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Abstract: This paper reviews population-based dynamic microsimulation (DMs) models used in policy analysis and 
decision support of social systems and demographics. The application of uncertainty analysis (UA) methods 
is examined focusing on how probabilistic Monte Carlo (MC) simulation technique is being used and reported. 
Secondly, inspired by the expanding possibilities of data, this analysis examines the models' capability to 
uncover finer temporal variations beyond traditional yearly intervals and the use of near real-time data in the 
reported studies. The analysis of the 44 studies included in this preliminary literature review reveals a lack in 
the rigorous application of UA and transparent communication of results, particularly in the social sciences. 
Despite the advances of data availability and modeling, no research attempts were found that would indicate 
a shift of paradigm from historical data-driven models to real-time data. It is suggested that DM studies in 
this context could benefit from some mutually agreed standardized reporting guidelines for UA. This literature 
review serves as a preliminary exploration of the topic, highlighting the need for a more comprehensive and 
systematic survey to thoroughly assess the current state of research.

1 INTRODUCTION  

Dynamic microsimulation (DM) models are 
analytical tools to simulate the behavior of individual 
units over time and predict recurring events based on 
historical data. These models integrate data analysis, 
computational methods, and computer experiments to 
support ex-ante policy analysis, government planning 
and decision making. (Brown & Harding, 2002; 
Harding, 2007; O’Donoghue, 2014; O’Donoghue & 
Sologon, 2023; Sauerbier, 2002; Spielauer and 
Duplirez, 2019). Throughout the simulation, each 
micro-unit, representing diverse population 
characteristics (e.g., age, employment, health status), 
evolves independently through stochastic processes, 
with their states updated over time according to 
current conditions and attributes—a phenomenon 
referred to as "dynamic aging" (see e.g., Burgard et 
al., 2020; Dekkers, 2015). 

Many popular DMs (see in detail e.g., Harding, 
2007; O’Donoghue, 2001) were initially developed to 
address concerns about population aging and to assess 
affordability of the future social protection system. 
Over the last decade, their applications in health and 

labour market studies have been growing 
(O’Donoghue & Dekkers, 2018). Unlike population-
aggregating macroscopic approaches, DMs consider 
individuals separately, which is crucial for 
understanding the complex interconnections between 
factors such as demographics, education, 
employment, and health that influence future 
economic and health outcomes. For a general 
introduction to DMs and their applications, the reader 
is advised to refer to, e.g., O’Donoghue (2001, 2014), 
O’Donoghue and Dekkers (2018), Klevmarken 
(2008), and Zaidi and Rake (2001). 

Times of uncertainty, such as the Ukraine war, 
COVID-19 and past financial crises, have created 
new demands for real-time simulation and 
"nowcasting" (O'Donoghue & Sologon, 2023; see 
also Navicke et al., 2014) to facilitate timely decision-
making in rapidly evolving economic landscape. 
Digital trace data from web browsing and mobile 
applications provide unprecedented regional and 
temporal data granularity, enabling close-to-real time 
modeling of social phenomena, such as predicting 
disease spread (Burgard et al., 2021; Kashyap & 
Zagheni, 2023; Li et al., 2024; O'Donoghue & 
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Dekkers, 2018). With more real-time data, simulation 
models could better capture short-term fluctuations 
instead of producing predictions only on an annual 
level, thus hiding seasonal variations and timely 
insights, e.g., related to healthcare demands or labour 
force participation. However, it seems common that 
administrative data used in many popular DMs 
targeted to public policy analysis (see again e.g., 
Harding, 2007) typically has a time lag (O'Donoghue 
& Sologon, 2023), even if such data is generated 
constantly as by-products of administrative 
transactions.  

Despite the data revolution enhancing simulation 
capabilities (Crato, 2023; Margetts & Dorobatu, 
2023; O’Donoghue & Sologon, 2023), the proper 
accounting of modeling uncertainty in DMs remains 
challenging. To address the inherent stochasticity 
when simulating individual behaviour and 
demographic and economic changes is complex, 
particularly given the (too) high expectations for 
perfect modeling accuracy (Burgard and Schmaus, 
2019; Gilbert et al., 2018; O’Donoghue, 2014; 
O'Donoghue & Dekkers, 2018; Sharif et al., 2012, 
2017).  In modeling studies, this often shifts the focus 
from probabilistic thinking back to traditional, 
deterministic scenario analysis with single-point 
estimates, although it is well-known (see e.g., 
Burgard and Schmaus, 2019; Sharif et al., 2012) that 
for DMs to be useful, they must thoroughly analyze 
potential impacts on populations under various 
scenarios. It's crucial to examine not just the 
outcomes but also the processes leading to them, 
incorporating comprehensive uncertainty analysis 
(UA) of various sources of variation. The authors 
discussing uncertainty and stochasticity in 
demographic modeling include Alho and Lassila 
(2023), Xue et al. (2021), Sabelhaus and Topoleski 
(2007), and Lee and Tuljapurkar (1994). 

Monte Carlo (MC) simulation is a key method for 
handling uncertainty in DMs, offering a robust 
approach to systematically explore how variations in 
inputs affect model outputs. This numerical method 
involves random sampling from distributions and 
repeated simulations using the sampled values. The 
Markov Chain Monte Carlo (MCMC) method, in 
turn, draws mutually dependent samples to generate 
random sequences of state transitions based on 
probabilistic rules (e.g., from logit models build on 
historical data). This process is repeated hundreds or 
thousands of times to simulate the expected behavior 
of the object of interest over time, with calibration 
performed at each step using newly generated 
parameters. As such, the MC simulation mitigates 
misinterpretations from single simulations by 

examining a broad spectrum of possible outcomes, 
thereby capturing the inherent variability in simulated 
population dynamics (Burgard and Schmaus, 2019; 
Marois & Aktas, 2021; Rutter et al., 2011). 
Confidence intervals (CIs) communicate variability 
in outcomes, with larger sample sizes and higher 
number of simulation iterations leading to narrower 
CIs and more precise estimates (Burgard et al., 2020; 
Smithson, 2003; Spielauer & Dupriez, 2019).  

Previous literature reviews and surveys on DMs, 
such as O’Donoghue (2014), Li and O’Donoghue 
(2013), and O’Donoghue and Dekkers (2018), 
provide a comprehensive overview of DMs 
developed over decades (see also Spielauer, 2007; 
Zaidi & Rake, 2001). In past reviews, the lack of 
standardization in reporting practices and incomplete 
validation of models stay as ongoing topic (see also 
Burgard & Schmaus, 2019; Lee et al., 2024). 
However, past studies have not delved deeper into the 
use of probabilistic methods, specifically MC 
approach and related reporting in demography DM 
studies, although best practices of UA have been 
proposed by e.g., Burgard and Schmaus (2019), Lee 
et al. (2024) and Caro (2012). Another gap pertains to 
the scarcity of literature examining whether enhanced 
data accessibility in terms of granularity and 
timeliness have spurred advancements in models 
capable of delivering more accurate and timely 
forecasts, compared to “traditional” DMs those run 
simulations in yearly intervals and are initialized 
using historical data with a time lag of several years 
(see O'Donoghue & Sologon 2023). 

This paper addresses these mentioned gaps by 
conducting a preliminary literature review using the 
Scopus Database, targeting publications from 2000 
onwards with “Dynamic Microsimulation” and 
“Population” or “Demography” in the title, abstract, 
or keywords. The search was limited to peer-
reviewed journals, conference proceedings, books, 
and reviews in English, yielding 158 results. After 
content analysis, based on the title and abstract, 44 
documents focused on dynamic microsimulation 
modeling works targeted mainly to model 
demographic dynamics were selected. In this initial 
review, the focus is on addressing aspects of 
uncertainty analysis rather than technical details. 
Thus, technical/model introduction reports about the 
model construction (e.g., Andreassen et al., 2020; 
Münnich et al., 2021.) were not reviewed since these 
do not focus primarily on conducting simulations, but 
rather introduce e.g., the modules and data 
requirements. Also, as the focus is primarily on DMs, 
some publications utilizing combined micro-macro 
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simulations are not included and, duplicates were also 
excluded.   

In the following section, preliminary findings of 
the review and discussion with the objective to 
inspect the scale and scope of the MC applications are 
provided with aggregated knowledge on the 
conventions such as number of simulations run and 
the use of CIs. Additionally, the modelers' decisions 
regarding the number of simulations in MC, and other 
possible discussion of uncertainty aspects together its 
mitigation methods are emphasized. Secondly, the 
review reveals the time span of the forecasts (e.g., 
annual) and the possible specification of being spatial 
or agent-based model (ABM). These reflects (from 
one perspective) to the data aspects in terms of 
timeliness and granularity. The paper also identifies 
studies that aim to utilize near real-time information 
or continuously updating models. Considering future 
research, other findings related to emerging 
technologies, mainly ML-oriented works, are 
acknowledged although this research mainly omits 
the technical details about the models. 

The paper concludes with suggestions for future 
research. Conclusions are drawn from available 
publication details, and while the literature review is 
not comprehensive, it lays the groundwork for a more 
in-depth study on these schemes. 

2 RESULTS AND DISCUSSION 

In the following results section and related 
discussion, the reader may find it helpful to refer to 
Table 1, which presents basic information of the 
modeling works (author, year), the brief summary of 
main modeling purpose and the findings related to the 
MC simulation and data aspects, as detailed in the 
previous section. We do not specify whether the MC 
is used only in some model parts. Also, if the use of 
MC method is not reported, but repeated simulations 
are applied, it is categorized under the MC. If other 
methods are clearly reported, such as bootstrapping, 
they are marked.  

2.1 Results 

In most of the reviewed studies (30 out of 44) 
MC/repeated simulations is applied (see, Table 1). In 
the set of these 30 studies reporting practices vary: 
seven works did not directly report on using the MC 
method, but it was shown that the simulation had been 
indeed run repeatedly. In 13 entries the number of 
simulations run was not reported and notably, 16 
studies (out of 30)  did  not  report  CIs.  Yet only  two   

Table 1: Reviewed studies of DMs. Legend: [MC]=Monte 
Carlo method used (Yes/No or “-” if unclear and additional 
NR=not reported, if repeated simulation applied without 
reporting the method or “B” if bootstrapping is applied 
instead of MC), [Simrun]=number of simulations run 
(NR=not reported and “-” if MC not applied), 
[CI]=confidence intervals used (if MC used, otherwise “-”) 
[Simstep]=Forecast period (A=annual, M=monthly, 
D=daily) + Detail (spatial (S)/ agent-based (AB). *In 
progress = not yet available since study ongoing but 
reported to be applied.  

Auth. & 
Year Study purpose 

MC/Simrun/
CI/Simstep + 

Detail

Aransiola 
et al. 2024

To assess if expanding Social 
Assistance could reduce infant and 

child mortality in Brazil. 

Yes/10000/Y
es/A 

Archer et 
al. 2021 

To project the prevalence of chronic 
diseases and their economic impacts 

using the Future Elderly Model (FEM) 
in the UK. 

Yes/100/Yes/
A 

Atella et 
al. 2021 

To project future individual health 
status across OECD countries by 
applying several FEM models. 

Yes/NR/Yes/
A 

Baldini et 
al. 2008 

To assess the characteristics of the 
long-term disabled in Italy and the 
evolution of public expenditure for 

long-term care. 

Yes/NR/No/
A 

Ballas et 
al. 2005 

To simulate the basic components of 
population change in Ireland using 

spatial SMILE model.  

Yes/NR/No/
A + S 

Ballas et 
al. 2005 

To simulate urban and regional 
populations in UK. No/-/-/A + S

Becker et 
al. 2024 

To assess the efficiency of COVID-19 
mitigation strategies with the 

CEACOV model in U.S. 
-/-/-/D 

Bonin et 
al. 2015 

To model monetary value of family 
policy measures with ZEW model in 

Germany. 
No/-/-/A 

Böheim et 
al. 2023 

To model the impact of health and 
education on labor force participation 

in US and Germany. 
Yes/12/No/A

Brouwers 
et al. 2016

To study the effects of an ageing 
population on inpatient and elderly 

care with SESIM-LEV model in 
Sweden. 

No/-/-/A 

Chen et al. 
2019 

To model fiscal sustainability of 
healthcare by projecting the health of 

future elders using FEM model for 
Singapore.  

No/-/-/A 

Craig et al. 
2022 

To simulate the long-term health 
impacts in UK. 

Yes/10000/Y
es, In 

progress*/A
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Table 1: Reviewed studies of DMs. Legend: [MC]=Monte 
Carlo method used (Yes/No or “-” if unclear and additional 
NR=not reported, if repeated simulation applied without 
reporting the method or “B” if bootstrapping is applied 
instead of MC), [Simrun]=number of simulations run 
(NR=not reported and “-” if MC not applied), 
[CI]=confidence intervals used (if MC used, otherwise “-”) 
[Simstep]=Forecast period (A=annual, M=monthly, 
D=daily) + Detail (spatial (S)/ agent-based (AB). *In 
progress = not yet available since study ongoing but 
reported to be applied. (cont.). 

Ernst et al. 
2023 

To analyse migration impacts on 
demographics in Germany. 

Yes/NR/No/
A + S 

Flannery 
& 

O'Donogh
ue 2011 

To study the fiscal and redistributive 
impacts of different higher education 

finance structures using the LIAM 
model in Ireland. 

No/-/-/A 

Fukawa 
2011 

To project health/long-term care 
expenditures with the INAHSIM-II 

model in Japan. 

Yes/NR/No/
A 

Head et al. 
2024 

To model time individuals spent in 
different health states in UK. 

Yes/100/Yes/
A 

Horvath et 
al. 2023 

To project healthcare costs over the 
lifecycle using microWELT model in 

Austria. 
No/-/-/A 

Ben 
Jelloul et 
al. 2023 

To forecast morbidity of population 
aged +60 and identify causing factors 

in France. 
No/-/-/A 

Jiang & Li 
2024 

To project the population size and 
share of late middle-aged/older people 

with difficulties/dependence on 
activities of daily living (DL) and 

instrumental activities of DL with the 
CHARISMA model in China. 

Yes, 
NR/1000/No/

A 

Keegan 
2021 

To simulate the distributional impact of 
pension policy scenarios on 

superannuation savings using the 
APPSIM model in Australia. 

No/-/-/A 

Khalil et 
al. 2024 

To predict demographic dynamics in 
Canada with STELARS model.  

No/-/-/A + 
AB 

Kingston 
et al. 2018 

To predict the survival and 
(risk/disease) characteristics and 
related health expectancies in UK 

using PACSim model. 

Yes, NR/10/-
/A 

Kirn 
&Dekkers 

2023 

To simulate with MIDAS_CH model 
the distribution of pension income and 

its underlying processes in 
Switzerland. 

No/-/-/A 

Knoef et 
al. 2013 

To analyse the income distribution of 
the Dutch elderly. 

Yes/NR/No/
A 

Kopasker 
et al. 2024 

To project changes in psychological 
distress given predicted economic 

outcomes. from a tax-benefit UKMOD 
model with SimPaths model in UK. 

Yes, 
NR/1000/Yes

/A 

Lawson 
2016 

To model how demographic change is 
likely to affect household spending 

patterns in the UK. 
Yes/5/Yes/A

Li et al. 
2024 

To model the spread of COVID-1 in 
China. 

Yes, 
NR/10/Yes/D 

+ S, AB

Maitino et 
al. 2020 

To study the future socio-demographic 
structure and the effects of social 

security programmes in Italy. 

Yes/NR/No/
A + S 

Marois & 
Aktas 
2021 

To project the health of cohorts for 
selected EU countries to study the 

effects of risk factors and education on 
future health trajectories using 

ATHLOS-Mic model. 

Yes/NR/No/
A 

May et al. 
2022 

To project the health and service use 
among elderly in Ireland using TILDA 

model.  
Yes/25/No/A

Milne et 
al. 2016 

To model child development from birth 
to age 13 with MELC model and 
studying e.g., changes in family 

circumstances and early education in 
New Zealand. 

Yes, 
NR/10/Yes/A

Nadeau et 
al. 2013 

To model physical activity to inform 
population health policies using 
POHEM-PA model in Canada. 

Yes, 
B/40/Yes/An

nual

Patxot et 
al. 2018 

To model the impact of retirement 
decision and demographics on pension 

sustainability in Spain. 
-/-/-/A 

Rasella et 
al. 2021 

To analyse the prospective effects of 
fiscal policies on childhood health in 

the EU countries and in Italy.  

Yes/1000/Ye
s/A 

Rephann 
& Holm 

2004

To model economic-demographic 
effects of immigration in Sweden using 

the SVERIGE model. 

Yes/NR/No/
A + S 

Spielauer 
& Dupriez 

2019 

To model a variety of demographic and 
health characteristics with DYNAMIS-

POP model in Canada. 

Yes/NR/No/
A 

Spooner et 
al. 2021 

To model epidemics with spatial 
SPENSER model in UK. 

Yes, 
NR/1000/Yes

/D + S

Tamborini 
et al. 2022

To analyze socioeconomic gaps in 
retirement benefits using the MINT 

model in U.S. 
No/-/-/M, A

Tikanmäki 
et al. 2015

To analyse impacts of the pension 
reform on working lives using ELSI 

model in Finland. 

Yes/NR/No/
A 

van 
Sonsbeek 
& Gradus 

2005 

To simulate the budgetary impact of 
the 2006 regime change in the Dutch 

disability scheme. 

Yes/NR/No/
A 

Walker 
2004 

To model the likelihood that more 
Australians aged 65-70 will work +15 

hours per week in a changing 
employment environment. 

Yes/NR/No/
A 

Wu et al. 
2011 

To model several demographic 
processes under various scenarios with 

a Moses in UK.  

Yes/NR/No/
A + S, AB 

Zhang & 
Miller 
2024

To predict the location of new housing 
supply in U.S. 

No/-/-/- + S, 
AB 

Zhang et 
al. 2023 

To model the processes of developing 
depression and care-seeking behaviors 
among U.S children and adolescents. 

Yes, 
NR/20/Yes/

M 
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studies reported using 10 000 and four studies 1000 
simulation runs. In the remainder, the number of 
simulations vary from five to forty. 

Additionally, there is a notable variability in depth 
across publications about the discussion of the 
sources and mitigation of uncertainty. Many studies 
indirectly or directly, but briefly, address uncertainty 
when discussing issues like data availability and 
sample size (see e.g., Becker et al., 2024; Kirn and 
Dekkers, 2023; Rephann & Holm, 2004) or mention 
it broadly as parameter/statistical/MC uncertainty. 
Also, authors commonly discuss of "model error" or 
“model-based bias”, which intersects with the 
uncertainty concept (see e.g., Atella et al., 2021; Jiang 
et al., 2021; Knoef et al., 2013; Kopasker et al., 2024; 
Lawson, 2016; Marois & Aktas, 2021; Spielauer & 
Dupriez, 2019).  

Focusing on data aspects in terms of data 
timeliness, only three pandemic-related models and 
two exceptions from other disciplines seems to offer 
sub-annual observation periods in models, reaching 
daily or monthly level accuracy in simulation results. 
To mention, in their multi-morbidity modeling study, 
although simulation results are presented in yearly 
interval, Kingston et al. (2018) updated individual’s 
characteristics monthly over the simulation time 
period “to achieve a more realistic evolution for 
characteristics which jointly influence each other”, 
similarly than Böheim et al. (2023) regarding labour 
force status.  

Also, to the best of our understanding, only 
epidemiology models by Becker et al. (2024) and 
Spooner et al. (2024) target to produce forecasts using 
near-real-time data with updates. In rest of the 
models, it seems common to use administrative 
statistics with a time lag of at least 2-3 years in model 
initialization.  

Lastly, nine studies reviewed are by their nature 
spatial, including epidemiology studies. Four studies 
combined the ABM method with DMs, three of them 
being also spatial (see again Table 1).  

2.2 Results Analysis 

2.2.1 Uncertainty Analysis 

The literature covered indicates varying practices in 
the application of the MC method and related 
reporting, highlighting a need for common standards 
and/or strategies to improve the transparency and 
comparability of demographic models in the research 
field. This will not only improve the accuracy of 
individual studies but also facilitate more robust 
analyses and comparisons across different research 

efforts in demographic modeling. We justify this 
claim by the often inadequate depth of the discussion 
(and missing information) of MC related details, such 
as the number of simulation rounds (and reasons that 
led to the number) and lack of CIs. The lack in 
reporting CIs aligns also with Smithson (2003), who 
noticed that different disciplines vary considerably 
how frequently they report CIs in published research 
(see also Lappo, 2015; O’Donoghue 2014, 332; 
O’Donoghue & Dekkers, 2018). Kingston et al. 
(2018) notes the lack of CIs as one of their study 
limitations, although the authors also highlight that 
running the simulation iteratively reveals a small 
range of prevalence for multi-morbidity (less than 1 
%), even when the error in transition rates is 
disregarded. Knoef et al. (2013) reported not using 
CIs due the “computational reasons”. Lappo (2015), 
however, states that the omission of reporting CIs 
may be since many microsimulation users are not 
statisticians, perhaps so be in the case of social 
sciences. However, this indicates a prevalent lack of 
established practices in employing methods to convey 
information on result variability across study 
disciplines (see e.g., Li & O’Donoghue, 2013).  

To further explore practices related to the MC 
method, some authors provide the basis (or tests 
made) for selecting the number of simulations such as 
Rasella et al. (2021), who state that a thousand 
simulation runs was chosen after ensuring that the 
estimates were stable and additional runs did not alter 
the point estimates (see also Van Sonsbeek & Gradus, 
2005). Spielauer and Dupriez (2019) claimed that 24 
iterations make MC variation neglectable, whereas 
Aransiola et al. (2024) performed 10k rounds to 
ensure the variation of the parameter values. Overall, 
the selection of the number of MC simulation runs has 
received only limited attention even though it is a 
crucial factor for generating meaningful predictions 
(see e.g., Byrne 2013; Kennedy 2019, Kennedy et al. 
2000). There is a position to analyze more 
comprehensively the specific factors contributing to 
the large variation in the number of simulations, 
especially within studies investigating the same 
phenomena and “sharing” the same uncertainty 
elements. Overall, we can concur with O’Donoghue 
and Dekkers (2018) who noted that alignment 
techniques (not a focus of this study) are so common 
in DMs that most reports do not even mention them, 
despite their significant impact on simulation results. 
This oversight is similar to the treatment of the MC 
method (see also Byrne, 2013; Lorscheid et al., 2012; 
Kennedy, 2019).  

When analyzing the overall use of the MC 
approach, studies reveal differing perspectives on the 

KMIS 2024 - 16th International Conference on Knowledge Management and Information Systems

78



 

 

objectives of modeling: some prioritize analyzing 
current systems without accounting for variations or 
forecasting goals, thus considering repeated 
simulations unnecessary (see e.g., Ben Jelloul et al., 
2023; Flannery & O'Donoghue, 2011). In contrast, 
the majority (30 out of 44) employ the probabilistic 
method to understand system functionality under 
uncertainty. Studies focusing on individual behavior 
and future trends through predefined scenarios and 
single-point estimates may fail to capture the full 
spectrum of potential outcomes or convey the 
inherent uncertainty of modeled phenomena. Such 
approaches might overlook rare yet impactful events, 
whereas the MC accounts for these events and their 
potential consequences (see Fuchs et al., 2018; 
Gilbert et al., 2018; Marois & Aktas, 2021; 
O’Donoghue, 2014; Rutter et al., 2011).  

2.2.2 Data Granularity and Timeliness  

Considering data aspects, the shortcomings of the 
models running yearly intervals have been 
recognized. Salonen et al. (2021) highlight challenges 
in capturing gradual changes such as increase in 
pension age or short social security spells with a 
model allowing transitions in one year time intervals. 
For instance, based on data, the average duration of 
sickness and unemployment spells is one week, 
although these periods accumulate over an 
individual's life course (see also Perhoniemi et al., 
2023; Zaidi and Rake, 2001). Although Kingston et 
al. (2018) provides forecasts in yearly intervals, they 
enhanced the accuracy of their simulation results by 
updating health behaviors and disease conditions on 
a monthly basis. Chen et al. (2019) acknowledges the 
limitation of not modeling shorter disease dynamics 
similarly than Andreassen et al. (2020), who suggest 
that with improved data access and today’s 
computing power, monthly time units could be 
preferable in the MOSART model (renowned for 
evaluating the Norwegian pension system) to avoid 
aggregating data annually and potentially 
overlooking nuances.  

To continue, in an ideal world, employing close-
to-real time data for model calibration would reduce 
the risk of obsolete information affecting transition 
probabilities – an issue that is especially important 
when addressing rapidly evolving matters, such as 
changes in labour market status during economic 
crisis (see e.g., O'Donoghue & Sologon, 2023). To 
the best of understanding, no research efforts in this 
direction were found in this review except 
epidemiology models. The findings align also with 
O'Donoghue and Loughrey (2014), who observed 

that microsimulation models tend to be built on 
historical data (see also Klevmarken, 2008), limiting 
researchers' ability to analyze and monitor recent 
changes and developments.  

However, it's important to note that not many 
phenomena require the daily/monthly forecast 
accuracy and frequent data calibration typical in 
pandemic research. Instead, “traditional” social 
policy models could aim to reduce the delay between 
data collection and utilization, moving from a lag of 
several years to using more recent statistics. This shift 
would better reflect contemporary issues, such as the 
interconnections between labour force participation 
and health status (see O’Donoghue & Sologon, 2023).  

Admittedly, increased granularity and the use of 
more timely data to update transition probabilities 
(together with MC method) add to model complexity 
in regards of model calibration and computational 
demands. Nevertheless, many renowned models in 
the field already require substantial computing power 
and resources for maintenance due to their high 
modularity. Today’s technological capabilities, such 
as cloud computing and big data analytics can help 
overcoming this issue (see Andreassen et al., 2020; 
O'Donoghue & Dekkers, 2018; Richiardi et al., 
2023).  

Looking forward, there may be a trend towards 
simpler models that allow for agile calibration with 
detailed, current data, albeit sacrificing some 
modularity (Harding, 2007; Li & O’Donoghue, 2013; 
Zaidi & Rake, 2001). For instance, localized 
projections (with ABM approach) are vital for 
addressing regional disparities and tailoring policies 
to specific areas. They enhance the relevance of 
simulations and allow for more detailed evaluations 
of policy impacts (see Ballas et al., 2005; Birkin et al., 
2017; Ernst et al., 2023; Wu & Birkin, 2011). Agile 
calibrated models providing timely forecasts could 
potentially be recognized also at the tactical decision-
making level. 

2.2.3 Other Findings 

Machine learning (ML) techniques, in addition to 
being utilized in model calibration tasks, can aid in 
addressing complexity arising from models’ non-
linearities, a topic of ongoing discussion (see e.g., 
Jiang & Li, 2024;  Klevmarken, 2008; Kopasker et 
al., 2024; O’Donoghue & Dekkers, 2018; Wolfson & 
Rowe, 2014). The integration of ML could enable the 
development of more dynamic and predictive models, 
which could better address complex societal 
challenges and facilitate faster decision-making. 
These methods could uncover unobserved, detailed 
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behavioural patterns among individuals thus 
improving simulation granularity and supporting e.g., 
ABM constructions (see discussion of Margetts & 
Dorobatu, 2023). That is, model structures where 
individual model components interact with each other 
instead of being passive and detached (see e.g., Axtell 
2000). Although there are few applications within the 
reviewed works, Khalil et al. (2024) provide an 
innovative application of explainable artificial 
intelligence (xAI) with the aim to interpret ML 
models, elucidating input-output relationships in 
complex settings.  This study can be regarded as a 
pioneering effort in integrating ML within DM 
schemes in the research domain. Other studies like 
Rodriguez et al. (2022) in healthcare and other ML-
assisted models (see e.g., Shi et al., 2015) offer also 
insights into applying advanced methods, potentially 
inspiring social science research.  

3 CONCLUSION 

This paper presented a literature analysis on the use 
of probabilistic methods such as Monte Carlo 
simulation in dynamic microsimulation models and 
related reporting practices of probabilistic outcomes. 
This study, to the best of our knowledge, is the first 
review that addresses the use of such methods and 
related challenges in reporting the analysis findings in 
the given context.  

It was shown that the current literature often lacks 
a statistical treatment of the model and if given, there 
are no standard practices on how a (MC) simulation 
is conducted and presented. As another important 
finding, we did not find evidence that attempts were 
made to develop DMs towards nowcasting with the 
help of extensive real-time datasets in other study 
contexts than epidemiology.  

The results imply that population-based modeling 
studies, a predominant focus of the review conducted, 
could adopt probabilistic thinking to address the 
inherent uncertainty associated with complex socio-
economic processes to make the modeling results 
more robust and reliable. Common guidelines for UA 
application and related communication/reporting 
practices could enhance the transparency of modeling 
insights as the vulnerability of results would become 
better communicated to policymakers and less weight 
could be put on single-point estimates. Also, 
transition probabilities calculated sub-annual periods 
can lead to more accurate simulations by 
incorporating finer temporal variations, e.g., monthly 
updates can capture short-term trends or immediate 
impacts of policy changes that yearly intervals might 

miss. In this regard, it was concluded that the research 
field could benefit from the development and 
application of smaller, more targeted models that 
could offer greater agility in terms of maintenance, 
particularly in incorporating updated data.  

This paper has limitations, notably not being a 
fully comprehensive systematic review. Nonetheless, 
it provides some preliminary directions for future 
research efforts to improve probabilistic treatment of 
DMs in the context of demographic models. 
Additionally, future research could assess the role of 
emerging technologies, such as cloud computing, 
machine learning techniques, and big data analytics. 

The final limitation of this research to be pointed 
out is the method used to assess data granularity, 
categorizing models as agent-based or spatial. Future 
evaluations could provide an extended analysis of 
variables like demographic precision. A more 
comprehensive review could delve deeper into 
whether the nature of the phenomena being modeled 
warrants more frequent updates to transition 
probabilities. The review focused only on the MC 
method with frequentist viewpoint, omitting 
Bayesian methods or distinguishing bootstrapping 
from MC approach. It also did not cover the 
alignment techniques used together with the MC, or 
other reporting practices such as goodness-of-fit or 
standard error statistics.  
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