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Association Rule Mining (ARM) is a popular technique in data mining and machine learning for uncovering
meaningful relationships within large datasets. However, the extensive number of generated rules presents
significant challenges for interpretation and visualization. Effective visualization must not only be clear and
informative but also efficient and easy to learn. Existing visualization methods often fall short in these areas.
In response, we propose a novel visualization technique called the "Trie of Rules.” This method adapts the
Frequent Pattern Tree (FP-tree) structure to visualize association rules efficiently, capturing extensive infor-
mation while maintaining clarity. Our approach reveals hidden insights such as clusters and substitute items,
and introduces a unique feature for calculating confidence in rules with compound consequents directly from
the graph structure. We conducted a comprehensive evaluation using a survey where we measured cognitive
load to calculate the efficiency and learnability of our methodology. The results indicate that our method sig-

nificantly enhances the interpretability and usability of ARM visualizations.

1 INTRODUCTION

Association Rule Mining (ARM) is a popular tech-
nique in data mining and machine learning that aims
to uncover interesting and meaningful relationships
within large datasets (Agrawal et al., 1993). These re-
lationships, expressed as “association rules,” provide
valuable insights for decision-making across various
domains, such as market basket analysis, healthcare,
and fraud detection (Shaukat Dar et al., 2015). How-
ever, ARM can produce a vast number of rules, mak-
ing it difficult to interpret them effectively. Therefore,
effective visualization techniques are crucial to help
analysts and domain experts make sense of the dis-
covered rules and extract valuable knowledge.
Current visualization approaches for ARM re-
sults struggle with significant limitations when dis-
playing a large number of rules while retaining es-
sential information. Existing solutions often either
provide incomplete information, limiting the ability
to fully interpret and explore the rules, or produce

(2 https://orcid.org/0000-0001-9815-5067
@ https://orcid.org/0000-0002-7297-0984
¢ https://orcid.org/0000-0003-4395-7702
4@ https://orcid.org/0000-0001-9366-5113

72

Kudriavtsev, M., McCarren, A., Lee, H. and Bezbradica, M.

Efficient Visualization of Association Rule Mining Using the Trie of Rules.
DOI: 10.5220/0012995500003838

Paper published under CC license (CC BY-NC-ND 4.0)

overly large and cluttered charts that are challenging
to navigate (Fister et al., 2023; Jentner et al., 2019;
Fernandez-Basso et al., 2019). These limitations re-
sult in ineffective information display, hindering the
practical utility of ARM in real-world applications
where understanding complex patterns quickly and
accurately can be essential.

In response to these challenges, we developed
a novel visualization technique named the “Trie of
Rules.” Our approach addresses the problem of inef-
fective information display by capturing a wealth of
information and maintaining a manageable size when
dealing with large datasets. Additionally, it reveals
implicitly hidden insights such as substitute pairs or
clusters of rules. The Trie of Rules method is based
on an adapted Frequent Pattern Tree (FP-tree) struc-
ture, traditionally used to visualize transactions. We
propose a novel way to interpret this structure to vi-
sualize association rules, making our approach both
easy to learn and efficient.

A key aspect of our approach is its efficiency. We
designed the Trie of Rules to enable users to com-
plete tasks more quickly and accurately when dealing
with complex datasets, while maintaining a learnabil-
ity level comparable to existing methods.
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The main contributions of this paper are as fol-
lows:

* Development of a Visualization Strategy: We
introduce an efficient visualization technique for
ARM results that captures extensive information
while remaining easy to interpret.

* Comparison with Popular Methods: We com-
pared our method with other popular visualiza-
tion techniques and demonstrated that it outper-
forms them in terms of efficiency. This was
accomplished via a survey with 34 participants,
where we measured efficiency and learnability.
Our approach allows users to complete tasks more
quickly and accurately, while being as easy to
learn as existing methods.

* Confidence Calculation for Compound Conse-
quents: The Trie of Rules approach introduces a
novel property that significantly enhances further
exploration of knowledge and increases speed ef-
ficiency when examining the ruleset. This feature
allows the calculation of Confidence for rules with
compound consequents directly from the graph
structure, avoiding additional clutter on the plot
and making it easier to read and interpret.

This paper is structured as follows: Section 2 pro-
vides background information on ARM and related
concepts. Section 3 reviews existing visualization
methods and their limitations. Section 4 details our
proposed Trie of Rules methodology, including the
FP-tree background and the visualization approach.
Section 5 describes our evaluation methodology, sur-
vey construction, and results. Finally, Section 6 sum-
marizes the contributions and suggests directions for
future research.

2 BACKGROUND

Association Rule Mining is a data mining technique
that aims to discover interesting relationships and pat-
terns within large datasets (Agrawal et al., 1993). The
fundamental concepts of ARM include association
rules, ruleset, transactions, frequent set, antecedent
and consequent, support, and confidence (Geng and
Hamilton, 2006; Wu et al., 2010; Luna et al., 2018).

Transactions refer to the records or instances in a
dataset, often representing events or actions. In retail,
for example, a transaction might correspond to a cus-
tomer’s purchase, where each item bought constitutes
a transaction item.

A frequent set is a subset of items that frequently
occur together in transactions. The identification of
frequent sets is a crucial step in ARM, and it involves

finding sets of items whose occurrence surpasses a
predefined minimum co-occurrence frequency thresh-
old.

An association rule is a relationship or pattern
that describes the co-occurrence of items in a dataset.
It is typically represented as an implication of the
form A — B, where A is the antecedent and B is the
consequent. An example of an association rule could
be: If a customer buys item X, they are likely to buy
itemY.

A ruleset is a collection of association rules de-
rived from a dataset. The ruleset provides a compre-
hensive view of the discovered patterns and relation-
ships within the data. Each rule in the ruleset con-
tributes to the understanding of associations between
different items.

Metrics are essential for describing association
rules, with support, confidence, and lift being the
most popular. However, many other metrics exist as
well (Hahsler, 2024). These metrics assess the value
of rules in various ways. Crucially, they describe the
relationship between the antecedent and the conse-
quent, which means they can only be applied to rules.
The exception to this is support, which can also be ap-
plied to frequent sequences and is frequently used as
a metric for the threshold during the mining process.

3 RELATED WORK

Visualizing ARM results is recognized as a challeng-
ing task, as indicated by surveys conducted by (Hah-
sler and Chelluboina, 2011; Fernandez-Basso et al.,
2019; Jentner et al., 2019; Alyobi and Jamjoom,
2020; Menin et al., 2021; Fister et al., 2023). The
complexity arises from the need to represent rules vi-
sually while considering the multitude of associated
metrics and distinguishing between antecedents and
consequents, leading to various proposed approaches.

Traditionally, rules are presented as plain tables
or text-based methods due to their simplicity and fa-
miliarity. However, these methods often fail to ef-
fectively convey complex relationships, and there is
much room for improvement.

Although various methods exist, they can be clas-
sified into three distinct groups: scatter plots, matrix-
based methods, and graph-based methods.

The scatter plot approach, one of the more ba-
sic methods, was introduced by (Jr. et al., 1999). This
method employs a two or three-dimensional plot (Ong
et al., 2002) to depict rules as dots. Although effective
in handling a high number of rules, scatter plots lack
insight into the structure of rules, requiring manual
examination of the text-based representation of the
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original dataset.

Matrix-based visualization, as presented
by (Hofmann and Buhmann, 2000), places an-
tecedent and consequent sets on axes and displays
metric values at their intersections. Despite its
efficiency in revealing rule components, it suffers
from scalability issues, particularly as the dataset
size increases. A more modern implementation is
provided by (Varu et al., 2022).

An improvement to the matrix-based approach
is the grouped matrix-based visualization, as pro-
posed by (Hahsler et al., 2017), which alleviates size
concerns by grouping similar rules. However, scala-
bility remains a challenge.

Graph-based visualization, widely employed in
ARM (Klemettinen et al., 1994; Rainsford and Rod-
dick, 2000; Buono and Costabile, 2005; Ertek and
Demiriz, 2006; Fernandez-Basso et al., 2019; Alyobi
and Jamjoom, 2020; Menin et al., 2021), provides a
clear representation of rule structures. However, the
main problem remains how to show all the items in a
rule and distinguish between antecedents and conse-
quents. This problem leads to either excessive size of
the plot or low interpretability. Current methods rely
on the idea that two types of nodes exist—items and
rules. Items that go into (directed edge) the rule are
antecedents, and edges that go out of a rule node are
consequents.

These three main categories are implemented in
popular libraries such as arulesViz for R (Hahsler
et al., 2017) and arules for Python (Hahsler, 2023).

In conclusion, existing ARM visualization meth-
ods exhibit limitations in terms of scalability, inter-
pretability, and representation of rule structures. The
proposed methodology in the next section aims to ad-
dress these challenges by incorporating FP-tree prin-
ciples to create a more effective visualization.

4 METHODOLOGY

4.1 FP-tree Background

A Frequent Pattern Tree (FP-tree), also known as a
trie or prefix tree, was introduced by (Han et al.,
2004). It is commonly used in the rule mining process
and is known for its efficiency (Bodon and Rényai,
2003; Grahne and Zhu, 2003; Shabtay et al., 2021;
Shahbazi and Gryz, 2022). This data structure is de-
signed to compactly represent transactions by com-
pressing the database.
An FP-tree is constructed in the following steps:

1. Scan the Dataset: The transaction database is
scanned to determine the count of each item.
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2. Order Items: Items in transactions are sorted in
descending order of item counts.

3. Build the Tree: The FP-tree is built by read-
ing each transaction and mapping it to a path in
the tree, ensuring common prefixes are shared to
compress the data.

Table 1: Initial Transactions.

Transaction ID | Sorted items
1 F,C,A,M
2 F C,B,K
3 B.E
4 FC,A M

(b) Step 2

B:1\;
S

D)

&
(c) Step 3

(d) Step 4

Figure 1: Progress of FP-tree construction from transactions
in table 1.

Figure 1 demonstrates how the FP-tree structure
is dynamically built using transaction from table 1,
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efficiently representing the frequent itemsets within
the dataset.

FP-trees are particularly useful in applications
where identifying frequent itemsets is crucial, such as
market basket analysis, bioinformatics, and web us-
age mining. Their ability to efficiently handle large
datasets makes them a powerful tool in data mining
tasks. However, the potential of this data structure for
storing association rules has not been fully explored.

4.2 Proposed Visualization Approach

To leverage the FP-tree structure for visualizing as-
sociation rules, we propose a novel approach called
the "Trie of Rules.” This method adapts the FP-tree to
effectively represent association rules, enabling users
to comprehend the hierarchical relationships between
items and the formation of rules while also reducing
the size of the final plot by overlapping rules with
common items.

Concept of Rules. In the Trie of Rules, each path
from the root (Null node) to a node represents an asso-
ciation rule, where the nodes along the path form the
antecedent, and the final node represents the conse-
quent. Figure 2 illustrates the structure of a rule in the
Trie of Rules. The item p is depicted as an element
that exists in the trie but is not part of the evaluated
rule (f,c,a — m). However, it can potentially be-
come part of another rule. This structure allows users
to trace hierarchical relationships between items, en-
hancing the interpretability and manageability of the
visualization of the rules.

Node m contains Support, Confidence, Lift values of

rule: f,c,a—-m

Figure 2: The structure of a rule in a Trie of Rules.

Metrics Display. Metrics are displayed through
the color and size of nodes, and optionally, through
the size of the caption near nodes. For instance, in
Figure 4a, node size captures confidence while node
color represents lift, although various other configu-
rations are possible.

Our approach also facilitates the discovery of ad-

ditional insights, such as clusters and substitute items:

* Clusters: Groups of items that frequently oc-
cur together can be easily identified through their
shared paths in the FP-tree structure, revealing
natural clusters within the data.

* Substitute Items: Items that can replace each
other in transactions are revealed through the
overlapping paths in the tree, providing insights
into alternative itemsets.

4.3 Confidence for Compound
Consequent

A unique feature of our approach is the ability to
calculate confidence for rules with compound conse-
quents directly from the graph structure. The confi-
dence of a compound-consequent rule can be calcu-
lated as the multiplication of confidence values of the
nodes in the consequent, as illustrated in Figure 3.

Conf: 0.7 Conf: 0.6
L J L J
h T

Compound
Consequent

Antecedent

28
Rule A,B — C,D
Conf(A,B—C,D)=0.7"0.6 =0.42

Figure 3: A rule with a compound consequent.

Although this method specifically applies to con-
fidence, the support value for items with a compound
consequent does not require additional calculation.
The support of a rule A, B,C — D is equal to the sup-
port of the rule A, B — C, D, as both rules refer to the
same set of item occurrences within the dataset. Since
the support measures the co-occurrence of items, the
support for both rules remains the same. However, it
is important to note that while the support is identical,
the confidence differs. The confidence of A,B — C,D
is based on how often C, D appear given A, B, whereas
the confidence of A,B,C — D is calculated based on
how often D appears given A, B, C.

The example rule in Figure 3 is part of a longer
path within the trie, but we extract this portion to
demonstrate that any section of the path can be taken
as a rule. The figure also shows the item E, which
exists in the trie but is not part of the current rule.

4.4 Case Study

For the implementation and testing of the Trie of
Rules methodology, we used the ”Online Retail Logs”
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Association rule:
null ~A—-B-C

i
antecedent | consequent

!
null - A+ B
!

PINK TEACUP

GREEN TEACUP

ROSES TEACUP

LB PINK POLKAD!

(b) Section A

Figure 4: (a) Trie of Rules visualization of the ARM results for the online retail dataset without captions displayed. (b)

Zoomed section A of Figure 4a. LB stands for Lunch Bag.

dataset (Chen, 2015). This dataset, characterized
by its large size and sparsity, contains 3,663 unique
items and 18,484 transactions. The minimum support
threshold for the ARM algorithm was set to 0.015,
resulting in 234 association rules. We used the FP-
growth algorithm (Han et al., 2000) to process the
dataset and our developed library (implementation of
the Trie of Rules methodology!) to produce the graph
file.

The resulting Trie of Rules was visualized as a
graph structure using Gephi 0.9.2 (Bastian et al.,
2009). The default overlay method Yifan Hu” (Hu,
2006) in Gephi was applied to enhance the clarity of
the visualization.

Figure 4a illustrates the Trie of Rules generated
from the Online Retail dataset. The visualization
highlights clusters, the hierarchical structure of asso-
ciation rules, and substitute items, providing valuable
insights into the dataset.

There are several valuable implications we can
draw from exploring Figure 4b:

¢ The branch that starts with LB RE D forms various
rules that consist solely of Lunch Bag (LB) items
of different designs: Vintage, Pink Polkadot, Cars
Blue, etc. We can infer that these bags are of-

Uhttps://github.com/ARME-interpretation/Trie-of-rules
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ten bought together in various designs. Based on
this, we can propose selling these items as sets.
Moreover, sets of color palettes can be formed
based on the association rules observed in the
Trie of Rules, for example, (RED,VINTAGE)
or (RED,SUKI DESIGN,PINK POLKADOT).
Given that LB RED starts this branch, we can im-
ply that LB RED is the most popular and could be
the ”default” item in these sets.

The branch that starts with PINK TEACUP cre-
ates several strong rules in the dataset. The color
and size of the nodes indicate high Lift and Con-
fidence values. However, this branch forms just
two rules:

1. PINK TEACUP — GREEN TEACUP

2. (PINK TEACUP,GREEN TEACUP) —
ROSES TEACUP

The first rule is a sub-rule of the second. We
can imply that these items are often bought
together with high probability. As with the
previous branch, we can propose selling these
items as sets of various designs. In this
case, only one color palette can be proposed:
(PINK,GREEN,ROSES).
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S EVALUATION

Evaluating visualization approaches for Association
Rule Mining (ARM) is a complex task. Previous stud-
ies have employed various methods to assess the ef-
fectiveness of visualization techniques:

* Some researchers simply invite one or two experts
to provide subjective feedback on their method’s
effectiveness (Menin et al., 2021; Varu et al.,
2022).

* Others demonstrate the utility of their visualiza-
tion techniques using “validation through awe-
some example” (Ong et al., 2002; Leung and
Carmichael, 2009).

* Another common approach is to outline the
advantages and disdavantages of the proposed
methods without conducting rigorous user stud-
ies (Fernandez-Basso et al., 2019; Jentner et al.,
2019; Hahsler and Chelluboina, 2011; Fister
et al., 2023).

However, those methods are not considered as
robust enough and objective; literature suggests us-
ing more comprehensive evaluation methodologies,
such as those described by (Elmgvist and Yi, 2012),
emphasising the importance of assessing cognitive
load and user efficiency, especially when dealing with
complex visualization tasks. Cognitive load refers to
the amount of cognitive resources required to perform
a task. As highlighted by (Yoghourdjian et al., 2021;
Henike et al., 2020; Huang et al., 2009), it provides a
quantitative measure to compare the efficiency of dif-
ferent visualization methods, making cognitive load a
suitable metric in our study. A conceptual construct
of cognitive load in the context of visualization effi-
ciency (Huang et al., 2009) is illustrated in Figure 5.

Our evaluation focuses on measuring efficiency
and learnability, similar to the approach used
by (Huang et al., 2009). The evaluation process in-
volved a carefully designed survey and tasks, struc-
tured as follows.

5.1 Survey Construction

We conducted a survey, which was approved by the
ethical committee of [University Name]. The par-
ticipants, 34 individuals with higher education back-
grounds, completed the survey remotely on their own
computers. We utilized the LimeSurvey platform to
collect their responses and to record the time taken
to answer each question. Participants were informed
that their response times were being tracked.
Although the survey was anonymous, we ensured
a diverse pool by using surveyswap.io, limiting po-

Domain complexity —*
L Mental
effort
. Cognitive
—|
Data complexity cost
__i| Response
Task complexity — time

Visual complexity |

Demographic complexity — Response |iCognitive
o

accuracy |igain

Time complexity  —|

Casual factors Assessment factors

Figure 5: The construct of cognitive load for visualization
understanding.

tential participants to those with higher education in
technical fields. Additionally, 14 participants were
second-year computer science students from [Univer-
sity Name], consisting of 9 females and 5 males. This
approach provided a balanced demographic, enhanc-
ing the robustness and interpretability of the results.
The survey took approximately 50 minutes for
each participant and included four sections, one for
each type of visualization: scatter plot, matrix-based,
graph-based, and our proposed Trie of Rules ap-
proach. The sections were presented in a random
order for each participant. At the beginning of the
survey, participants were given a short introduction to
ARM to ensure they could perform the given tasks.
Each section contained 9 questions:

* One introductory question to assess the ease of
understanding the visualization method on a scale
from 1 to 10, measuring learnability.

 Four simple questions focusing on tasks such as
finding the support or confidence of a rule and
identifying the rule with the maximum support or
confidence.

» Four complex questions requiring deeper anal-
ysis, such as determining relationships between
rules, identifying substitute items, assessing clus-
ters, counting rules with a specific item, and find-
ing the longest rule.

Participants were not limited in time and were
asked the same questions across different visualiza-
tion methods but with varying items to ensure consis-
tency.
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5.2 Measured Metrics

The following metrics were measured to evaluate the
effectiveness of the visualization techniques:

* Response Time (RT): The time taken to complete
each task. Shorter response times indicate more
efficient visualizations.

* Response Accuracy (RA): The correctness of
the answers provided. Higher accuracy indicates
more effective visualizations.

Mental Effort (ME): Self-reported effort on a
scale of 1 to 10. Lower mental effort suggests that
the visualization is easier to understand and use.

To standardize the results and facilitate a fair com-
parison across different visualization methods, we
calculated z-scores for these metrics following the
methodology proposed by (Huang et al., 2009). The
z-score transformation normalizes the data by sub-
tracting the mean and dividing by the standard devia-
tion of the respective metric, resulting in a standard-
ized score with a mean of 0 and a standard deviation
of 1. The formula for calculating the z-score is:

X—nu
Z =
c
where X is the raw score, u is the mean of the
scores, and G is the standard deviation.
We used the following formula for visualization
efficiency:

E =Zgra —ZyE — ZRt

In this formula, E represents the efficiency via
cognitive load, Zg4 is the z-score for response accu-
racy, Zyr is the z-score for mental effort, and Zgr is
the z-score for response time. This metric captures
the trade-off between accuracy, effort, and time, pro-
viding a comprehensive measure of visualization ef-
ficiency. High efficiency is achieved when high ac-
curacy is associated with low mental effort and short
response time.

5.3 Survey Results and Analysis

The results of our evaluation are summarized in Ta-
ble 2 and Table 3.

In terms of accuracy, the Trie of Rules method
demonstrated better performance on complex ques-
tions (0.59) compared to the other methods (Matrix:
0.17, Graph: 0.29, Scatter: 0.23). This indicates that
while the Trie of Rules may be novel and less famil-
iar to users, its structured representation of associa-
tion rules enables more accurate analysis of complex
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relationships. However, for simple questions, the ac-
curacy of the Trie of Rules (0.44) was on par with the
Scatter plot (0.44) and better than the Matrix (0.34)
and Graph (0.20) methods. This suggests that while
the Trie of Rules is effective for both simple and com-
plex tasks, its advantage becomes more pronounced
with increased complexity.

Regarding mental effort, all methods showed no
significant difference, as indicated by the ANOVA test
results (p-value < 0.05). This indicates that the com-
plexity of the questions impacted time and accuracy
rather than mental effort. The Scatter plot required
the least effort (2.57), probably because it is the most
familiar and commonly used scientific visualization
method. The Trie of Rules method showed moderate
mental effort (3.11), indicating that while it is a novel
approach, it is not significantly more challenging to
understand and use compared to existing methods.

The response time for simple questions was
slightly higher for the Trie of Rules (56 seconds) com-
pared to the other methods, with the Scatter plot being
the fastest (40 seconds). This suggests that users may
need more time to familiarize themselves with the
Trie of Rules. However, for complex questions, the
Trie of Rules (35 seconds) performed on par with the
Scatter plot (35 seconds), indicating that once users
become familiar with the method, they can analyze
complex information just as quickly as with more tra-
ditional methods.

5.4 Discussion

The results indicate that the Trie of Rules method of-
fers a significant advantage in terms of accuracy and
efficiency, particularly for complex questions, while
maintaining a moderate mental effort comparable to
existing methods.

The slightly higher response time for simple ques-
tions indicates that there is a learning curve associ-
ated with the Trie of Rules. This could be due to its
novel representation compared to more familiar visu-
alization methods like the Scatter plot. However, the
improved accuracy and efficiency for complex ques-
tions highlight the potential benefits of this method,
especially in scenarios where users need to analyze
intricate relationships within the data.

Furthermore, the findings suggest that the benefits
of the Trie of Rules may become more apparent with
larger datasets and more complex association rules.
Future studies could explore the impact of different
dataset sizes and structures on the effectiveness of the
Trie of Rules. For instance, with twice the number of
data points, the advantages of the Trie of Rules in han-
dling complex information efficiently might be even
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Table 2: Means of response time, accuracy, mental effort, and efficiency on simple questions.

Trie of Rules | Matrix | Graph | Scatter

Time (sec.) 56.00 43.00 | 73.00 | 40.00
Accuracy 0.44 0.34 0.20 0.44
Effort 3.11 3.32 3.03 2.57
Efficiency 0.23 -0.46 | -2.76 2.99

Table 3: Means of response time, accuracy, mental effort, and efficiency on complex questions.

Trie of Rules | Matrix | Graph | Scatter

Time (sec.) 35.00 40.00 | 46.00 | 35.00
Accuracy 0.59 0.17 0.29 0.23
Effort 3.11 3.32 3.03 2.57
Efficiency 1.89 -1.99 | -1.56 1.66

more pronounced.

Overall, the Trie of Rules method demonstrates
promising potential for enhancing the interpretability
and usability of ARM visualizations. By offering a
structured and efficient way to represent association
rules, it can help users uncover hidden patterns and re-
lationships within large datasets, ultimately facilitat-
ing better decision-making and knowledge discovery.
Future work will focus on developing software tools
to facilitate the adoption of this methodology and fur-
ther optimizing the user interface and experience to
improve the efficiency of the visualization process.

6 CONCLUSION

Association Rule Mining is a valuable technique for
uncovering hidden patterns in large datasets, and the
efficiency of individuals interpreting these results is
greatly influenced by the effectiveness of the visual-
ization techniques employed. Existing visualization
methods often struggle with scalability, interpretabil-
ity, and the effective representation of rule structures,
limiting their practical utility in real-world applica-
tions.

In this paper, we introduced a novel visualization
technique called the “Trie of Rules.” This method
leverages the FP-tree structure to compactly and ef-
fectively represent association rules, addressing the
common issues faced by traditional visualization ap-
proaches. Our approach not only captures a wealth
of information and reveals implicit insights, such as
clusters and substitute items, but also maintains man-
ageable visualization size by overlapping common
items.

We conducted a comprehensive evaluation to
compare the Trie of Rules with existing visualiza-
tion methods through a survey measuring cognitive

load. The results demonstrated that our method out-
performs others in terms of efficiency, particularly in
handling complex queries, while maintaining compa-
rable learnability.

Our findings indicate that the Trie of Rules
method significantly enhances the interpretability and
usability of ARM visualizations. Future work will
focus on developing software tools to facilitate the
adoption of this methodology and further researching
how user interface and user experience can be opti-
mized to improve the efficiency of the visualization
process.
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