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Abstract: Food security is responsible for food availability, access and price stability. Food import is used to ensure
availability when local production is inadequate and diversity when local production is not possible. Food
import prediction is one of the tools used to ensure food security. In this case study, we analyze Neural
Network Forecasting models applied to a food import dataset to understand whether these models, when
applied to small time series, perform better than statistical or regression models. And if it is better to use short
or long forecast horizons.

1 INTRODUCTION

In 1996 the World Food Summit (Shaw, 1996), de-
fined food security as the condition in which all indi-
viduals have access to food in a simple and economi-
cal way. There are four important aspects to consider,
as defined by the Food and Agriculture Organization
(FAO) (FAO, 2006):

• Availability. Food availability depends on local
production, import, distribution, and market.

• Stability. Stability in food security is about the
access and can depend on political or economical
conditions.

• Access. Access to food is physical (it is physically
available near where the consumer lives) and eco-
nomical (it is not expensive).

• Utilization. Food utilization is related to nutri-
tional ability, preparation, and healthcare.

Food imports are used to help insufficient local
production, to ensure stable prices, and to increase the
diversity of food availability.

To ensure food security and to assist economic
planning, the main tool is forecasting, a mix of art (be-
cause to select the model to use is based on expert’s
experience) and science based on historical data, used
to predict future requirements. Unfortunately, there
is no best prediction model, due to the infinite be-
haviors of history. In practice, different models are
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tested to find the one with the best performance for
each time series, using some measurement that evalu-
ates the quality of the prediction.

In our research, we analyze complex datasets that
contain several time series that cover production, ex-
port, and import of different products from different
countries. Regularities are rare, forcing the neces-
sity to use an approach in which multiple models are
tested to identify the best one for each time series. In
this work, only Neural Network models are analyzed,
with the aim of improving our forecasting system and
enhancing the prediction accuracy.

The rest of the paper is organized as follows. Sec-
tion 2 a literature review is presented where Machine
Learning algorithms are used for food import predic-
tions. Section 3 presents the main concepts used in
the article. Section 4 describes the dataset used in the
experiments. Section 5 describes the algorithms used,
with a short description of each of them. The results
of the experiments are described in Section 6. Sec-
tion 7 concludes this work.

2 RELATED WORKS

Forecasting can be obtained using one of several mod-
els available for analysis, from simple linear models
(Mahalakshmi et al., 2016) to ones based on neural
networks (Mahmoud and Mohammed, 2021). One of
the most used models is ARIMA (Auto-regressive In-
tegrated Moving Average), studied in (Sharma et al.,
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2018; Fattah et al., 2018; Mahajan et al., 2020).
ARIMA is just a member of a rich set of models com-
prising SARIMAX (ARIMA for Seasonal series with
eXogenous variables) (Choiriyah et al., 2020). Be-
cause ARIMA is a linear model, it is not able to
detect non-linear behaviors. In this case, it is pos-
sible to use other models as Even Gray Forecast-
ing model (EGF) (Song et al., 2020) or Recursive
Dynamic model (Sheng and Song, 2019), but sev-
eral others are available. A rich class of non-linear
models is based on neural networks, such as models
based on Recurrent Neural Network (RNN) (Alka-
abi and Shakya, 2022; Khargharia et al., 2022) and
Convolutional Neural Network (CNN) (Rathod et al.,
2018). In recent years, an alternative to the RNN
has emerged: the Transformer, based on the Atten-
tion Mechanism (Vaswani et al., 2017). This model
is more efficient and scales better than classical RNN,
and, given its properties, it has been used also in time
series models (Wen et al., 2022).

In the article (Mio et al., 2023) they compare 33
models, discovering that the SARIMAX and KNN-
based models are competitive against more complex
strategies. In theory, the main problem of complex
models is the high number of parameters to train,
which, together with the small size of time series,
does not allow one to obtain sufficiently robust mod-
els. However, this hypothesis needs to be verified.

In this work we investigate Neural Network mod-
els specific to time series (Table 3) as Transformer
(Liu et al., 2023), N-BEATS (Neural basis expan-
sion analysis for interpretable time series) (Oreshkin
et al., 2019), N-HiTS (Neural hierarchical interpola-
tion for time series) (Challu et al., 2023), DLinear
(Dense Linear Neural Network) (Zeng et al., 2023),
NLinear (Reversible normalization for accurate time-
series) (Kim et al., 2021) TCN (Temporal convolu-
tional Neural Network) (Hewage et al., 2020), TFT
(Temporal fusion transformers) (Lim et al., 2021),
TiDE (Time-series dense encoder) (Das et al., 2023),
TSMixer (Lightweight MLP-Mixer model for multi-
variate Time Series) (Ekambaram, 2023)

3 BACKGROUND

In a time series (TS) there exists a temporal order
between its values, that is, the value in the time
slot tk depends on what happened in previous ones
. . . , tk−2, tk−1.

In a time series (TS) there exists a temporal order
between its values. For any integer i, the value i in
tk−i indicates the past time slot from the reference tk,
and is named lags.

A TS is univariate (for each time slot there is a sin-
gle value) or multivariate. It can contain exogenous
variables (input features) that can be used to improve
prediction. In turn, the exogenous variables can be
classified into two categories: 1) variables whose val-
ues are known only in the past (for example the daily
temperature), 2) variables whose values are known
also in the future (for example the day of week).

In this work, we are interested only in univariate
TS with exogenous variables of the first category.

Let X be the input features, y the target, yi the cur-
rent target value to predict, and L ⊂N+ the set of past
lags (for example L = {1,2}) from the current time
slot t = 0, F the forecasting model used for the pre-
dictions and H (for example H = {0}) the forecasting
horizon (FH), that is the list of future lags where the
target must be predicted.

The models can be classified according to how
they use the past to predict the current target and how
they use the predicted values to fill the FH (Mio et al.,
2023; Alzaidi et al., 2022):

∀t,u : t ∈ L ⊂ N+,u ∈ LX ⊂ N
1) yi = F(yi−t)

2) yi = F(yi−t ,Xi−t)

3) yi = F(yi−t ,Xi−u)

1. the prediction depends only on the past lags t
specified in L (LX = /0)

2. as 1) where input features are used, at the same
past lags (LX = L)

3. as 2) where lags for the target (t) and input fea-
tures (u) are selected separately (LX ̸= L)

Case 1) is used when the model is not able to use
input features (for example ARIMA or some mod-
els based on RNN). Case 2) is used often with neu-
ral network models because they require in input a
tensor where the data dimension containing the target
and, when available, the correspondent input features.
Case 3) is used with tabular models (for example, Lin-
ear Regression, KNN) because the columns of the ma-
trix can be selected in arbitrary way. In this work only
case 1) and case 2) models were used.

To predict the target for the complete FH H =
{0,1,2 . . .} there are different strategies. The first is
to use the current prediction yi to predict the next one
yi+1, then, to use yi+1 to predict yi+2 and so on, in the
recursive way (“recursive” column in Table 1). The
second approach is to use different instances of the
same algorithm F for each time slot (“models” col-
umn of Table 1) and the third is to predict the com-
plete horizon in a single step (“horizon” column of
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Table 1: Prediction of the forecasting horizon using multi-
ple steps or multiple models.

recursive models
yi+0 = F(yi−t ,Xi−t) yi+0 = F0(yi−t ,Xi−t)
yi+1 = F(yi−t+1,Xi−t+1) yi+1 = F1(yi−t ,Xi−t)
· · · · · ·
yi+h = F(yi−t+h,Xi−t+h) yi+h = Fh(yi−t ,Xi−t)

t ∈ L ⊂ N+ h ∈ H ⊂ N

Table 2: Prediction of the forecasting horizon in a single
step using a single model.

horizon
{yi+h}= F(yi−t ,Xi−t)

t ∈ L ⊂ N+,h ∈ H ⊂ N

Table 2). This method can be used only when the
algorithm is capable of processing multivariate TS:
in this case, the multiple target values are the predic-
tions in FH. In theory this reduces error propagation,
but it doesn’t use recent information. An intermediate
approach (direct+recursive) is to predict a small win-
dow of consecutive time slots, than to move the win-
dow to cover the horizon. This approach is reasonable
when the forecasting window is not predefined. Hav-
ing multiple instances of the same algorithm to pre-
dict different (not) overlapped windows seems not to
be very useful.

4 THE DATASET

4.1 General Structure

The dataset analyzed contains monthly imports for 51
different products from 54 countries over a period of
7 years (7 × 12 = 84 months). It includes 352 TS,
arranged in 29568 (= 352×84) rows and 12 columns.
The columns can be classified into 5 categories:

1. the column specifying which product is imported
from which country (string). It is used as time
series identifier

2. the import date (datetime)

3. the quantity of imported product (float), the TS
target

4. 5 columns containing financial information (the
first set of input features, floats)

5. 4 columns containing weather information (the
second set of input features, floats)

We used a seasonality of 12 months because this
is the most common among all TS.

Figure 1: Correlations between imported products and
weather/financial features. From top to bottom: a) dataset
as single time series, b) based on product, c) based on coun-
try, d) based on product/country (3 rows) .

Analyzing the correlation between the target and
the financial and weather features, using the Pearson
correlation index, we found that:

1. considering the dataset as a single TS, there is not
an evident correlation between the target and the
other features: in Figure 1 (a), all cells are dark
(very low correlation) except the first one (the cor-
relation of the target with itself)

2. considering the TS based only on products, there
are light correlations with the weather features: in
Figure 1 (b), the weather rows contain more light
cells than the financial rows

3. considering the TS based only on countries, there
are light correlations with the financial features:
in Figure 1 (c), the financial rows contain more
light cells than the weather rows

4. analyzing each TS separately, there are correla-
tions with both feature sets: in Figure 1 (d), the
light cells are distributed in all rows1

The existence of (light) correlations between tar-
get and input features suggests that the prediction
could be improved if they are included in the train-
ing.

4.2 Time Series

A visual inspection of the TS “time vs target” plots
highlights some patterns:

1. evident seasonality (Figure 2 (a))

1to visualize all 352 TS in the image, they are organized
in 3 rows each one with 117 columns
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Figure 2: Some examples of time series patterns: a) with
seasonality, b) trend without seasonality, c) with spikes, d)
noisy, e) heteroscedastic.

2. trend but without an evident seasonality (Figure 2
(b))

3. occasional import spikes (Figure 2 (c))

4. noisy behavior (Figure 2 (d))

5. heteroscedastic behavior (Figure 2 (e))

The Augmented Dickey-Fuller test is used to ana-
lyze the TS stationarity: we found 211 TS (69.9%) al-
ready stationary, 100 (28.4%) stationary after the first
differencing, 29 (8.2%) after the second one and 13
(3.7%) at the third one.

The Autocorrelation Function is used to under-
stand if the series behaves as a random walk, it con-
tains trend or seasonality. There are 157 TS (44.6%)
with a random walk-like behavior, 64 (18.2%) with
a trend, 60 (17.0%) with seasonality, 18 (5.1%) with
trend and seasonality. The remaining 53 TS (15.0%)
have unclassifiable behavior.

The Partial Autocorrelation Function is used to
identify the auto-regressive behavior, that is, if the TS
behavior depends on the past. There are 128 (36.4%)
TS without an evident dependency on the past, 221
(62.8%) with a dependency only with the previous
time slot (lag=1) and 3 (0.9%) with a dependency
with time slots with lag equals to 2.

The Breusch-Pagan test is used to understand if
the series is heteroscedastic, that is, if mean and stan-
dard deviation change over time. We found 137 TS

(38.9%) having this behavior.
These results suggest there is no single algorithm

able to forecast accurately all TS. For each series mul-
tiple schemes must be tested in order to select the best
candidate.

5 ALGORITHMS AND
METHODOLOGY

5.1 Algorithms

In a previous article, we used statistical/regression
models. In this set of experiments, we have used the
algorithms in Table 3: the statistical models are used
for the comparisons, while the rest are based on neu-
ral networks:

1. tabular models Linear and KNN, used as reference

2. statistical models SARIMAX and GARCH, used
as reference

3. simple NN model composed by one or two dense
layers

4. Recurrent Neural Networks, followed by a simple
dense layer (RNN, GRU, LSTM)

5. models based on CNN (CNN, TCN)

6. Transformer architectures (Transformer, TFT)

7. models that extract temporal correlations at differ-
ent time resolutions (N-HiTS, N-BEATS)

8. encoder/decoder architectures with simple linear
blocks (TiDE, TSMixer)

All algorithms are part of, or integrated into, the
Python library sktime (Löning et al., 2019). We
have included SARIMAX and GARCH strategies
(in 2 variants) from sktime, 10 NN models imple-
mented in-house (simple NN based on RNN, GRU,
LSTM, CNN layers followed by a dense layer, a lin-
ear model with a single layer and another one with 2
dense layers), and 12 NN from Darts library (Herzen
et al., 2022). All NN are implemented with PyTorch
(Paszke et al., 2023). The tabular schemes (Linear and
KNN) are part of scikit-learn (Pedregosa et al.,
2011) library and wrapped in such a way that they
can be used with TS. In total, there are 25 different
models.

• Linear regression, KNN regression are two clas-
sical algorithms used to approximate the function
Y = F(X). They can be used as TS model trans-
forming the TS data in tabular format following
one of the strategies described in Section 3
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Table 3: List of models specific for time series, used in ex-
periments.

name algo article
Linear regression lin
KNN regression knn (Bentley, 1975)
SARIMAX arima (Hyndman et al., 2008)
GARCH garch (Bollerslev, 1986)
One Linear Layer lnnlin (in-house)
Two Linear Layers lnnlin2 (in-house)
DLinear dlinear (Zeng et al., 2023)
NLinear nlinear (Kim et al., 2021)
GRU gru (Chung et al., 2014)
LSTM lstm (Chung et al., 2014)
RNN rnn (Chung et al., 2014)
CNN cnn (Liu et al., 2019)
TCN tcn (Hewage et al., 2020)
Transformer transf. (Ahmed et al., 2023)
N-BEATS nbeats (Oreshkin et al., 2019)
N-HITS nhits (Challu et al., 2023)
TFT tft (Lim et al., 2021)
TiDE tide (Das et al., 2023)
TSMixer tsmixer (Ekambaram, 2023)

• SARIMAX (Seasonal ARIMA with eXogenous
variables) is a linear model considering the time
series composed by two major components (the
seasonal component and the stationary compo-
nent) and each major component composed by 3
parts: a Moving Average part, an Autoregressive
part and an Integrated differencing step, used to
convert a polynomial behavior in a stationary one

• GARCH (Generalized Autoregressive Condi-
tional Heteroscedasticity) is another linear model,
similar to ARIMA, but it is used when mean and
variance of a TS changes (in a autoregressive way)
with the time

• One Linear Layer, Two Linear Layers, DLin-
ear are simple NN models composed by 1 or 2
dense layers. In the article (Zeng et al., 2023) it
was observed that if a simple dense layer works
well, more complex models do not necessarily
work better

• NLinear can be considered the NN version of
GARCH: to handle the distribution shift, a sim-
ple linear model is integrated a learnable (and
reversible) module with the responsibility to re-
move, and to re-add, the TS heteroscedasticity

• RNN, GRU, LSTM are Recurrent Neural Net-
works, used in Natural Language Processing area,
applied to TS analysis for the correspondence be-
tween a sentence (a sequence of words) and a TS
(a sequence of values). The have some limits: the
model is able to handle only values in the range
[0,1], for each element in the sequence, it consid-
ers only the previous one, and the sequence must

be processed sequentially

• CNN (Convolutional Neural Network 1-
dimensional) is a classical NN used in signal
processing. The main difference from a RNN
is that, for each element in the channel (the
equivalent of the sequence), it is considered just
a small number of elements before and after the
current one

• TCN (Temporal Convolutional Neural Network)
is a model composed by multiple CNN layers
where in each layer, for each element in the chan-
nel, it is considered some elements before and af-
ter the current one, but at distance k2l where l is
the index layer. This approach permits to consider
long-range temporal effects

• Transformer is the current replacement for all
RNN models: it permits to process the sequence
in parallel, and it learns the best correlation be-
tween all elements in the sequence against them-
selves

• N-BEATS is a model organized into 3 levels. The
first one, the basic block, with the responsibility
to receive in input the past data or the backcast
from the previous block, and to emit the back-
cast and the forecast. The second level, the stack
block, put in sequence multiple basic blocks, con-
nected using the backcast and adding, between
the block’s input and backcast’s output, a resid-
ual link. The stack block has two outputs: the
residual output from the last basic block, and the
stack forecast (sum of forecasts output from inter-
nal basic blocks). The third level put in sequence
multiple stack blocks and emits the prediction as
sum of internal stack forecasts

• N-HiTS it is an improvements of N-BEATS. It ex-
tends the previous basic block adding a sampling
layer. In this way, each block in the stack block,
analyzes the data at a different frequency

• TFT (Temporal Fusion Transformer) is a complex
architecture, composed by a RNN layer, with out-
put enriched by a residual links, a Multi-head At-
tention layer, with the responsibility to identify
the more relevant information, and a final set of
normalization and dense layers, used to generate
the predictions

• TiDE has an encoder-decoder architecture where
encoders and decoders are composed by a stack
of simple building blocks. Each building block
comprises: 2 dense layers, separated by a ReLU,
a Dropout layer and a final normalization layer.
As in previous models, the output of the Dropout
layer is enriched with a residual link. The out-
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put of the decoder is the output of a Temporal De-
coder, a simple residual block with the responsi-
bility to convert the bi-dimensional tensor emitted
by the decoder in the uni-dimensional predicted
target

• TSMixer is another model based on simple dense
layers, but using a patch-based strategy to enrich
the input. A patch-strategy consists of covering
each target’s value at time slot t into a small vector
composed by the values at time slots t, t+1, . . . , tp
(the patch).

Except for SARIMAX and GARCH, Linear and
KNN models and those based on NN require speci-
fying the number of past lags to use and how many
future lags to predict. In the experiments, we used 24
months for the past and 12 months as FH. The pre-
diction can be performed with a window of 1,3,6,12
months. Cases with windows shorter than one year
use the recursive method to cover the entire horizon.
In total, we have 97 experiments for each TS, for a
total of 34144 (= 97×352) experiments.

5.2 Methodology

Many NN models coming from the Natural Language
Processing world (RNN, GRU, LSTM, Transformer),
cannot handle values outside the range [0,1]. To ob-
tain a comparable behavior between all models, all
TS are normalized using the following rules: all tar-
get values that exceed 42 standard deviations above or
below the mean, are replaced with the median value
and all values are scaled in the range [0,1].

We have used algorithms with minimal tuning be-
cause they work well with the default parameters.

For all NN models, we have used a maximum of
100 training epochs, integrated with an early stop-
ping mechanism: this reduces the training time if the
model reaches a configuration with a stable loss. The
loss metric used is the mean square error.

5.3 Prediction Quality

To evaluate the quality of the prediction, we have used
the WAPE score, defined as:

WAPE=
∑i|yi − ŷi|

∑i|yi|
where i is the forecasting time slot, yi the actual

value and ŷi the predicted one.
When applied to the entire data set D, yi and ŷi are

computed as

2This is the standard value used in our system

Table 4: Forecasting horizon length in the best predictions.

pos fh length freq
1 1 116
2 3 85
3 12 81
4 6 70

yD
i = ∑

ts
yts

i ŷD
i = ∑

ts
ŷts

i

that is, the dataset is considered as a single TS
where the monthly import (yD

i ) is the sum of the im-
ports in the same month from all TS (yts

i ). The same
rule is applied to the predicted values (ŷD

i , ŷts
i ).

The global score, the prediction quality, is defined
as:

PQ= 1−WAPED

6 EXPERIMENTAL RESULTS

The questions are: is it true that by predicting the
complete FH we get better predictions? Are NN mod-
els really better than statistical or regression ones?

Table 4 shows that it is not always necessary to use
a FH longer than a single time slot. In fact, in 116 of
352 cases (33.0%) we obtain the best prediction using
only a single future time slot. Longer horizons work
well for the remaining cases, but there is no second
better choice.

Table 5 shows that the LSTM model delivers
the best prediction for the highest number of cases
(56 times, 15.9%), followed by the Transformer (48
times, 13.6%). In third position we found a sim-
ple NN model based on two dense layers (lnnlin2,
36 times, 10.2%). The most advanced NN models
(nbeats, tft, etc) trail the simple CNN model. The
worst results come from Linear Regression, KNN,
SARIMAX and GARCH, with the last two never de-
livering the best result.

If we consider the algorithms and the FH length
(Table 6), we find Transformer architectures 3 times
in the first 10 positions. We also find lnnlin2 (lin-
ear NN model with 2 layers), lstm and cnn, simple
models, based on the LSTM and CNN layers, in the
top ten. In the last 3 positions, we find linear (flat-
ten) (the only case where we obtain the best prediction
from a dedicated model for each time step), KNN and
N-HITS with 12 months. The other 3 variants of N-
HITS (1,3,6 months) perform better but do not reach
the top positions.

Compared to the work (Mio et al., 2023), where
the statistical and regression models achieved a pre-
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Table 5: Algorithms yielding the best predictions.

pos algo freq pos algo freq
1 lstm 56 2 transformer 48
3 lnnlin2 36 4 rnn 32

gru 32 5 cnn 21
6 nbeats 20 tsmixer 20

tft 20 7 tcn 18
8 tide 10 nlinear 10
9 nhits 8 10 lnnlin 7

11 knn 6 12 dlinear 5
13 lin 3 14 arima 0

garch 0

Table 6: Algorithms and forecasting horizon giving the best
predictions.

pos algo fh length freq
1 transformer 1 19
2 transformer 3 14
3 lnnlin2 1 11
4 txmixer 1 10
5 lstm 3 10
6 lnnlin2 12 10
7 transformer 12 9
8 cnnlin 1 9
9 tcn 1 9

10 nbeats 1 9
...

75 linear (flatten) 12 6
76 knn 12 3
77 nhits 12 3

diction quality of 88.6%, using for each TS the best
model (selected between the models used in this
work) this value reached 96.5%.

7 CONCLUSIONS

The objective is to create a framework that can auto-
mate the forecasting of expected imports for our part-
ner organizations. This system analyzes the received
TSs using a set of models, identifies the best model
for each TS, then uses these models for predictions.
To this end, we continue to improve our infrastruc-
ture and analyze the quality of the models proposed
in the literature on a controlled set of real data.

In this new set of experiments, we have found that:
1) 1-step ahead forecasting is much closer to model-
ing than to prediction, 2) models based on Transform-
ers work well, 3) simple NN models, based on LSTM
and CNN, perform better than more complex ones,
and 4) NN schemes can deliver better predictions than
statistical/regression ones.

Future lines of improvement include autotuning,

based on some advanced tuning strategy (for exam-
ple using the Bayesian Optimization) and investigat-
ing the Fundation Time Series Models, NN models
pretrained on thousands of TS, which may be able to
generate good predictions without additional training.
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