
Quantum Neural Network Design via Quantum Deep Reinforcement
Learning

Anca-Ioana Muscalagiu a

Babes, -Bolyai University, Cluj-Napoca, Romania

Keywords: Quantum Deep Reinforcement Learning, Neural Architecture Search, Quantum Neural Network,
Parameterized Quantum Circuit, Quantum Machine Learning, Variational Quantum Algorithm.

Abstract: Quantum neural networks (QNNs) are a significant advancement at the intersection of quantum computing
and artificial intelligence, potentially offering superior performance over classical models. However, designing
optimal QNN architectures is challenging due to the necessity for deep quantum mechanics knowledge and the
complexity of manual design. To address these challenges, this paper introduces a novel approach to automated
QNN design using quantum deep reinforcement learning. Our method extends beyond simple quantum circuits
by applying quantum reinforcement learning to design parameterized quantum circuits, integrating them into
trainable QNNs. As one of the first methods to autonomously generate optimal QNN architectures using
quantum reinforcement learning, we aim to evaluate these architectures on various machine learning datasets
to determine their accuracy and effectiveness, moving towards more efficient quantum computing solutions.

1 INTRODUCTION

Neural Architecture Search (NAS) is a key paradigm
in deep learning, playing a significant role within
the field of Automated Machine Learning (AutoML)
(Elsken et al., 2019). The objective of AutoML is to
apply effective machine-learning techniques to a vari-
ety of problems automatically, reducing reliance on
manual engineering and leveraging domain-specific
expertise. NAS achieves this by automating the de-
sign of optimal neural network architectures for var-
ious tasks. This approach not only enables the dis-
covery of new architectures for unexplored problems
but also has the potential to optimize existing bench-
marks across different domains. By using search al-
gorithms, NAS explores a vast space of potential ar-
chitectures, aiming to minimize an objective function
that measures performance, such as various loss func-
tions. The search iteratively refines itself, improving
upon the most promising architectures to discover su-
perior solutions.

Extending this concept to quantum computing,
Quantum Neural Network Architecture Search (QN-
NAS) automates the design of Quantum Neural Net-
works (QNNs). QNNs integrate classical neural lay-
ers with parametrized quantum circuits (PQCs), har-
nessing quantum mechanics for enhanced data pro-

a https://orcid.org/0009-0000-3139-4311

cessing capabilities. In QNNAS, the first and the
last layers are fixed classical layers tailored to the in-
vestigated problem. The input layer transforms the
classical data and loads it into a quantum register,
while the output layer extracts the expectation values
from the qubit register back to their classical encod-
ing. The focus of QNNAS is on optimizing the hidden
layers, which are generated through the architecture
search algorithm. This involves exploring configura-
tions such as the number of qubits per layer, types of
quantum operations, and inter-layer connectivity. By
fixing the input and output layers, the algorithm can
concentrate on fine-tuning the hidden layers for max-
imum efficiency and effectiveness.

Automating the design of these networks is crucial
due to the complexities involved in designing PQCs,
which require extensive quantum mechanics knowl-
edge. Automation simplifies this process, making
QNNs more accessible and practical for various appli-
cations. The development of optimal QNNs through
QNNAS holds promise for significant advancements
in quantum machine learning, potentially revolution-
izing the field by solving problems previously deemed
too complex.

In the following sections, this paper explores
Quantum Neural Network Architecture Search (QN-
NAS), focusing on automating the design of Quantum
Neural Networks (QNNs). Firstly, the paper outlines

560
Muscalagiu, A.
Quantum Neural Network Design via Quantum Deep Reinforcement Learning.
DOI: 10.5220/0012997500003837
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Computational Intelligence (IJCCI 2024), pages 560-567
ISBN: 978-989-758-721-4; ISSN: 2184-3236
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

our original contributions and reviews the state of the
art, comparing classical computing approaches with
the developments brought by quantum algorithms ap-
plied in QNNAS across three primary research direc-
tions. Afterwards, we provide a section about theoret-
ical foundations, which covers the basic concepts be-
hind our methodology: reinforcement learning, quan-
tum computing, and quantum reinforcement learn-
ing (QRL), highlighting differences from classical RL
and potential quantum speedups. The investigated ap-
proach discusses our modelling of the quantum rein-
forcement task and the training process of the agent.
Furthermore, we present some initial experiments, in-
cluding the experiemental settings and results, which
validate the feasibility of the approach. Finally, the
paper concludes with insights and future development
directions for our proposed technique.

1.1 Original Contributions

This paper introduces a novel approach to Quantum
Neural Architecture Search (QNNAS), a field that has
been scarcely explored and predominantly addressed
through classical methodologies. Our research distin-
guishes itself in several ways:

• Novel Approach. To the best of our knowledge,
this work is one of the first to apply QRL specifi-
cally to optimize Parameterized Quantum Circuits
(PQCs). Prior studies have focused on construct-
ing general quantum circuits, using quantum state
fidelity as the primary metric. While general cir-
cuits can be part of a learning process and are of-
ten less costly to implement, they lack the flexi-
bility that PQCs offer. General circuits are typi-
cally fixed in structure and do not allow for easy
modification of parameters to adapt to new data or
learning objectives, making them less suitable for
tasks like machine learning. Therefore, in con-
trast to previous work, we design PQCs through
QRL and integrate them into Quantum Neural
Networks (QNNs), using the accuracy of these
QNNs as a metric. The performance is measured
after training the generated architectures on spe-
cific datasets in the context of the machine learn-
ing problem they were designed for. This repre-
sents a significant departure from existing litera-
ture of QRL applied in QNNAS.

• Theoretical and Practical Contributions. We not
only provide a comprehensive theoretical model
of the QRL algorithm tailored for this applica-
tion but also present a practical implementation.
Our proof of concept, which includes a publicly
available QRL implementation for QNN circuit
construction, successfully generates an architec-

ture for classifying the Iris dataset (Fisher, 1988).
This demonstrates the practical viability of our ap-
proach.

Our research combines theoretical innovation with
practical application, laying a foundation for future
investigations and implementations of QRL in opti-
mizing QNN architectures.

2 CURRENT STATE OF THE ART

The current literature on Quantum Neural Archi-
tecture Search (QNNAS) is significantly influenced
by advancements in Classical Neural Architecture
Search (NAS). While NAS has a substantial and well-
established corpus of research with over 1000 papers
published, QNNAS is still in its early stages, with
most studies emerging in the last two years. This
slower growth is due to the relatively recent devel-
opment of Quantum Neural Networks (QNNs). The
approaches in QNNAS generally adapt classical NAS
techniques to the specific structure and constraints of
QNNs, utilizing both discrete and continuous repre-
sentation methods.

Classical approaches to QNNAS often utilize re-
inforcement learning (RL) or evolutionary algorithms
(EAs) for discrete architecture optimization. Exam-
ples include the benchmark RL method (Kuo et al.,
2021), which trains an agent to place gates in quan-
tum circuits to minimize circuit length while main-
taining fidelity, and EQAS-PQC (Ding and Spector,
2022), an evolutionary algorithm that evolves QNN
architectures through genetic operations, evaluating
fitness based on QNN fidelity. Continuous represen-
tation approaches, such as differentiable architecture
search (DARTS), model circuits as directed acyclic
graphs (DAGs) and use a weighted sum of primitive
operations for differentiable search, achieving high fi-
delities in QNN architectures for tasks like 2-qubit
Bell states and 4-qubit circuits (Zhang et al., 2022).

While classical approaches have made significant
contributions to QNNAS, quantum approaches offer
the potential for remarkable improvements in perfor-
mance and efficiency. Among these quantum ap-
proaches, QDARTS (Wu et al., 2023), EQNAS (Li
et al., 2023) and QRL (Chen, 2023) have emerged
as the most recent research directions with promis-
ing outcomes in comparison to their classical coun-
terparts.

EQNAS combines the classical EAs applied in
QNNAS with quantum computing. It represents
quantum neural architectures as a chromosome en-
coded in a quantum register and employs quantum
operations to evolve the population of candidate ar-

Quantum Neural Network Design via Quantum Deep Reinforcement Learning

561

chitectures. As far as we know, this is the only study
in the current literature that applies the quantum cir-
cuits to machine learning tasks, achieving notable re-
sults. Specifically, their algorithm improves the accu-
racy of QNNs by up to 5% and significantly reduces
the number of parameters compared to the original
QNN. Our study similarly utilizes these evaluation
metrics. In contrast to their method, which solely op-
timizes known architectures, our approach extends to
both optimizing existing architectures and generating
entirely new ones for previously unexplored problems
in quantum machine learning.

Another research direction is QDARTS, a quan-
tum version of the classical DARTS algorithm, repre-
sents QNNs as directed acyclic graphs (DAGs) and
uses quantum operations to optimize the computa-
tions. One of the tasks on which the authors applied
QNNAS was image classification. In this experiment,
the optimized QuantumDARTS model was compared
to benchmark QCNN and CNN models from the liter-
ature, on the MNIST dataset. QuantumDARTS con-
sistently outperformed both, demonstrating superior
accuracy and cost-efficiency with fewer parameters,
its performance reminaing robust under circuit noise
conditions.

The last of the novel methods applied in QN-
NAS that has shown potential is quantum reinforce-
ment learning (QRL) (Chen, 2023). This approach
is based on the modeling of the Classical Reinforce-
ment Learning Framework for QNNAS (Kuo et al.,
2021), aiming to further optimize it through the in-
troduction of quantum operations. In this approach,
the agent’s role is to design a quantum circuit that
achieves the desired outcome. The environment rep-
resents the quantum circuit itself, and the agent in-
teracts with it by selecting quantum gates and plac-
ing them at specific locations within the circuit. Our
method aims to continue to pave the path for this par-
ticular research direction, which is very scarcely and
least explored among all three. We focus on studying
the automated optimization and design of actual pa-
rameterized quantum circuits (PQCs) trained on ma-
chine learning tasks, not only of general circuits. Un-
like previous research, which primarily used fidelity
as a metric, we use accuracy as our metric to evalu-
ate their performance on the learning task. Further-
more, we integrate much more complex circuits and
adopt a different modeling of the reinforcement learn-
ing problem. While previous approaches generated
circuits with two or at most three qubits, our method
aims to significantly enhance the efficiency and effec-
tiveness of QRL in optimizing quantum neural net-
work architectures by using larger and more complex
circuits.

3 THEORETICAL BASIS

In this chapter, we present the theoretical foundations
necessary for defining our methodology and modeling
of the problem, covering essential concepts in both
reinforcement learning and quantum computing.

3.1 Deep Reinforcement Learning

Reinforcement Learning (RL) is a machine learning
paradigm where an agent interacts with an environ-
ment E to maximize cumulative rewards. The agent
perceives the state s ∈ S of the environment and takes
actions a ∈ A , leading to state transitions and receiv-
ing rewards r. The agent’s behavior is defined by a
policy π : S → A , aiming to find an optimal policy π∗

that maximizes the expected return:

π
∗ = argmax

π
E

[
∞

∑
t=0

γ
trt+1 | π

]
, (1)

where γ ∈ [0,1] is the discount factor. Q-Learning
is an off-policy RL algorithm that learns the optimal
action-value function Q∗(s,a), representing the ex-
pected utility of taking action a in state s, which is
initially set to arbitrary values, such as zero or small
random values, to indicate that the utility of these ac-
tions is unknown. The Q-value update rule is:

Q(st ,at)← Q(st ,at)+α

[
rt+1 + γmax

a′
Q(st+1,a′)

−Q(st ,at)] ,
(2)

where α is the learning rate. Deep Q-Learning uses a
neural network, the Deep Q-Network (DQN), to ap-
proximate the Q-value function. The network param-
eters θ are optimized to minimize the loss:

L(θ) = E(s,a,r,s′)∼D

[(
r+ γmax

a′
Q(s′,a′;θ)

−Q(s,a;θ)
)2]

,

(3)

where D is the experience replay buffer storing tuples
(s,a,r,s′).

3.2 Quantum Computing

In this section, the fundamental concepts of quantum
computing essential for understanding Quantum Neu-
ral Networks (QNNs) are introduced. Qubits, analo-
gous to classical bits, are the basic units of quantum
information. Unlike classical bits, a qubit can exist in
a superposition state, expressed in bra-ket notation as:

|s⟩= α|0⟩+β|1⟩, with α,β ∈C, and |α|2 + |β|2 = 1
(4)

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

562

Here, |0⟩ and |1⟩ are the basis states. During
measurement, a qubit collapses to one of these states
with probabilities |α|2 and |β|2, respectively. Quan-
tum gates, represented by unitary operators U , modify
qubit states. This concept extends to multi-qubit sys-
tems, typically initialized in the computational basis
state |0⟩⊗n.

3.3 Parameterized Quantum Circuits.
Quantum Neural Networks

Parameterized Quantum Circuits (PQCs) are quantum
circuits with gates that depend on a set of trainable pa-
rameters, similar to the weights in an Artificial Neural
Network. These circuits are used in variational algo-
rithms where the parameters are optimized to min-
imize a cost function. Quantum Neural Networks
(QNNs) use PQCs to model and learn from data, con-
sisting of an input layer, a series of parameterized
quantum gates (similar to hidden layers in classical
neural networks), and an output measurement. Dur-
ing training, the parameters of the quantum gates are
adjusted to minimize a loss function, akin to weight
updates in classical neural networks. An example of
a PQC is displayed in Figure 1:

Figure 1: Example of a PQC architecture.

A Quantum Neural Network is composed of sev-
eral essential components, which include:

• Encoding Layer. Prepares input data of any data
type for quantum processing by encoding or trans-
forming it into a suitable numeric representation
through classical operations. This layer is crucial
for data preprocessing, enhancing expressibility,
and preserving information.

• Parameterized Quantum Circuit. Consists of vari-
able quantum gates with trainable parameters. It
includes the encoding circuit, which encodes clas-
sical data into a quantum register using Rx ro-
tations based on input features, and the parame-
terized circuit, comprising repeated Rx(θ), Ry(θ)

or Rz(θ) rotations and an entangling scheme with
CX , CY or CZ gates. The parameters θ represent
the trainable weights which get updated during
training.

• Post Processing Layer. Receives the probability
vector from the quantum circuit, containing the
probabilities of measuring states |i1..in⟩, and com-
putes expectation values for possible outputs.

The learning process in a Quantum Neural Net-
work (QNN) involves adjusting the parameters θ of
the quantum gates to minimize a loss function L(θ).
The parameter update rule can be expressed as:

θt+1 = θt −η∇θL(θt) (5)

where θt represents the parameters at iteration t, η is
the learning rate, and ∇θL(θt) is the gradient of the
loss function with respect to the parameters.

3.4 Quantum Reinforcement Learning

Quantum Reinforcement Learning (QRL) lever-
ages quantum computing to enhance Reinforcement
Learning (RL) algorithms by exploiting superposi-
tion, entanglement, and quantum parallelism. In
QRL, the classical neural network in the Deep Q-
Network (DQN) algorithm is replaced with a Quan-
tum Neural Network to approximate Q-values (Du
et al., 2020).

The QRL framework retains essential components
of classical Q-learning: a target network, epsilon-
greedy policy, and experience replay. In this pa-
per, we employ the Double Q-Learning Algorithm
(Van Hasselt et al., 2016), which addresses overesti-
mation bias by using two sets of Q-values: the policy
network for action selection and the target network
for value estimation. The Q-network PQC, Uθ(s), is
parameterized by θ, with the target network Uθδ

(s)
being an episodic snapshot of Uθ(s). This method re-
duces bias, leading to more accurate action value esti-
mations and improved performance in reinforcement
learning tasks.

4 INVESTIGATED APPROACH

In this section, we outline the methodology adopted in
our study, encompassing the detailed modeling of the
reinforcement learning task and the subsequent train-
ing process of the quantum agent.

Quantum Neural Network Design via Quantum Deep Reinforcement Learning

563

4.1 Modelling of the Reinforcement
Learning Task

In this paper, we propose the following modelling
for the reinforcement task: A state in the environ-
ment is defined as a parameterized quantum circuit
(PQC), reflecting the current configuration of quan-
tum gates. Subsequently, an action involves the place-
ment of a quantum gate within the circuit architecture.
The agent selects actions that determine the type of
the gate to be added to the PQC. Afterwards, the re-
ward is measured through the accuracy of the gener-
ated QNN when assessed on a specific dataset, which
acts as the primary performance metric for the opti-
mization process.

Our method allows the agent to incrementally
build a PQC, adding one layer at a time. The agent
can position the following types of quantum gates on
these layers:

• Parameterizable Gates. These gates are essen-
tial in parameterized quantum circuits, function-
ing similarly to weights in artificial neural net-
works. The specific gates used include parame-
terizable rotation gates such as RX (θ), RY (θ), and
RZ(θ). Each gate performs a rotation around a
specific axis on the Bloch sphere with angle θ.

• Entanglement Gates. A few of the gates in this
category are CX, CY, and CZ, which are respon-
sible for creating quantum entanglement between
qubits.

• Standard Gates. Additional standard gates like
RX, RY, and RZ may be used to perform basic
quantum operations.

Figure 2 illustrates an example of a state in the en-
vironment, depicting the architecture of a parameter-
ized quantum circuit (PQC) after the agent has placed
the gates on the layers.

The central part of the figure represents the archi-
tecture of the PQC, which is integrated with the input

and output layers to form the actual QNN. The input
layer can handle various types of data, such as text for
supervised learning tasks or states for reinforcement
learning problems. Depending on the specific ma-
chine learning task, the output layer can generate dif-
ferent metrics, including probabilities for each class
in classification problems, Q-values for reinforcement
learning, or other relevant outputs.

At each step of the process, the current state,
which represents the architecture of a parameterized
quantum circuit (PQC), is incorporated into the quan-
tum neural network (QNN) to generate a new child
network. This child network is then trained on a cus-
tom dataset tailored to the specific task. For super-
vised learning problems, the performance of the child
network is evaluated by assessing its accuracy on the
dataset. This accuracy metric serves as the reward, in-
dicating how well the generated architecture handles
the given problem.

On the other hand, in reinforcement learning
tasks, the child network acts as an estimator for the
agent within the environment. The agent’s actions
are based on the current PQC architecture and in-
volve estimating the values of these actions using the
generated PQC. The training involves playing the ac-
tions within the environment, which provides feed-
back in the form of rewards. Here, the performance
consists of the best reward obtained by the agent in
the subproblem, guiding the agent’s learning process.
This iterative cycle of generating, training, and eval-
uating the child network continues until the end of
the episode, with the goal of refining the PQC archi-
tecture to optimize performance for the given task,
whether it is a supervised learning or reinforcement
learning problem.

At the end of an episode, which consists of a series
of steps, the environment is reset with an empty archi-
tecture, prompting the agent to place gates anew from
the beginning. An episode concludes after a fixed
number of steps, ideally set to less than 10. This limi-

Figure 2: Overview of the Generated Circuit from the Environment State.

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

564

tation is intentional, aiming to create simple architec-
tures that are less prone to overfitting. The primary
goal of Quantum Neural Architecture Search (QN-
NAS) is not only to achieve high accuracy but also
to minimize the number of layers and parameters re-
quiring training. Despite the fixed number of steps per
episode, the agent has the flexibility to skip placing a
gate on a layer, which leads to generating architec-
tures with a variable length.

4.2 Agent Training Process

In order to reach an optimal policy that generates high
performance QNNs, the agent must undergo training
for multiple episodes within the environment. An
overview of the entire training process is displayed
in Figure 3. During each episode, the agent oper-
ates within an environment where it performs actions,
specifically choosing and placing quantum gates in
the PQC. Each of these actions, along with the re-
sulting rewards, are systematically stored in the Ex-
perience Replay Buffer. This buffer plays a crucial
role by maintaining a diverse set of experiences that
are utilized as input during training, thereby prevent-
ing the agent from overfitting to recent experiences
and enhancing its ability to generalize across differ-
ent states.

The actual quantum agent is represented through
the Controller Network Trainer, which utilizes the ex-
periences stored in the Experience Replay Buffer to
compute optimal action values. It achieves this by
estimating the current Q-values, which quantify the
expected cumulative reward of executing specific ac-
tions in given states. These Q-values are critical as
they guide the agent in understanding the long-term
benefits of its actions. The Policy Network, which is
the core decision-making component of the agent, se-
lects actions based on its current Q-value estimates.
This network’s parameters are updated by minimiz-
ing the loss function derived from the computed Q-

values, thereby improving its policy and enabling the
agent to make more informed decisions about which
quantum gates to place in the PQC.

To ensure the stability and consistency of the
training process, the Target Network provides stable
Q-value targets. This network is periodically updated
to match the Policy Network’s parameters. This peri-
odic update is essential for mitigating oscillations and
preventing divergence that can occur during training.
The Target Network offers a stable reference for the
Policy Network, facilitating steady learning progres-
sion. The interaction between the Policy Network and
the Target Network ensures that the agent’s learning
process remains robust and reliable over time.

Overall, this training process equips the quantum
agent with the capability to effectively learn and refine
the architecture of PQCs. By optimizing the place-
ment of quantum gates, the agent aims to enhance the
performance of quantum neural networks (QNNs),
achieving a balance between high accuracy and mini-
mal complexity. The ultimate objective is not only to
improve the accuracy of QNNs but also to minimize
the number of layers and parameters, thereby reduc-
ing the risk of overfitting and enhancing the general-
izability of the quantum models.

5 INITIAL EXPERIMENTS

To evaluate the effectiveness of our proposed Quan-
tum Neural Architecture Search (QNNAS) approach,
we conducted some initial experiments to create a
proof of concept for the proposed method. The ex-
periment focused on generating architectures to clas-
sify irises using the well-known Iris dataset. These
experiments aimed to assess the capability of our re-
inforcement learning-based framework in generating
efficient parameterized quantum circuits (PQCs) tai-
lored for specific machine learning tasks.

Figure 3: Overview of the Training Process in our Quantum Reinforcement Learning Approach.

Quantum Neural Network Design via Quantum Deep Reinforcement Learning

565

5.1 Experimental Setup

The initial experiments were conducted under specific
reinforcement learning hyperparameters and an opti-
mized architecture for the controller network. The
maximum length of the architecture, which represents
the state, was set to 4, based on the difficulty of the
problem. Given that the Iris classification task should
not require overly complex architectures, limiting the
length to 4 layers ensures that the generated parame-
terized quantum circuits (PQCs) remain manageable
in both size and complexity. While playing the en-
vironment, the agent had a set of possible gates to
choose from, including rotation gates RX (θ), RY (θ),
RZ(θ), and entanglement gates CX, CY, CZ. These
gates provide the necessary operations to create and
manipulate quantum states effectively.

The reinforcement learning framework was con-
figured with a discount rate of 0.99, which ensures
that the agent values future rewards almost as much
as immediate rewards, promoting long-term strategy
over short-term gains. The learning rate was set to 1
× 10−4, allowing the agent to update its policy grad-
ually and avoid drastic changes that could destabilize
the learning process.

The architecture of the controller network was
carefully designed to facilitate effective decision-
making. It included an initial linear layer that mapped
the input features (4 dimensions) to a higher dimen-
sional space (16 dimensions), followed by a ReLU
activation function to introduce non-linearity. The
next layer was a quantum layer incorporating RX (θ),
RY (θ) and RZ(θ) rotations operating on a 16-qubit
register, which processed the quantum states and pro-
duced the observation values, from which the Q-
values for each of the seven possible actions were ex-
tracted. This design ensures that the controller net-
work can effectively process input data and determine
the optimal quantum gates to place within the PQC.

5.2 Experimental Results

As previously mentioned, the initial experiments fo-
cused on the classification problem of Iris flowers,
categorized into three different classes. The dataset
for this experiment was the Iris dataset, comprising
150 samples. The input features, which included the
length and width of the sepals and petals measured in
centimeters, determined the number of qubits in the
generated parameterized quantum circuit.

The agent was tasked with generating a PQC ar-
chitecture from scratch to achieve a high classification
accuracy. The resulting architecture, as shown in Fig-
ure 4, consisted of a combination of rotation and con-

trolled gates. Specifically, it included layers of RX (θ)
and RY (θ) gates applied to individual qubits, followed
by entanglement created through CY gates.

Figure 4: Generated Architecture.

5.2.1 Results Analysis

The generated PQC was trained using the custom
dataset, and its performance was evaluated based on
the classification accuracy. The best accuracy attained
by the generated architecture was 70%. This result
serves as a proof of concept, demonstrating the feasi-
bility of our reinforcement learning-based approach
to effectively design quantum circuits for machine
learning tasks. However, it is important to note that
further analysis and optimization of the best architec-
tures for the controller network are necessary to en-
hance performance.

The experimental setup and results indicate that
the agent was able to learn and generate PQC archi-
tectures that are capable of performing the given task
with a reasonable degree of accuracy. The architec-
ture generated was relatively simple, with a limited
number of layers and parameters, aligning with our
objective of minimizing complexity to avoid overfit-
ting.

These initial experiments demonstrate the feasi-
bility of our approach and set the stage for further
optimization of the QNNAS framework. While they
highlight the potential of QRL in generating effective
PQC architectures, it is important to note that compar-
isons were not possible for the Iris classification task,
as prior work focused mainly on generating Quantum
Convolutional Neural Networks (QCNNs). These ini-
tial experiments serve as a proof of concept, and in
future work, we aim to generate QCNNs using the
proposed method in order to compare with quantum
evolutionary approaches.

6 FURTHER ADVANCEMENTS

As previously mentioned, this paper introduced a
novel approach to Quantum Neural Architecture
Search using Quantum Reinforcement Learning. In
future work, we will conduct extensive experiments

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

566

across various machine learning tasks and architec-
tures to better understand and optimize our approach.

The set of problems for which we aim to au-
tomatically design QNN architectures encompasses
both reinforcement learning and supervised learn-
ing tasks. In the context of reinforcement learn-
ing, we plan to focus on well-known environments
such as the CartPole environment and Frozen Lake.
These environments will allow us to test the capabil-
ities of our QNNAS framework in generating effec-
tive QNNs that can learn optimal policies and adapt
to their conditions. For supervised learning tasks,
our experiments will focus on classification problems
using established datasets, specifically the Iris and
MNIST datasets. We will continue our work with
the Iris dataset, aiming to improve the performance
of our generated architectures. On the other hand, the
MNIST dataset will help us evaluate the robustness
and generalization capability of our approach in gen-
erating QCNNs and compare our results with other
quantum approaches.

By conducting these experiments across both rein-
forcement learning and supervised learning domains,
we intend to compare the performance of our gen-
erated QNNs against benchmark architectures in the
state of the art of Quantum Machine Learning.

7 CONCLUSION

In this paper, we have presented a novel approach to
Quantum Neural Architecture Search (QNNAS) us-
ing Quantum Reinforcement Learning (QRL). Our
proposed method automates the design of Quantum
Neural Networks (QNNs) by generating parameter-
ized quantum circuits (PQCs) tailored to specific ma-
chine learning tasks. This proof of concept has
demonstrated the feasibility and potential of our ap-
proach through initial experiments, particularly in the
context of classifying the Iris dataset. The experimen-
tal results underscore the capability of our reinforce-
ment learning-based framework to generate efficient
PQCs, paving the way for future work that will in-
volve a broader range of machine learning tasks and a
variety of controller network architectures.

8 CODE AVAILABILITY

The implementation of our approach is pub-
licly available at https://github.com/915-Muscalagiu-
AncaIoana/QNNAS-Implementation.

ACKNOWLEDGEMENTS

The work presented became real with the help of our
supportive professors. Therefore we would like to ex-
press our gratitude to Associate Professor Maria Iu-
liana Bocicor.

REFERENCES

Chen, S. Y.-C. (2023). Quantum reinforcement learning for
quantum architecture search. In Proceedings of the
2023 International Workshop on Quantum Classical
Cooperative, pages 17–20.

Ding, L. and Spector, L. (2022). Evolutionary quantum ar-
chitecture search for parametrized quantum circuits.
In Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, pages 2190–2195.

Du, Y., Hsieh, M.-H., Liu, T., and Tao, D. (2020). Expres-
sive power of parametrized quantum circuits. Physical
Review Research, 2(3):033125.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural
architecture search: A survey. The Journal of Machine
Learning Research, 20(1):1997–2017.

Fisher, R. A. (1988). Iris. UCI Machine Learning Reposi-
tory. DOI: https://doi.org/10.24432/C56C76.

Kuo, E.-J., Fang, Y.-L. L., and Chen, S. Y.-C. (2021). Quan-
tum architecture search via deep reinforcement learn-
ing. arXiv preprint arXiv:2104.07715.

Li, Y., Liu, R., Hao, X., Shang, R., Zhao, P., and Jiao, L.
(2023). Eqnas: Evolutionary quantum neural architec-
ture search for image classification. Neural Networks,
168:471–483.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep re-
inforcement learning with double q-learning. In Pro-
ceedings of the AAAI conference on artificial intelli-
gence, volume 30.

Wu, W., Yan, G., Lu, X., Pan, K., and Yan, J. (2023).
QuantumDARTS: Differentiable quantum architec-
ture search for variational quantum algorithms. In
Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J., editors, Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Re-
search, pages 37745–37764. PMLR.

Zhang, S.-X., Hsieh, C.-Y., Zhang, S., and Yao, H. (2022).
Differentiable quantum architecture search. Quantum
Science and Technology, 7(4):045023.

Quantum Neural Network Design via Quantum Deep Reinforcement Learning

567

