
owl2proto: Enabling Semantic Processing in Modern Cloud
Micro-Services

Christian Banse a, Angelika Schneider b and Immanuel Kunz c

Fraunhofer AISEC, Garching b. Muenchen, Germany
{firstname.lastname}@aisec.fraunhofer.de

Keywords: Semantic Interoperability, Cloud Computing Ontology, Data Exchange.

Abstract: The usefulness of semantic technologies in the context of security has been demonstrated many times, e.g., for
processing certification evidence, log files, and creating security policies. Integrating semantic technologies,
like ontologies, in an automated workflow, however, is cumbersome since they introduce disruptions between
the different technologies and data formats that are used. This is especially true for modern cloud-native
applications, which rely heavily on technologies such as protobuf. In this paper we argue that these technology
disruptions represent a major hindrance to the adoption of semantic technologies into the cloud and more effort
and research is required to overcome them. We created one such approach called owl2proto, which provides an
automatic translation of OWL ontologies into the protobuf data format. We showcase the seamless integration
of an ontology and transmission of semantic data in an already existing cloud micro-service.

1 INTRODUCTION

Semantic technologies can establish a common un-
derstanding of, e.g., cloud concepts and their prop-
erties and thus have a high importance for the inter-
operability of cloud services. In the security context,
semantic technologies have, for instance, been used
to model certification evidence (Banse et al., 2021;
Banse et al., 2023), to structure information in log
files (Ben-Shimol et al., 2024), or to model general
cloud security concepts (Takahashi et al., 2010).

We argue that while the academic discussion fo-
cuses on the semantic design of, e.g., cloud security
concepts (Maroc and Zhang, 2019), the technological
integration of semantic design and its technological
implementation is lagging behind. Modern technolo-
gies like micro-services and RPCs, for example, are
not integrated with technologies of the semantic web
stack. We think that a better integration with such
technologies would make semantic concepts easier to
use, increase its adoption in different domains, and it
could improve the interoperability of cloud systems,
e.g. in multi-cloud and cloud-edge scenarios.

In this paper, we focus on protobuf as an example
for this position and use the cloud security context as

a https://orcid.org/0000-0002-4874-0273
b https://orcid.org/0000-0002-8962-3276
c https://orcid.org/0000-0002-4669-0030

an example application domain. Note, however, that
our arguments apply beyond these examples. Proto-
buf is one of the most commonly used technologies
for micro-services. Originally designed as a format
to describe the serialization of network packages, it
has evolved into an interface definition language, not
only describing the exchanged data, but also the ser-
vices that produce or consume this data.

Protobuf intentionally does not focus on the se-
mantics of the exchanged data. Instead, it defines a
syntax and structure of an object (called message), by
describing which fields a programmer would use to
fill this object. This includes primitive types, arrays
and other messages. But the semantics of the data,
such as, that it describes evidences gathered for a se-
curity incident, is beyond its scope. Developers would
have to resort to storing this semantic information in
other formats (e.g. RDF, JSON-LD, etc.) and then
transmitting the actual data in a serialized form, cre-
ating a technology gap between the “semantic” world
and the rest of the application.

In this paper, we argue for bridging the gap be-
tween semantic technologies and the integration with
modern data processing. We demonstrate how to ad-
vance this integration by introducing a methodology
and implementation that transforms ontology con-
cepts into RPC definitions, and we point out use cases.
The implemented tool is called owl2proto.

Banse, C., Schneider, A. and Kunz, I.
owl2proto: Enabling Semantic Processing in Modern Cloud Micro-Services.
DOI: 10.5220/0012993600003838
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2024) - Volume 2: KEOD, pages 199-206
ISBN: 978-989-758-716-0; ISSN: 2184-3228
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

199

2 BACKGROUND AND RELATED
WORK

This section contains an overview of related work on
semantic data processing, especially in the context of
security and privacy. Additionally, we provide a back-
ground on the protobuf format our approach is based
on.

2.1 Processing of Semantic Data

The term “semantic”—in the context of IT
technology—refers to labeling data with com-
mon tags to enable their automatic recognition and
processing. Ontologies provide one way to encode
relationships between concepts, for example to
represent hierarchies between them or other types of
relationships. They can then be used by automatic
technologies to put words, source code, and other
objects into the right context. Several technologies
exist to serialize such semantic data, e.g. to send
them across communication channels. These include
simple RDF serialization (Cyganiak et al., 2014),
XML serialization of OWL (Hitzler et al., 2012) or
more complex protocols such as JSON for Linking
Data (JSON-LD) (Sporny et al., 2020).

In the context of security and privacy, seman-
tic technologies have been used for malware anal-
ysis (Carvalho et al., 2016), authentication and au-
thorization (Servos and Osborn, 2017), and in gov-
ernance engineering (Esteves and Rodrı́guez-Doncel,
2024; Nadal et al., 2022). Even systems to auto-
mate the adherence to security compliance frame-
works have been proposed (Banse et al., 2021; Banse
et al., 2023).

2.2 gRPC and Protobuf

Protocol Buffers (or protobuf in short) is an open-
source project to handle and transmit binary data in
a structured way. It was originally developed inter-
nally in Google and released to the public in 2008.
Protobuf’s purpose is two-fold. First, it defines a bi-
nary wire format for the transmission of arbitrary data
(so called Messages). It is very efficient and therefore
used in scenarios where a high throughput of data is
required. Second, protobuf can be seen as a Inter-
face Definition Language (IDL), which describes data
structures and RPC interfaces in a (programming)-
language independent way.

These IDL files can then be used to auto-generate
appropriate data structures in many chosen program-
ming languages such as C/C++, Java, Python, Go and

others. Additionally, code for exposing the RPC in-
terfaces as a service and consuming these as a client
can also be auto-generated. Therefore, it is often
used in the communication between a mesh of micro-
services, also in combination with additional RPC
frameworks such as gRPC1 or Connect2, which take
care of the actual network transmission of protobuf
messages.

Listing 1: A protobuf message displaying some of the core
concepts, such as messages, message options as well as the
oneof keyword.

1 message MyMessage { 1

2 1a option (note) = "important";
3

4 int32 id = 1;
5 optional string name = 2;
6 2 MyOtherMessage other = 3;
7

8 3 oneof alternatives {
9 3a string good_alternative = 10;

10 3b bool bad_alternative = 11;
11 }
12 }
13

14 message MyOtherMessage {
15 string another_name = 1;
16

17 reserved 2; 4
18 }
19

20 extend google.protobuf.←↩
MessageOptions { 5

21 repeated string note = 100;
22 }

Listing 1 demonstrates several core concepts of
the protobuf language as. First, every data structure
in protobuf is called a Message (1). Each message
must have a unique name (per package) and contains
a list of fields. Each field also has a name, a type
and a field number (the number after the equals sign).
The type can either be one of the defined scalar types
(such as string, int32 and others3) or another mes-
sage (2). The name as well as the field number must
be unique inside their respective message. When pro-
tobuf messages are serialized and de-serialized, only
field numbers are transmitted. Therefore, it is of ut-
most importance that field numbers are never changed
or re-used for other fields, as long as compatibility
needs to be ensured (e.g., within one major version).

To support this, the keyword reserved (4) can
be used to denote that there was once a field with a

1https://grpc.io
2https://connectrpc.com
3https://protobuf.dev/programming-guides/proto3/

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

200

Resource

Compute Storage

hasMultiple

Virtual Machine Container BlockStorage

Figure 1: Small excerpt of an ontology of cloud resources
based on (Banse et al., 2023).

certain number (2 in this case) which is not used and
cannot be used anymore. Protobuf also supports a
special construct called oneof. It is somewhat similar
to a union data structure in C. It defines a subgroup
of fields (3), in which only one of the defined fields
(3a or 3b) can be set at a given time.

Finally, the notion of options can be seen as a sys-
tem similar to annotations in other languages. They
can provide additional meta-data to files, messages or
fields. The contents of these are not transmitted over
the wire, but they are available to both the transmit-
ting and receiving party in the generated code. Next
to a list of built-in options, also new options can be
declared, as seen in 5 . In this example, a new op-
tion note is declared which can be used to annotate a
message (1a).

3 MOTIVATION AND USE CASE

3.1 Use Case: Collecting Semantic
Information for Cloud Security

To motivate the need for our approach, we consid-
ered existing previous works (see Section 2.1) from
the security field that process semantic in the cloud. In
the following, we will consider the design of (Banse
et al., 2023) because they are already leveraging cloud
technologies such as gRPC in addition to semantic
data, but did not fully bridge the gap between both.
They propose the collection of semantic information
(also called evidence) about a cloud system, such as
virtual resources and their properties. The aim is to
assess certain properties of these assets with respect
to security or privacy – in the context of certifica-
tion. Because of the potential large amount of data
gathered, their proposed system is split into different
micro-services:

• a group of services (discovery) is responsible for
collecting information about a cloud service and
putting them into data objects described by an on-
tology (see Figure 1 for a small excerpt),

• a group of services (evidence store) is storing the
gathered information in a common database,

• a group of services (assessment) is responsible
for comparing the properties of such an evidence
against a specific set of desired states using a rule
engine.

All services use modern communication proto-
cols, such as gRPC to communicate with each other,
because of the high throughput needed. protobuf is
also used to model and describe the service itself.

Listing 2: Excerpt of the assessment service API described
in (Banse et al., 2023).

1 message Evidence {
2 string id = 1;
3 google.protobuf.Struct evidence =←↩

2;
4 }
5

6 message AssessEvidenceRequest {
7 Evidence evidence = 1;
8 }
9

10 service Assessment {
11 rpc AssessEvidence(←↩

AssessEvidenceRequest)
12 returns (AssessEvidenceResponse);
13 }

Listing 2 shows a very small excerpt of this API
definition, detailing the Assessment service, whose
primary RPC call takes in an Evidence. While the
evidence itself is described within the discovery ser-
vices in terms of an ontology, the listing shows that
this semantic information is partially lost. It is sim-
ply translated as a Struct, which is a protobuf defini-
tion of a generic key-value store. While this keeps
the basic information – similar to a simple JSON – all
other semantic aspects, such as entity inheritance or
links to specific ontologies are lost. Instead a better
approach would be dedicated messages for ontology
types, like Compute, VirtualMachine and so on. Over-
all, it makes it very hard for users of this API because
they need to have a look at the protobuf definition and
additionally analyze how to model the contents of ev-
idence/resource.

The only way to transmit such data and not loose
semantic information would be to use formats like
JSON-LD (Sporny et al., 2020) or other variants of
JSON that are enriched with semantic information.
This has several shortcomings (which are discussed
in more detail in Section 5.2). Therefore, this service
would benefit from a homogeneous solution in which
the semantic data would also be available in the pro-
tobuf schema.

owl2proto: Enabling Semantic Processing in Modern Cloud Micro-Services

201

3.2 Generalization of the Use Case

Numerous similar cases can be found where differ-
ently named—but semantically similar—data need to
be abstracted to the same level to enable, e.g., their
aggregation. Consider the example of a social me-
dia platform for sports activities that allows users
with different types of wearables to upload their ac-
tivities including GPS coordinates, photos, their run-
ning statistics, etc. Aggregating data from different
types of hardware and software manufacturers (e.g.,
smart watches, phones, specialized bike computers,
etc.) implies the need for an ontological knowledge
base that abstracts the most important properties—
and tools that support the work with this knowledge
base in code. Other cases include, for instance, in-
dustrial data sharing platforms or log ingestion and
analytics.

In general, the following requirements for design-
ing a semantic data sharing approach for the cloud
need to be considered:

• RQ1. Keeping semantic information, such as
taxonomies and entity inheritance during the com-
munication between different parts of the system
(e.g. micro-services).

• RQ2. Seamless integration with cloud native
technologies, such as gRPC/protobuf.

• RQ3. Adaptability to the ever-changing world of
DevOps and continuous integration and deploy-
ment.

4 OUR APPROACH: owl2proto

In trying to bridge the world of cloud native frame-
works and ontology design, we choose protobuf as a
means to convert ontology structures. Since protobuf
is already a schema (and service) definition, it is very
well suited to describe the exchanged data in a seman-
tic way. We propose to auto-generate an appropriate
protobuf schema out of a modelled ontology, specifi-
cally in the Web Ontology Language (OWL2) format.
Therefore, we name our approach owl2proto.

Preparation Phase. Figure 2 shows the approach in
detail. Two parties (Sender and Receiver) want to ex-
change semantically enriched data. The first step is
to auto-generate a common protobuf definition out of
the ontology that is shared by both parties (1). Ex-
ecution of the translation process (see Section 4.1) is
only necessary once and when the ontology changes
(see Section 4.3).

Receiver

Sender

Ontology (OWL)Protobuf Definition

Communication Channel
 (e.g. Network, Files)

Objects in Memory

Objects in Memory

RDF triplets

RDF triplets

C++ Classes
Java Classes
Java/C++/Go/...
Data Structures

C++ Classes
Java Classes
Java/C++/Go/...
Data Structures

1

3

2a

2b

5

4a

4b

Figure 2: Our approach on how to exchange semantic data
between a sender and a receiver via a channel.

Semantic Data Exchange. Afterwards, sender
(2a) and receiver (2b) can use the regular protobuf
workflow to generate data structures in a program-
ming language of their choice, e.g. Java/C++/Go or
any other language supported by protobuf. Since pro-
tobuf allows the modular inclusion of different pack-
ages, it allows us to split the auto-generated parts and
the manually modelled parts of the services into dif-
ferent source files. But in the end all protobuf files
will be used in the code-generation of the respective
server/client and exchange objects in the chosen pro-
gramming language. The sender instantiates these
data structures as memory objects and populates them
with the RDF triplets (3) they want to send. Af-
ter the sender initiates the communication (4a), the
receiver can de-serialize the transmitted values back
into memory objects (4b). Finally, the receiver can
access the transmitted RDF triples (5).

4.1 Translating Ontology Entities to
Protobuf Constructs

One of the first steps is to map different concepts
of OWL to protobuf. This includes mapping classes
to messages and data properties as well as object
properties to fields. We chose the OWL format (in-
stead of RDF) because it already includes a struc-
ture containing classes and other concepts that are al-
ready more aligned with concepts in other program-
ming languages. This eases the translation to proto-
buf, whereas a mapping of RDF entities would entail
an additional layer of processing — which is essen-
tially already done by OWL.

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

202

Listing 3: Excerpt of a generated protobuf output based on
the ontology of Figure 1. A full version of the example is
available in the GitHub repository.

1 option (owl.meta) = { 0
2 prefixes: [{
3 prefix: "ex"
4 iri: "http://example.com/←↩

classes"
5 }, {
6 prefix: "owl"
7 iri: "http://www.w3.org/2002/07←↩

/owl#"
8 }]};
9

10 message VirtualMachine { 1

11 1a option (owl.class).iri = "ex:←↩
VirtualMachine";

12 1b option (owl.class).parent = "ex:←↩
Compute";

13 option (owl.class).parent = "ex:←↩
Resource";

14 option (owl.class).parent = "owl:←↩
Thing";

15

16 2 string name = 1 [
17 2a (owl.property).iri = "ex:name",
18 2b (owl.property).parent = "owl:←↩

topDataProperty"
19 2c (owl.property).class_iri = "ex:←↩

Resource"
20];
21

22 3 GeoLocation geo_location = 2 [
23 (owl.property).iri = "ex:has",
24 (owl.property).parent = "owl:←↩

topObjectProperty"
25 3c (owl.property).class_iri = "ex:←↩

Compute"
26];
27

28 4 repeated string block_storage_ids←↩
= 3 [

29 (owl.property).iri = "ex:←↩
hasMultiple",

30 (owl.property).parent = "ex:has"
31 4c (owl.property).class_iri = "ex:←↩

VirtualMachine"
32];
33 }

Listing 3 contains an excerpt of a generated proto-
buf output based on the ontology of Section 3.1. This
illustrates the translation process as follows. For each
OWL class, an associated protobuf message is created
(1 for the VirtualMachine class).

Data Properties. For each data property used in the
class, the (short) name of the property is taken as the

name of the field. Since each property in OWL also
has a type, we also need to map that accordingly. For
primitive types, such as xsd:string, we perform a
simple mapping to protobuf primitive types, such as
string (2).

Object Properties Referring to Blank Nodes.
Properties which are only used in combination with
blank (or anonymous) nodes, are set to the appropri-
ate protobuf message type representing the OWL tar-
get class. This can be seen in 3 . While the OWL
object property is named has, we want to name the
field according to the used OWL class GeoLocation
(converted to geo location). Since GeoLocation
is only used in blank nodes, we can directly use the
translated protobuf message for the field’s type.

Object Properties Referring to Identifiable Nodes.
Properties that refer to other nodes which definitely
have their own IRI and are identifiable are set to the
string datatype and an id suffix is added to the pro-
tobuf field name. In this case, we only store the IRI
referring to the other node instead of the content of the
node itself in the final protobuf message. This can be
seen in 4 , where the hasMultiple object properties
is converted to a string field of block storage ids
since the target type in this class is BlockStorage4.

Retaining Semantic Structure Information. Pro-
tobuf message are well-suited to describe concepts
like entities or OWL classes and their respective as-
sociation to data / object properties. But, in order to
retain the actual semantic information, such as IRIs,
field types and other information contained in lan-
guages such as RDF or OWL, an additional step is
needed. This entails the use of protobuf options in
various forms. Listing 4 in the appendix contains the
protobuf definition of these options. General informa-
tion about the ontology are specified in file options,
directly at the top of the protobuf file (0). Ontology
metadata about classes and properties are modelled as
message annotations (1a , 1b) and field annotations
(2a , 2b , 2c), respectively. Protobuf options are de-
signed in a very efficient way and are not transmitted
over the serialized channel. Instead the sending and
receiving end can extract them out of fields and mes-
sages, as long as they keep their protobuf definitions
in sync.

4Our Prototype implementation has an internal mapping
which object properties are translated to a singular id and
which ones are translated to the plural ids. In the future,
this could be taken from an annotation within the ontology.

owl2proto: Enabling Semantic Processing in Modern Cloud Micro-Services

203

4.2 Modelling Inheritance

Ontologies are inherently connected and use concepts
like (multi)-inheritance. This means that a more con-
crete ontology entity will inherit the properties from
all its parents. This concept does not exist in protobuf.
Furthermore, some ontology entities (mainly non-leaf
nodes) can be considered as interfaces in a program-
ming language, since they hold denominators such as
fields common to all their leaf nodes.

Therefore, we need to flatten the hierarchy of
data properties in the individual ontology entities
when translating them to protobuf messages. For
example, if we look at our example ontology entity
VirtualMachine, we can see that it derives from
Compute and Resource. In this case, we need to
include all data properties of both parent objects
as protobuf fields, as shown in Listing 3 (2 , 3 ,
4). In order to keep the information which an-

cestor class specified the actual property, the option
(owl.property).class iri is used (2c , 3c , 4c).

Furthermore, we want to keep the class hierarchy
information. We make use of the fact that we can
specify certain message options multiple times and
include a (owl.class).parent option for each an-
cestor (1b). For non-leaf nodes we make use of the
oneof keyword to introduce a message that can be
used similar to an interface.

4.3 Reacting to Changes

Every time the ontology changes, a new protobuf file
needs to be generated using owl2proto. This step can
(and should) be automated by a CI/CD system, such
as GitHub actions. For example, a raw OWX file con-
taining the OWL ontology could be stored alongside
a code repository. Changes to this file can trigger a
workflow that generates the protobuf files, so that de-
velopers can directly use it.

Since protobuf is a binary protocol, it uses field
numbers to differentiate between different data fields
within a message and not names. Therefore, to be
compatible with previous versions of a protobuf file,
field numbers must not change or be re-used. Other-
wise, transmitted data will turn up in the wrong field.
This has two implications:

• Multiple invocations of the translation process (on
the same source file) need to produce the same
output in the same order. Especially, the deduc-
tion of field numbers must be deterministic.

• If the source file changes, all fields that exist in
both the original as well as the modified version
of the file need to also have identical numbers.

There are several solutions to this problem, which
we will discuss further, since each of them has their
own specific drawback.

Non-Cryptographic Hash. One possible solution
is to derive a unique field number for each field by its
name, e.g. through the use of a cryptographic hash,
such as xxhash5. But there are some caveats to con-
sider:

• First, field numbers in protobuf are ranging from
1 to 536,870,911 (229). The lowest xxhash imple-
mentation uses 32-bit, so we would need to further
restrict the possible result space of hash 8 times,
leading to more collisions.

• Certain field numbers (namely 19,000-19,999) are
reserved for internal use

• Smaller numbers are more efficiently stored than
larger numbers, contrasting a usual hash algo-
rithm’s way of using the whole result space to
maximize entropy.

Read-in Previous Input. Another possibility is to
read in the previous generated output as an input in
order to assign existing fields the same number. For
the initial generation, one could use a pre-defined or-
dering of fields based on lexical sorting of the field
names and the parent’s name which they are part of.
Intentional space between groups of fields need to be
left for extendability. If fields are removed, one can
leverage the protobuf’s reserved list in order to keep
track of used field numbers. The greatest drawback of
this solution is the need to have the previous version
available, making it hard to maintain.

4.4 Implementation

As part of our research, we provide a prototype im-
plementation of our approach as an Open-Source li-
brary6. The prototype is written in Go and largely
uses the Go standard library to read in OWL in its
XML variant (OWX) and generates the appropriate
protobuf output.

With regards to the consistently problem (see Sec-
tion 4.3), we decided to use a non-cryptographic
hash function, such as xxhash in our prototype im-
plementation, as this approach does not require a
pre-existing proto file, which would have required
some versioning functionality. To generate the unique
field number, we use the name of the ontology
class, the ontology property name and the names

5https://xxhash.com
6https://github.com/oxisto/owl2proto

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

204

of the parent classes as input for the hash func-
tion. The number of parent classes can be arbitrary.
This ensures that the field numbers remain unique
within the proto message, even if fields in differ-
ent proto messages share the same name. An ex-
ample is as follows. The input values for the field
name (cf. Listing 3 1 and 2) are a tuple of
(VirtualMachine,Compute,Resource,name).

Since the numerical range from 19000 to 19999 is
reserved, it is imperative to map the resulting hash
value to the range of 1 to 18999. This is accom-
plished by applying the mathematical modulo func-
tion. Although the numerical range from 20,000 to
536,870,911 is available for use, the range of 1 to
18,999 is adequate for the requirements of our ontol-
ogy. Additionally, smaller numbers take up less space
in protobuf serialization it is also more efficient.

5 DISCUSSION

In this section we discuss whether our approach can
address the requirements that we elicited out of the
use case presented in Section 3.1 and compare our ap-
proach to similar techniques, mainly JSON-LD.

5.1 Addressing the Use Case
Requirements

RQ1. Keeping Semantic Information. We present
an approach that can translate an ontology struc-
ture into a binary serialization format (protobuf),
while keeping all the semantic information, even
when transmitting the data. This is achieved through
the combination of flattening hierarchies, translating
certain types into identifiers and providing pseudo-
interfaces with oneof for certain entities. Finally, the
use of message and field options allow us to embed all
RDF/OWL concepts like IRIs and other annotations
in the protobuf format7, making this requirement fully
addressed.

RQ2. Seamless Integration. By choosing proto-
buf as our translation target, we aim at seamless in-
tegration into the cloud native world. We can eas-
ily integrate our generated messages into cloud na-
tive frameworks, such as gRPC or ConnectRPC since
they use protobuf as their base. In contrast to other
approaches like using gRPC for the general commu-
nication and JSON-LD for the serialization of seman-

7Although not tested, this could potentially even allow
someone to re-construct a complete OWL file out of the
generated protobuf file.

tic data, we can offer one coherent API described in
protobuf. This enables a more seamless developer ex-
perience and we consider this requirement fully ad-
dressed.

RQ3. Adaptability. Arguably this is the hardest
requirement to fulfill. The pace of development in
the modern cloud world can sometimes be astonish-
ing. This also extends to the frequency of API and
data model changes. Therefore, it also stretches to
the development and enhancement of ontologies used
in such services. On one side, our approach can
easily be added into a CI/CD workflow, generating
new protobuf files when ontology files change. On
the other side, some inherit quirks of the protobuf
format make auto-generation of protobuf files them-
selves quite hard. One such aspect is that protobuf
message field numbers must not be changed once
used. This makes it very hard for approaches that
auto-generate those field numbers to a) consistently
generate the same field numbers given the same in-
put and b) to not re-assign already used field num-
bers if the input changes. While we present an initial
approach using non-cryptographic hashes, our solu-
tion has several shortcomings that need further explo-
ration. We therefore consider this requirement par-
tially addressed.

5.2 Comparison with JSON-LD

When using systems that already rely on JSON as a
data format, JSON-LD can provide a useful extension
to increase interoperability. Regarding the technical
usability, JSON-LD has some drawbacks. For ex-
ample, JSON-LD files require dedicated libraries for
processing. Furthermore, JSON-LD embeds or refer-
ences the semantic data in each transmitted message
which can significantly increase overhead. In com-
parison, protobuf is a binary format, which uses pre-
defined structures making it more compact and faster
to serialize/deserialize. Protobuf is therefore often
considered to enable better performance.

Overall, JSON-LD can be considered an alterna-
tive to the protobuf-based approach presented here,
but it presents significant drawbacks in comparison to
protobuf. Protobuf, is the preferred choice for appli-
cations prioritizing performance and data integrity. Its
binary format and pre-defined schema ensure efficient
transmission and robust data consistency. Thus, it un-
derlines the need for easy-to-use and efficient tool-
ing that supports the integration of semantic data into
modern (cloud) technologies.

owl2proto: Enabling Semantic Processing in Modern Cloud Micro-Services

205

6 CONCLUSION AND FURTHER
RESEARCH

In this paper we present owl2proto, an approach to
bridge the world of ontology design with the world of
modern cloud native frameworks and services. Our
approach leverages protobuf, a popular format and
framework for the description of data as well as a bi-
nary representation of the actual transfer. We show,
using an example ontology based on cloud resources,
that owl2proto addresses the requirements of seam-
lessly integrating semantic data into the Cloud.

We do note however, that there is further re-
search to be conducted to fully address requirements
of adaptability, stemming from complex requirements
of protobuf itself. One possible approach could be to
re-use techniques from the efforts to standardize RDF
dataset canonicalization. Furthermore, projects like
protovalidate8 could be used to translate OWL restric-
tions and constraints. Lastly, more validation of the
approach itself using real-world ontologies and use-
cases needs to be performed.

ACKNOWLEDGEMENTS

This work was funded by the Horizon Europe project
EMERALD, grant agreement ID 101120688.

REFERENCES

Banse, C., Kunz, I., Haas, N., and Schneider, A. (2023).
A Semantic Evidence-based Approach to Continuous
Cloud Service Certification. In Proceedings of the
38th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC ’23, page 24–33, New York, NY, USA. As-
sociation for Computing Machinery.

Banse, C., Kunz, I., Schneider, A., and Weiss, K. (2021).
Cloud Property Graph: Connecting Cloud Security
Assessments with Static Code Analysis. In 2021 IEEE
14th International Conference on Cloud Computing
(CLOUD), pages 13–19.

Ben-Shimol, L., Grolman, E., Elyashar, A., Maimon, I.,
Mimran, D., Brodt, O., Strassmann, M., Lehmann,
H., Elovici, Y., and Shabtai, A. (2024). Observability
and Incident Response in Managed Serverless Envi-
ronments Using Ontology-Based Log Monitoring.

Carvalho, R., Goldsmith, M., and Creese, S. (2016). Mal-
ware investigation using semantic technologies. IN-
TELLIGENT EXPLORATION OF SEMANTIC DATA
(IESD 2016).

8https://github.com/bufbuild/protovalidate

Cyganiak, R., Hyland-Wood, D., and Lanthaler, M. (2014).
RDF 1.1 Concepts and Abstract Syntax. W3C Recom-
mendation.

Esteves, B. and Rodrı́guez-Doncel, V. (2024). Analysis of
ontologies and policy languages to represent informa-
tion flows in GDPR. Semantic Web, 15(3):709–743.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P., and
Rudolph, S. (2012). OWL 2 Web Ontology Language
Primer (Second Edition). W3C Recommendation.

Maroc, S. and Zhang, J. (2019). Comparative analysis of
cloud security classifications, taxonomies, and ontolo-
gies. In Proceedings of the 2019 International Confer-
ence on Artificial Intelligence and Computer Science,
pages 666–672.

Nadal, S., Jovanovic, P., Bilalli, B., and Romero, O.
(2022). Operationalizing and automating data gover-
nance. Journal of big data, 9(1):117.

Servos, D. and Osborn, S. L. (2017). Current research and
open problems in attribute-based access control. ACM
Computing Surveys (CSUR), 49(4):1–45.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., and
Lindström, N. (2020). Json-ld 1.1. W3C Recommen-
dation, Jul.

Takahashi, T., Kadobayashi, Y., and Fujiwara, H. (2010).
Ontological approach toward cybersecurity in cloud
computing. In Proceedings of the 3rd international
conference on Security of information and networks.

APPENDIX

Listing 4: The protobuf file defining our OWL options.

1 message EntityEntry {

2 string iri = 1;

3 repeated string parent = 2;

4 }

5 message PropertyEntry {

6 string iri = 1;

7 repeated string parent = 2;

8 string class_iri = 3;

9 }

10 message PrefixEntry {

11 string prefix = 1;

12 string iri = 2;

13 }

14 message Meta {

15 repeated PrefixEntry prefixes = 1;

16 }

17 extend google.protobuf.MessageOptions {

18 optional EntityEntry class = 50000;

19 }

20 extend google.protobuf.FieldOptions {

21 optional PropertyEntry property = 50000;

22 }

23 extend google.protobuf.FileOptions {

24 optional Meta meta = 50000;

25 }

KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

206

