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Abstract: In this paper, we propose model-free or learning-from-demonstration methodologies for accurately estimating 
the complex and nonlinear behaviors of dynamic systems such as mobile robots, robotic arm manipulators, 
and unmanned aerial vehicles (UAVs). Under learning from demonstration (LfD), this study investigates two 
different approaches: The first proposed methodology is the contraction theory, in which the assigned task 
demonstration is practically performed by the human expert, who tries to learn and imitate it. On the other 
hand, the same task learns and imitates by utilizing the neural ordinary differential equations (NODEs) for 
dynamic systems. Using the concepts of both approaches, we tried to make it possible for the system to pick 
up on and imitate the shown behavior or demonstration accurately. In dynamics learning, the proposed 
contraction method utilizes the conceptual framework of the contraction theory, which ensures the motions 
of dynamic systems that eventually converge to nominal or desired behavior. At the same time, NODE uses 
the neural network with different configurations of hidden layers, learning rate, nonlinear activation function, 
and ODE solver. A spiral trajectory is considered a human expert demonstration that is estimated by both 
methodologies (i) NODE and (ii) contraction theory. For validation purposes, we compared the results of both 
approaches. 

1 INTRODUCTION 

Learning by demonstration, or LfD for short, is a 
useful strategy for rapidly enhancing robotic 
efficiency. It enables robots to gain capabilities by 
observing what they want to do. Focusing on allowing 
the robotic device to program by itself, the human 
operator demonstrates an action to the robot by 
demonstrating how the operation ought to be 
performed. Learning action patterns through as few 
demos as possible is vital, and the quantity of storage 
required is reduced when taught skills are concisely 
represented (Khansari-Zadeh, et. al., 2011; Calinon, 
S., et. al., 2007). It is possible to represent actions 
from one point to another to ensure all come to an end 
at a designated spot in state space (Schaal, S., 1999). 
Simplifying more complex tasks can yield 
fundamental components of robot automation 
surveillance: sequences of one point to motions or 
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modeling between point actions (Kulic, D., et. al., 
2008). When an operator directs an autonomous 
device throughout an activity, it automatically sees 
the process from its point of view. LfD: While 
dynamical actions specify how to emulate, one point 
to another action includes steps made by human 
experts to solve the problem (Dautenhahn, K., and 
Nehaniv, C. L., 2002). Robotic trajectories are shown 
via kinesthetic training to circumvent the matching 
issue, whereby human observers passively guide the 
robot along its ideal motion (B., Akgun, and 
Subramanian, K., 2011). One of the earliest instances 
of digital summoning taught via examples is 
dynamical motion primitive concepts (DMP). DMP is 
used to combine a linear dynamical system and a 
nonlinear force factor, which is obtained in one demo 
(Ijspeert, A., et. al., 2013). Poor replication could 
occur from implementing restrictive stabilization 
criteria. If one concentrates too heavily on precise 
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reproduction, one may become less resilient to 
disruptions, which could eventually cause deviation. 
There are instances where precision suffers because 
reliability is given precedence over efficiency. It 
might not be the most effective solution if the intricate 
dynamics underneath is fascinating. Finding the right 
balance between studying the intricacies of kinetics 
and maintaining stabilization in a system that changes 
is difficult. Enabling robots and autonomous devices 
to perform tasks efficiently within dynamic settings 
and learning from demonstrated actions (LfD) is a 
critical capability. Highly complex, non-linear 
trajectories like spirals are a common challenge for 
conventional LfD techniques. To enhance the 
prediction and reproduction of these trajectories, this 
work explores the application of contraction theory 
and neural networks with ordinary differential 
equations (neural ODEs). We examine such 
approaches' theoretical underpinnings, real-world 
applications, and comparative effectiveness.  

The paper's remaining structure is as follows. In 
the next section, the problem formulation of both 
proposed methods (node and contraction theory) is 
presented. In Section 3, we present the neural ODE 
and contraction theory learning framework for 
learning the dynamics of the dynamic systems. In 
Section 4, we performed the simulation and 
demonstrated the effectiveness of both the proposed 
methodologies. Finally, we concluded the paper with 
a summary and future research direction. 

Table 1: Notations Used in This Paper. 

Symbols Meanings 

( )x t ∗  Nominal trajectory 

x
•

 Rate of change of the state 

^ ( )f xθ  Learn or estimated nonlinear function 

^

( )ix t  Estimated current state 

^

1( )ix t +  Estimated future state  

0t  initial time 

it  final time 

( ( )ig x t  Learn nonlinear function in NODE 

( , )truef x t  
Learn nonlinear function in 
contraction  

xδ  virtual displacement in trajectories 

maxλ  maximum eigen value of Jacobian 

2 PROBLEM FORMULATION 

We formulate the robotic system's state-to-state 
motions as an autonomous dynamic system with a 
nominal unknown trajectory ( )x t ∗  made up of N 

demonstration data points. A system's state can be 
regarded as each demonstration data point. When a 
trajectory moves with noise or disturbance, the 
autonomous dynamic system is 

^ ( )x f xθ ε
•

= +          (1)

Where f is the learnable nonlinear function, and the 

additive term represents the noise in the system. The 
system without noise can be represented by the 
below-mentioned equation. 

^ ( )x f xθ

•
=  (2)

We considered the single spiral trajectory as the 
demonstration of the expert and try to estimate it 
accurately using the neural ode and contraction 
method. In this work, we use supervised learning 
method for the given demonstration data, N. The 
objective is to learn the nonlinear spiral function 
accurately with the minimum loss value and try to 
estimate the desired trajectory. The prediction of the 
nonlinear function can be achieved by using the 
below mentioned NODE equation. 

^ ^

1 0 0( ) ( ) ( ( ), , ), ( ), , ),i i ix t x t NODE f x t t x t t tθ θ+ = +  (3)

The objective is to minimize the difference 
between the desired trajectory and the learned 
nonlinear trajectory to find the optimal parameter 
values which reduce the loss, we considered the 
following loss minimization for the NODE. 

2

1 1 2

1
min ( ) ( ( ))

N T

i i i
i i

x t g x t
NTθ

= =

−  (4)

Above mentioned equation expresses the loss 
function. The parameters θ , and values continuously 
update until the loss values reach the least minimum, 
or in other words the difference between the predicted 
and observed state becomes negligible. 

2.1 Forward Propagation 

0 0( ) ( ( ( ), , ), ( ), , ),k kx t ODESolve f x t t x t t tθ=  (5)
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2.2 Back-Propagation 

0

0
0

( ) ( ( ), , ) ( )

( ( ), , )
( , , , ),

( ) ( )
( ( ), , ) 0

k

k
k

x t f x t t x t

L f x t t L
ODESolve t t

x t x x t
f x t tL θ

θ
θ

θ
θθ

   
    
    ∂ ∂ ∂    =    ∂ ∂ ∂    ∂ ∂     
   ∂ ∂ 

(6)

The implementation of the NODE architecture can be 
considered with a basic neural network that is fully 
connected and possesses one hidden layer. 

2 1 1 2

( )
( . ( . ( ) ) ),

dx t
W W x t b b

dt
σ σ= + +  (7)

where, ( )x t , is the particular system state, 1W  and 

2W are the matrix of weights, 1b  and 2b  are the bias 
vectors, and σ , is the nonlinear activation function. 
The numerical technique Runge-Kutta is used to 
solve the ODE to determine the system's state at any 
given moment. we can reconfigure the NODE 
network architecture by modifying the hidden layers 
and learning rate of the neural network 

1

1

2 1

3 2

4 3

1 1 2 3 4

( ( ) , )

( ( ) , )
2 2

( ( ) , )
2 2

( ( ) , )

( ) ( ) ( 2 2 )
6

k k

k k

k k

k k

k k

k k

t t h

s f x t t

h h
s f x t s t

h h
s f x t s t

s f x t h s t h

h
x t x t s s s s

+

+

= +

=

= + +

= + +

= + +

= + + + +

 

(8)

In the contraction theory for the learned models. The 
problem of system identification can be represented as 

( , )

( , ) ( , ) ( ( , ) ( , )),

true

true L true L

x f x t

x f x t f x t f x t f x t

•

•

=

= = + −

 (9)

The true function is unknown, approximated by 
the contracting learning model. 

3 MAIN RESULTS 

Dynamic systems are mathematical methods that 
depict or learn the evolution of a system's dynamics 
across time and are capable of understanding complex 
systems behaviours. The equation of an autonomous 
dynamic system is: 

( )
 ( ( ), ),

dx t
f x t t

d t
=  (10)

where, ݔሺݐሻ ∈ Թare the system state, ,t T∈  is 
time interval T, and ݂:Թ ൈ Թ → Թa vector field of 
nonlinear function which defines the dynamics of the 
system and which needs to be learned. If we look 
around mobile robots, robotic arm manipulator, 
UAVs, and many other industrial systems possess the 
dynamic behaviours which are nonlinear, complex 
and hard to learn. To tackle the nonlinear and 
complex behaviours of such systems we considered 
spiral trajectory for our work as the nonlinear and 
complex dynamic system which can be express in 
mathematical form mention below. 

cos( )

sin( )

x  r

y r

θ
θ

=
=

 (11)

We learned the considered nonlinear spiral 
trajectory with the proposed method of Neural 
ordinary differential equations (NODE) which is 
 

 
Figure 1: Overall view of proposed system. 
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efficient in depicting time series data and dynamical 
systems. To estimate “ f ”, the NODEs employ 

neural networks described in equation. 

0( ( ), )
dx

x f x t t
dt θ

•
= =  (12)

The above-mentioned equation represents the 
mathematical form of the neural ode. The initial state 
of learnable nonlinear dynamic system “ fθ ”, is given 

by the 0( )x t . The nonlinear spiral function states 

estimations acquired by the help of the neural 
network, which optimized the learned parameters θ
for all given states. The optimized parameter reduced 
the loss values between the encoded hidden states and 
the predicted  

2
( ) ( ( )

T

i i
i

L x g x tθ = −  (13)

In forward propagation it solves the ode and in 
backward propagation it will compute the gradient 
which updates the weights of neural network to 
obtained the optimal values of learnable parameters. 
The neural ode architecture implementation can be 
represent as 

2 1 1 2

( )
( . ( . ( ) ) ),

dx t
relu W relu W x t b b

dt
= + +  (14)

The visualization of the proposed NODE 
framework is given below 

 
Figure 2: NODE framework. 

The other proposed method based on contraction 
theory use to find the differential dynamics of the 
spiral nonlinear and complex systems by considering 
the contraction metric with uniform positive definite 
matrix. It provides the incremental exponential 
stability for the different trajectories started from the 
different points. The mathematical expression is 
express as 

( , )x f x t
•

=  (15)

can be rewrite in the differential form  

( , )
f

x x t x
x

δ δ
• ∂=

∂
 (16)

Where, xδ  is the virtual displacement between 
two neighbouring trajectories as the virtual 
displacement decreases between two trajectories and 
desired trajectory if they become one single trajectory 
we can say that the system accurately estimated the 
demonstrated trajectory and system exponentially 
converge to the stability. If there exist a uniformly 
positive definite metric M(x), and satisfy the 
following conditions, we can say system is 
contractive. 

max( )T Td
x M x x M x

dt
δ δ λ δ δ≤ −  (17)

( ) (0) tx t x e λδ δ −≤  (18)

4 SIMULATION RESULTS 

In this section, we discussed the performed 
simulation and results obtained by using the both 
methodologies of NODE and contraction. 

4.1 Contraction Method 

The results in Figure 3 show the difference between 
the true or nominal trajectory and learned trajectories 
which started from two different initial points and 
tried to converge to the desired trajectory but due to 
less stronger contraction term, the learned could not 
reach the ideal trajectory accurately.   

 

Figure 3: Less contraction system. 
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In Figure 4 we can see the learned trajectory 
approximate the true trajectory quite accurately and 
the difference between the true and learned 
trajectories are negligible and show the strong 
contractive behaviour with the strong contractive 
term considered during the learning.  

 
Figure 4: Strong contraction system. 

In Figure 5 we considered the five different 
Trajectories which started from the different initial 
points, in the first case we considered the minimal 
contractive term and analysed whether the learned 
trajectories reached the target trajectory accurately 
but unfortunately, could not make it and showed the 
huge difference between the learned and true 
trajectories this is because the less strong contraction 
term used during the learning. 

 

Figure 5: Less contraction system. 

In the above Figure 6 five different trajectories 
started from the five different initial points, the results 
show that all five trajectories converge into one single 
trajectory as time goes on which proves the system is 
highly contractive and stable. The difference between 

the true and learned trajectories minimize this 
happened due to strong contraction term considered 
during the learning. 

 

Figure 6: Strong contraction system. 

4.2 Neural Ode’s 

In the Figure 7 the Spiral trajectory is given as the 
demonstration of the neural ordinary differential 
network. The red dot line is the spiral demonstration 
and a blue solid line in the estimation of the observed 
values. we can see from the results the NODE based 
architecture provide the accurate estimation but when 
the initial value changes its performance, degrade due 
to initial value problem. 

 

Figure 7: NODE based dynamics learning. 
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Figure 8: Learning Loss. 

Figure 8 shows the learning of the NODE 
framework over the iteration of 2000.  

5 DISCUSSIONS 

In this work, a comparative analysis conducted of two 
different methods for the task of desired trajectories 
estimation of dynamic systems given by the 
demonstrations. Simulation performed on the spiral 
trajectory of dynamic systems and evaluated based on 
the performance metrics mentioned below in table 2. 

The NODE method shows better accuracy for 
trajectory estimation, in an unperturbed environment 
but faces stability issues in a perturbed environment.  

Table 2: Performance metric of NODE and contraction 
methods. 

Metric Neural ODE 
Contraction 
method 

Accuracy More accurate Accurate 

Robustness Moderate High 

Convergence 
Rate 

Fast Faster 

Computational 
Efficiency 

Efficient but 
expensive 

Efficient 

Stability 
Sensitive to 
perturbation 

Robust against 
perturbation 

Real Time 
Application 

Good after 
training 

Excellent 

On the other hand, contraction method is less 
accurate within an acceptable margin of accuracy but 
robust and stable in trajectory estimation both in 
perturbed and unperturbed conditions. Furthermore, 
the contraction method can provide fast exponential 
convergence as compared to NODE even in the 
external disturbance. Contraction method is more 
efficient both in computational efficiency and real-
time application implementations. These findings 
show that both methods supersede each other in 
different performance metrics. The selection of these 
methods highly based on the type of applications. 

6 CONCLUSIONS 

The presented work tried to cover the dynamic 
learning of dynamic systems by incorporating the 
learning from the demonstration method. We 
considered the spiral trajectory as the expert 
demonstration data for any particular actions of the 
dynamic system and used two different 
methodologies NODE and Contraction theory to 
learned these demonstration actions, NODE based 
learning provides better accuracy and flexibility but 
on the other hand, it is sensitive to the initial value 
and demand long training time, require high 
computational cost and lack of robustness under the 
perturbed conditions for higher dimensional systems. 
While the contraction theory provides the higher 
stability, robust to the perturbation, produce good 
response on the initial value problem, 
computationally efficient. These two methods show 
the trade-off between robustness and flexibility, 
selection of these methodologies based on the 
demand of the applications. In the future, the 
proposed work will extent for the practical 
implementation on robotic arm manipulator or mobile 
robot dynamic systems with the insertion of obstacles 
and perturbation. In this work correction term or 
control term was not considered for the unseen data 
and spurious attractor problems in future we 
considered solving such problems with the 
implementation of an appropriate control method, 
stability is also not considered we plan to incorporate 
the stability and safety constraints in the future work. 
Furthermore, we planned to expand the proposed 
work by considering the higher-dimension problem. 
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