal Feature
5 Basic Reproduction Number Epidemiological Feature
6 Basic Transmission Rate Epidemiological Feature
7 Super Spreaders Epidemiological Feature
8 Growth Acceleration Epidemiological Feature
9 Average Growth Speed Epidemiological Feature
10 SD of Timestamps Delays Temporal Feature
11 RMSSD of Timestamps Delays Temporal Feature
12 Height Spatial Feature

5 METHODOLOGY

This section details the methodology of our explain-
able ensemble classifier.

5.1 Feature Selection

The following features are used as referred in Table 2
along with their corresponding feature type.

5.1.1 Number of Nodes

This represents the number of unique users involved
in the diffusion of information. Thus, for a news dis-
semination pattern Ni = {Ri,reT1,reTj, ..,reTM}

number of nodes = card(Ni) (1)

where Ri is the source tweet, reTj is a retweet and
card{S} is the cardinality of the set S.

5.1.2 Total Diffusion Time

This represents the total time taken for the informa-
tion to propagate in the network, i.e. the life time of
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(a) Hop Based Cascade sample (b) Time Based Cascade sample

Figure 1: Sample Propagation Structure Representations.

the news in Twitter.

Total Diffusion Time = t(reTM)− t(Ri) (2)

where t(x) is the timestamp of the tweet object x and
reTM is the last retweet

5.1.3 Total Peaks

This feature constitutes the number of nodes having
timestamp value greater than the graph mean times-
tamp. Thus,

TP = card{v ∈V | G(v,E)[time]> mean(G(V,E)[time])}
(3)

where V are the nodes in the diffusion cascade
G(V,E).

5.1.4 Basic Reproduction Number

In epidemiology, the basic reproduction number is the
expected number of cases directly generated by one
case in a population where all individuals are suscep-
tible to the disease (NG et al., 2006) More precisely, it
is the number of secondary infections produced by an
infected individual. This number is important in de-
termining how quickly a disease will spread through a
population. For this study we define the basic repro-
duction number (R0) as the number of retweets di-
rectly from the source tweet (Ri),

R0 = card{e ∈ E | e ∈ G(V,e)∧G(Ri,e)} (4)

where Ri is the source tweet and card{S} is the car-
dinality.

5.1.5 Basic Transmission Rate

The Susceptible-Exposed-Infectious (SIR) model is
used to render a simple model for the spread of a in-
fectious disease. The basic transmission rate (denoted

β) is defined as the number of effective contacts made
by an infected person per unit time in a given popu-
lation. In this study, we interpret basic transmission
rate as the number of retweets made during the first
day (T d) of the source tweet.

β = card{v ∈V | G(v,E)[time]⩽ G(Ri,E)[time]+T d}
(5)

where Ri is the source tweet and G(V,E) is diffusion
cascade.

5.1.6 Super Spreaders

In an investigation conducted (Brainard et al., 2023)
to analyze the transmission of coronavirus infec-
tions, researchers observed a significant impact on
the spread of the virus were attributable to individ-
uals identified as ‘super spreaders’. Super spreaders
are individuals with greater than average propensity to
infect. Within this study, we delineate super spread-
ers (SS) as the number nodes exhibiting an edge count
exceeding the average edge count.

SS = card{v ∈V | G(v,E)> mean(E)} (6)

where G(V,E) is the diffusion cascade and E are the
edges.

5.1.7 Growth Acceleration

In epidemiology, Growth Acceleration is defined as
the (cases \ day2). Recently, in a study it has been
shown that Growth Speed and Growth acceleration
are very effective for the analysis of the COVID-19
pandemic (Utsunomiya et al., 2020). In this study, we
consider the edges i.e the retweets as the cases and
define Growth Acceleration (GA) as follows,

GA =
V

∑
i=1

1
(G(v,E)[time]−G(Ri,E)[time])2 (7)
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where G(V,E) is diffusion cascade and V are the
nodes.

5.1.8 Average Growth Speed

Additionally, as mentioned previously Growth speed
was also shown to be very effective in the analy-
sis of the COVID-19 pandemic (Utsunomiya et al.,
2020). In this study, we define Average Growth Speed
(avgGS) as follows,

avgGS =
heightG(V,E)

(avg. timestamps delays)
(8)

where (avg. timestamps delays) is the average of all
the timestamp delays and height of G(V,E) is the
length of the longest path from the root to the farthest
node in the diffusion tree.

5.1.9 Standard Deviation of Timestamps Delays

Using this feature we try to take into account the mea-
sure of the spread of values from the mean.

σ =

√
1

V −1

V

∑
i=1

(ti − t̄)2 (9)

where t are the individual timestamp delays of each
retweet from the source tweet.

5.1.10 RMSSD of Timestamps Delays

We also consider the root mean square of successive
differences between retweet timestamps (RMSSD).
In medical science, RMSSD is considered the pri-
mary time domain measure used to estimate the va-
gally mediated changes (Minarini, 2020). RMSSD
reflects the peak-to-peak variance in a time series
data. As mentioned in subsection 4.2.1, during the
initial stages of propagation, claims exhibit the widest
spread, with minimal successive differences between
retweets. Consequently, we integrated RMSSD as a
feature in our model to capture early-hour changes in
news dissemination flow.

RMSSD =
√

mean{diff{t1, t2, .., tN}2} (10)

where t are the individual timestamp delays of each
retweet from the source tweet.

5.1.11 Height

Represents the length of the path from source tweet to
its farthest retweet node.

Height =
reTn

∑
Ri

1 (11)

where Ri is the source tweet and reTn is the farthest
retweet.

5.2 Data Preparation

Firstly, The datasets contained four annotations
namely true rumours, non-rumours, false rumours
and unverified rumours. As our study focuses on bi-
nary classification, we re-annotated to two class labels
namely, true and fake news and disregarded the unver-
ified rumours. Secondly, we normalized the features
by scaling and translating. We used the Min Max Nor-
malization method. Finally, For a fair comparison,we
randomly split the datasets into 80% for training and
20% for testing.

5.3 Classification Model

For this study we used a voting classifier. A vot-
ing classifier is a ensemble machine learning classi-
fier that trains various base models and predicts on
the basis of aggregating the findings of each base es-
timator. Voting classifiers has been shown to reduce
the aggregate errors of a variety of the base models
and increase final accuracy. The aggregating criteria
used in this study is hard voting which is the com-
bined decision of the class label that has been pre-
dicted most frequently by the classification models.
The base models used are as follows, refer Figure 2 :

• KNN Classifier

• Decision Tree Classifier

• Multi-layer Perceptron classifier

Thus, the predicted class label ŷ of our proposed clas-
sifier is as follows,

ŷ = mode{C1(x),C2(x),C3(x)} (12)

where Ci(x) is the predicted class label of classifier i.

Figure 2: Voting Classifier Flowchart.

6 EXPLANABILITY OF MODEL

Research shows that intrinsic explainable AI (XAI)
provide better explanations than post-hoc XAIs (Du
et al., 2018), though sometimes with reduced accu-
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racy. Our method balances intrinsic model explana-
tions via KNN and decision tree (DT) classifiers while
maintaining high accuracy.
The following two methods were used to accomplish
this,

• Firstly, the unique design of the ensemble classi-
fier asserts that at least one intrinsic explainable
classifier is part of the final aggregated vote. That
is, in the best case scenario both the intrinsic ex-
plainable classifiers (KNN or DT) have the same
predicted label. Whereas, in the average/worst
case scenario along with MLP classifier either
KNN or DT classifier has the same predicted label
which can be used to provide intrinsic explainabil-
ity.

• Secondly, we added MLP to balance the accuracy-
explainability trade-off in intrinsic XAIs. Al-
though, MLP is not an intrinsic explainable algo-
rithm on its own, the combination the three clas-
sifiers provides intrinsic explainability along with
high accuracy.

6.1 KNN Classifier

In system interpretability, KNN relies on similarity
and distance, making it inherently interpretable as the
nearest neighbors provide explanations.
For providing human readable explanations for a
given prediction, we employed the following steps:

1. Collect nearest K neighbours of considered point
(P).

2. Filter out same-class neighbors of P, which are
inherently higher in number.

3. Project (Pnew) using arithmetic mean of filtered
points.

4. Get the four highest correlated features between
Pnew and P using Manhattan distance.

5. Display the number of nearby same class label
neighbours and the highest correlated features.

6.2 Decision Tree Classifier

A decision tree provides a hierarchy of very specific
questions and predicts outcomes based on decision
rules (if-then-else rules). The answer to one question
guides the prediction process down various branches
of the tree. At the bottom of the tree is the prediction.
Hence, for interpretations, we review decisions by
traversing top-to-bottom tree paths and noting ques-
tion responses for explanations. To this direction we
used the following steps,

1. Fetch the decision rules from the classifier.

2. Use the rules to showcase the answers the specific
rule addresses.

3. Every rule corresponds to one feature, delivering
a local explanation for that feature’s value.

4. For a given point (P), traversing the decision tree
from top to bottom reveals explanations for the
predicted class label. Inherently the number of the
explanations is the depth of the decision tree.

7 EVALUATION OF
CLASSIFICATION MODEL

In this section we discuss the results of the individual
and ensemble classifiers. We used Twitter16 dataset
for selecting the parameters and Twitter15 for testing.

7.1 Individual Classifiers

7.1.1 KNN Classifier

The number of neighbors used in this model is ten.
Table 3 shows the results from the k-nearest neigh-
bors classifier with varying hyper-parameters. From
the table, we can see that the model using Manhat-
tan as the distance metric performs the best, achieving
the highest accuracy and precision, along with a good
overall recall. This is rational as studies have shown
that Manhattan distance (L1 norm) ususally performs
better than common distance measures in the case of
high dimensional data.

Table 3: Results of the KNN classifier on Twitter16.

Distance metric Accuracy Precision Recall

Cosine 0.8123 0.8436 0.8787
Manhattan 0.8129 0.8591 0.8865
Correlation 0.8045 0.7899 0.8934
Euclidean 0.8104 0.8087 0.8799
BrayCurtis 0.7903 0.7832 0.8811

7.1.2 Decision Tree Classifier

The maximum depth of the tree is chosen to be three,
in order to reduce computational complexity. Table
4 depicts the results with varying hyper-parameters.
It can be observed that the results are better with the
entropy splitting criterion. However, the accuracy is
almost the same for both the splitting methods. This
is reasonable as the internal working of both the split-
ting methods are very similar. Nevertheless, for the
ensemble model we choose the entropy criterion.
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Table 4: Results of the Decision Tree classifier on Twit-
ter16.

Splitting criterion Accuracy Precision Recall

Gini 0.8117 0.8548 0.8676
Entropy 0.8123 0.8679 0.8815

7.1.3 Multi-Layer Perceptron Classifier

The MLP classifier has been configured with two
hidden layers containing (5,2) units respectively.
Limited-memory BFGS (lbfgs) algorithm has been
used for weight optimization as it converges faster and
performs better for small datasets. Table 5 depicts the
results. It can be observed from the results that the
accuracy and recall is highest with the Sigmoid acti-
vation function. As the number of hidden layers is
very low in this model the vanishing gradient prob-
lem does not play a significant role and hence the ac-
curacy using sigmoid function is higher compared to
other activation functions.

Table 5: Results of the MLP classifier on Twitter16.

Activation function Accuracy Precision Recall
Tanh 0.7945 0.7712 0.9117

Sigmoid 0.8231 0.8574 0.8905
ReLU 0.8117 0.8419 0.8620

7.2 Ensemble Classifier

The results for the individual classifiers are shown in
Table 6 with the optimum parameter configurations.
Firstly, It can be observed that MLP classifier has the
highest accuracy of 82.31%, however the precision is
low with 0.8574.

Table 6: Results of the individual classifiers on Twitter16.

Type Accuracy Precision Recall
KNN classifier 0.8129 0.8591 0.8865
MLP classifier 0.8231 0.8574 0.8905

Decision tree classifier 0.8123 0.8679 0.8815

Secondly, the KNN classifier also has a high ac-
curacy of 81.29% with the low recall and precision.
Finally, the precision is highest in the case of the de-
cision tree classifier with 0.8679, with an accuracy al-
most similar to that of the KNN classifier. Thus, it can
be reasoned that a combination of these three clas-
sifiers might produce better results. This motivated
us to implement an ensemble voting classifier for this
study.

Table 7 depicts the results for the Voting Classifier.

Table 7: Results of the Voting Classifier on Twitter16.

Type Accuracy Precision Recall
Voting Classifier 0.8522 0.8843 0.8917

It can be inferred from Table 7 that the accuracy
has increased to 85.22 % with the use of the voting
classifier. Ensemble methods like the voting classifier
are ideal for reducing the variance in models, thereby
increasing the accuracy of predictions. The variance
is eliminated when multiple classifiers are combined
to form a single prediction. Additionally, it can be
observed that the precision and recall of the voting
classifier are also high with 0.8843 and 0.8917 re-
spectively. From our experiments, it can be reasoned
that the voting ensemble outperforms all the individ-
ual models.

7.3 Baseline Model Comparison

We compared our proposed model with the following
five state-of-the-art misinformation detection models,

1. CSI (Ruchansky et al., 2017): A misinformation
detection model that captures temporal patterns
using an LSTM to analyze user activity and cal-
culates user scores.

2. tCNN (Yang et al., 2023): a modified convolution
neural network that learns the local variations of
user profile sequence, combining with the source
tweet features.

3. CRNN (Liu and Wu, 2018): a state-of-the-art
joint CNN and RNN model that learns local and
global variations of retweet user profiles, together
with the resource tweet.

4. dEFEND (Shu et al., 2019): a state-of-the-art co-
attention-based misinformation detection model
that learns the correlation between the source ar-
ticle’s sentences and user profiles.

5. GCAN (Lu and Li, 2020): a state-of-the-art
graph-aware co-Attention network based misin-
formation classifier that uses user profiles meta-
data, news content and propagation pattern.

Table 8 compares our approach to the industry
standards. It can be inferred that our proposed model
outperforms most of the state-of-the-art approaches
on both datasets in terms of accuracy while attaining
highest precision and recall. In particular, our model
achieves an accuracy of 84.47% and 85.22% on the
datasets respectively. Although GCAN achieved the
highest accuracy, the precision and recall are low due
to the class imbalance in the datasets, where GCAN
favors the majority class, leading to higher accu-
racy but poorer minority class detection. Whereas,
our model received at par accuracy with GCAN with
higher precision and recall. Furthermore, GCAN in
addition to propagation pattern uses the user profile
metadata and tweet content, which might not always
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be available in real-world scenarios. Whereas, our
model solely uses the diffusion pattern to create a
classifier.

Table 8: Experimental results on Twitter15 (T15) and Twit-
ter16 (T16) datasets.

Method Recall Precision Accuracy
T15 T16 T15 T16 T15 T16

tCNN 0.5206 0.6262 0.5199 0.6248 0.5881 0.7374
CRNN 0.5305 0.6433 0.5296 0.6419 0.5919 0.7576
CSI 0.6867 0.6309 0.6991 0.6321 0.6987 0.6612
dEFEND 0.6611 0.6384 0.6584 0.6365 0.7383 0.7016
GCAN 0.8295 0.7632 0.8257 0.7594 0.8767 0.9084
Our model 0.8512 0.8917 0.8568 0.8843 0.8447 0.8522

7.4 Ablation Study

To study the contribution of each feature type towards
the ensemble classifier, we carry out ablation experi-
ments. The results are shown in Table 9. The ablation
experiments include the following three variants:

• w/o Spatial: Removing the spatial features of the
ensemble classifier.

• w/o Temporal: Removing the temporal compo-
nents of the ensemble classifier.

• w/o Epidemiological: Removing the epidemio-
logical features of the ensemble classifier.

Table 9: Results of the Ablation experiments using Twit-
ter16.

Type Accuracy Precision Recall

w/o Spatial 0.8213 0.8229 0.8078
w/o Temporal 0.8256 0.8594 0.8810

w/o Epidemiological 0.7714 0.7803 0.8276
Voting classifier 0.8522 0.8843 0.8917

From Table 9, we can observe that all ablation
variants drop some accuracy compared with the pri-
mary model. Specifically, when removing the spa-
tial features, the accuracy drops by 3.1%, the preci-
sion and recall also dropped. The replacement of the
temporal features caused the accuracy to decrease by
2.7% with lower precision and recall. However, the
accuracy drop was most significant when the epidemi-
ological features were removed, accounting to 8.1%
along with lowest precision and recall. This corrob-
orates that epidemiological features inspired from the
study on COVID-19, play an essential role for mis-
information detection using propagation cascades. In
conclusion, overall the primary model, with the three
component types involved, provides a better choice
compared to the ablation variants.

8 EVALUATION OF
EXPLAINABILITY OF THE
MODEL

Evaluation of an XAI model essential, as it provides
a way to understand its practical implication.

8.1 Sample Explanation

Figure 3 displays the explanations generated by our
model on a random data point (P), where KNN clas-
sifier and DT classifier had the same predicted class
label. We can observe that, three explanations were
generated for the DT classifier, which is logical as the
depth of the tree was three. Furthermore for point P,
the KNN classifier interpretations were made from the
seven nearby fake tweets out of the ten neighbours.
An interesting observation can also be made that ex-
planations for both the classifiers almost correspond
for the same statistical properties of the propagation
cascade.

Figure 3: Explanation generated for a random sample (P).

8.1.1 Metrics Used

We evaluated the model’s interpretability using the
three metrics mentioned below. These are exten-
sions of three metrics used in (ElShawi et al., 2021)
for evaluating interpretability frameworks like LIME,
SHAP, LORE and more.

• Stability: Similar instances should have similar
explanations.

• Separability: Different instances should yield dif-
ferent explanations.

• Identity: Identical instances must produce identi-
cal explanations.
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For measuring the metrics we randomly select 100
data points and create the testing dataset using their
class labels and generated explanations. The stability
metric is measured by applying K-means clustering
with two clusters to group explanations in the testing
dataset. For simplicity, we use the three explanations
generated by the decision tree (DT), converting each
explanation string into a unique numerical value to
form an integer array. The assigned cluster labels are
then compared with the predicted class labels to eval-
uate whether instances of the same class have simi-
lar explanations. To measure the separability metric,
two subsets S1 and S2 of the testing dataset are se-
lected corresponding to different class labels. Then,
for each instance in S1, its explanation is compared
with all other explanations of instances in S2. If the
explanation have no duplicates, it satisfies the sepa-
rability metric. Finally, the identity of the explana-
tions offered by the various deterministic techniques
may be easily measured theoretically. The explana-
tions generated by the decision tree is rule based thus
conforming to complete identity conservation. Addi-
tionally, due to the nature of KNN alrogithm identical
instances will have identical explanations.

8.1.2 Results

The experimental findings can be seen in Table 10.
The figures in this table show the percentage of in-
stances that meet the specified metrics. From the table
we can infer that identity metric is 100%, as identical
instances will have a similar explanations. The stabil-
ity is very high, thus conforming that instances with
same class labels have comparable interpretations. Fi-
nally, the separability is also very high, thus acknowl-
edging that dissimilar instances have dissimilar expla-
nations.

9 CONCLUSION

This paper demonstrates the effectiveness of an
ensemble-based classifier using a tweet’s diffusion
pattern for accurate misinformation detection. We im-
prove the classification by using features inspired by
epidemiology and recent COVID-19 research, while
providing understandable predictions. The intrinsic
explanations help users to understand the predicted
class label without compromising accuracy.

Future work will focus on the following areas:

• Incorporating statistical and qualitative measures
to evaluate the results and generated explanations.

• Expanding the model’s applicability to other so-
cial networks such as Instagram and Facebook.

• Investigate and document how hyperparameters,
such as the value of k in k-NN, sampling rate, af-
fect model performance.

• Conduct deeper analysis on the consistency and
comparability of explanations generated by differ-
ent models (e.g., k-NN vs. DT).

Table 10: Metrics for the evaluation of explanations.

Metric Score
Stability 89%

Separability 97%
Identity 100%
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