
Enable Business Users to Embed Dynamic Database Content in Existing
Web-Based Systems Using Web Components and Generic Web Services

Andreas Schmidt1,2 a and Tobias Münch3,4 b

1Institute for Automation and Applied Computer Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2Department of Computer Science and Business Information Systems, Karlsruhe University of Applied Sciences,

Karlsruhe, Germany
3Münch Ges. für IT Solutions mbH, Gewerbering 1, 49393 Lohne, Germany

4Chemnitz University of Technology, Chemnitz, Germany

Keywords: Web Component, Relational Database, Low Code, Prototyping.

Abstract: In our digitalized world and under the economic pressure of competition, every company must react flexibly to
opportunities and problems that arise. One way to cope with these challenges is to use web-based Enterprise
Resource Planning (ERP) or Customer Relationship Management (CRM) Systems, which provide significant
functionality inside their system range. Third-party systems often have to be integrated with ERP or CRM
systems but cannot be connected, for instance, because of limited Application Programming Interfaces (API)
or data structures. Therefore, such tasks are complex and time-consuming and must be done by software engi-
neers, who are limited resources in today’s enterprise context. However, HTML documents can be integrated
with web-based systems such as ERP or CRM, and HTML creation is not limited to the software engineering
workforce. Our low-code environment, which is based on W3C web components standards and RESTful web
services with state-of-the-art authentication approaches, could solve the shortage because we empower busi-
ness developers to embed dynamic database content declaratively in static HTML pages or web-based systems
such as WordPress or SoftEngine ERP-Suite. Our system also allows the declarative integration of forms for
creating/modifying and deleting data records (CRUD functionality). The low-code web components access
the database via the RESTful service. The API of the RESTful service abstracts the database manufacturer-
specific characteristics, such as the storage format of the metadata.

1 INTRODUCTION

Today, first-world countries are grappling with a
shortage of skilled software engineering workers, a
challenge exacerbated by the competitive nature of
our businesses and the increasing importance of dig-
italization (Breaux and Moritz, 2021; Hyrynsalmi
et al., 2021). However, there is a beacon of hope in
the form of low-code solutions, which offer a promis-
ing way to address this pressing issue (Elshan et al.,
2023).

In Germany, companies are categorized as mi-
cro, small, middle, and enterprise companies (StB,
2024). Micro and small companies often have lim-
ited budgets and liquidity for information technol-
ogy expenses (Almaree et al., 2015). Therefore,

a https://orcid.org/0000-0002-9911-5881
b https://orcid.org/0000-0001-9424-6201

they usually use several cloud applications as Soft-
ware as a Service (SaaS) and have an external IT
service provider (Bajenaru, 2010). In comparison,
mid-sized and larger companies often have IT depart-
ments, which are frequently overloaded with admin-
istrative and maintenance tasks (Grooss, 2024).

So, the main challenge is that a company’s users
often have different business challenges that must be
handled quickly, but the IT resources of companies
can not cope with these load peaks. However, the
average business developer should have achieved ba-
sic HTML knowledge in school, as the Committee
on European Computing Education (CECE) reported
(CECE, 2017). What if these users could handle most
minor challenges using a low-code HTML library?

Our proposal is a versatile low-code library of
web components connected to our generic REST-
ful (Richardson et al., 2007) web service, designed
to seamlessly integrate third-party databases into var-

296
Schmidt, A. and Münch, T.
Enable Business Users to Embed Dynamic Database Content in Existing Web-Based Systems Using Web Components and Generic Web Services.
DOI: 10.5220/0013000000003825
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Web Information Systems and Technologies (WEBIST 2024), pages 296-306
ISBN: 978-989-758-718-4; ISSN: 2184-3252
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



ious web-based systems. Whether it’s an ERP sys-
tem, a CMS system like WordPress, a SaaS solution,
or even a simple HTML file in an arbitrary directory
on a local PC, our solution is adaptable to the unique
needs and IT setups of companies of all sizes.

The rest of the paper is structured as follows. In
Chapter 2, we present the scenarios for our proposal
and how it would affect the main stakeholders. After-
wards, we describe in Section 3 our work regarding
existing research, such as database access through the
web, web standards, related solutions and low-code
approaches. Upon the existing research, we describe
our overall system architecture in Section 4. Then,
we focus on the detailed implementation of various
web components and their purpose in Section 5. Af-
terwards, the usage of our system is described in Sec-
tion 6 with an example application in a real-world sce-
nario for a distributor of food and beverages. Before
we summarize our current state of research in Sec-
tion 8 and point out future work, we will discuss cur-
rent limitations and possibilities for improvement in
Section 7 .

2 SCENARIOS

In theory, enterprise companies have various systems
to store, process, and provide information securely
and safely for several departments to provide busi-
ness value for their customers in a unified IT envi-
ronment (Minoli, 2008). The cross-cutting IT depart-
ment monitors, maintains, and extends the enterprise
IT architecture for the whole company cost-efficiently
(Minoli, 2008). However, the enterprise software ar-
chitecture in mid-sized companies is more heteroge-
neous, with various applications and data structures
for a particular department, such as a schedule for hu-
man resources interviews. This discrepancy can be
explained by Conway’s law, which states that every
company will produce a copy of its own organiza-
tional structure inside a developed system (Herbsleb
and Grinter, 1999).

However, the IT Team in mid-sized companies of-
ten finds itself in a challenging position. Despite their
best efforts, they struggle to fulfil special integration
requests from internal clients (Haug et al., 2011). This
is primarily due to their limited resources, which are
mainly dedicated to maintaining the central systems.
As a result, they cannot cater to the diverse needs of
the various departments, leading to a significant gap
in service delivery.

These distinct applications for specific use cases
often must change or be integrated quickly and re-
siliently to fit changing market requirements. There-

fore, a low-code approach could be an enabler for dig-
ital transformation in the industry because users with
limited programming knowledge could handle many
tasks themselves (Prinz et al., 2021). According to
the CECE’s work, citizens probably used HTML in
school because they should be fluent with standard IT
tools such as web browsers (CECE, 2017). Addition-
ally, web-based business applications’ market share
is increasing, and in these applications, HTML docu-
ments could be used to extend the functionality (Busi-
ness Research, 2024).

Our proposed approach does not completely over-
haul the existing systems. It acknowledges the users’
background and the presence of existing systems.
It assumes that some of the company’s applications
are based on databases that can be connected to our
generic RESTful web services. They provide the data
and meta information, such as attribute details and the
actual dataset, making them a valuable resource in our
procedure.

The following sections explain different scenarios
based on the perspectives of administrators, business
developers, and users to define the specific working
environment for our low-code HTML technique.

2.1 System Administrator

The System Administrator is the backbone of each
company’s IT department. They are responsible for
ensuring the smooth operation and maintenance of
the current infrastructure, including software and on-
premise hardware. Typically, IT workers have com-
pleted an apprenticeship (44%) or used a lateral en-
try (23%) and sometimes a computer science study
(16%), underscoring their expertise and dedication to
their role (Statista, 2024).

In our case, he should accomplish the new task
of installing, configuring and connecting the RESTful
Webservice to one or more internal databases such as
Postgres or MySQL. The databases are linked through
corresponding entries in a configuration file where the
access information is stored and the authentication
mechanism is specified.

In companies, it is necessary to recognize a role-
based access and control system (RBAC) such as
Keycloak or an Active Directory so that only a distinct
group of users can access a specific data source. For
example, this could be realized with a role through
Keycloak, which is then provided inside the Java
Web Token (JWT). The RESTful Webservice exam-
ines this JWT.

Enable Business Users to Embed Dynamic Database Content in Existing Web-Based Systems Using Web Components and Generic Web
Services

297



2.2 Business Developer

With their expertise in building business processes,
the business developer is a critical player in the
system. The stakeholder is part of Business De-
velopment, which Uittenbogaard et al. describe as
’involves the actual development of product-market
combinations; in other words, it consists of the execu-
tion of the innovation process’ (Uittenbogaard et al.,
2005).

In our case, they are the drivers of business im-
provements, and their role is crucial in ensuring that
the system meets the needs of the users and the com-
pany’s business processes. They integrate the low-
code web components into web-based systems and
connect them to the previously connected databases
using the configuration specified by the system ad-
ministrators.

2.3 User

Finally, users, such as service agents, interact with the
integrated web components and use them and their
interaction options as part of the business process.
Several examples of how a user would use the pro-
vided web components include seeing data on a cen-
tral monitor, additional information for order through
a parts list provided by a construction software sys-
tem, or further appointments connected with a proce-
dure. In Section 6, we will focus on a use-case inside
the purchasing department of a distributor for food
and beverages.

3 RELATED WORK

According to the scenarios described in the previ-
ous section, our focus lies on the related works of
database access through the web, Java applets, and
low-code development because each approach inte-
grates different aspects of our work.

3.1 Database Access Through the Web

The classic approach to bringing database content to
the web are server-side web applications designed
and implemented for a particular field of applica-
tion (Florescu et al., 1998). Specialized frameworks
such as Django (Python), Symfony (PHP), or Ex-
press (JavaScript) are also often used for this pur-
pose. Most of these implement a form of the model-
view-controller (MVC) paradigm and use an object-
relational mapping framework to access the database.

On the one hand, this requires knowledge of the pro-
gramming language or the framework used, as well as
access to the corresponding development and runtime
environment. On the other hand, the present work
takes a client-side, declarative low-code approach, in
which database content is integrated declaratively into
web pages. The W3C composite standard web com-
ponents (Web, 2024) is used for this purpose.

3.2 Web Components

Web components are a W3C standard supported by
all recent web browsers and allow the definition of
custom HTML elements (Web, 2024). For this pur-
pose, a developer creates a JavaScript class of cus-
tom web components that defines the new HTML
element’s behaviour and the browser’s visual repre-
sentation. The newly defined element can be used
once the JavaScript class is included in an HTML
page. As the entire logic is encapsulated within the
JavaScript class, no other runtime environment be-
sides the browser is required, such as a server-side
application server. Of course, the components can
communicate with external services if needed, but in
principle, no further services are necessary to run the
web components.

The JavaScript class that defines the logic and vi-
sual appearance of the new element must inherit from
the HTMLElement class (Web, 2024) and, in addition
to the actual application logic, implement a series of
predefined methods that realize the integration of the
element into the Document Object Model (DOM) tree
of the HTML page.

Custom HTML elements have a naming conven-
tion that specifies that the names must have a hyphen
(such as <db-table>) and that they must have an
opening and mandatory closing tag in the HTML page
(<db-table name="city" ...></db-table>).

3.3 Java Applets

Java applets (Boese, 2009) follow a similar approach
to web components. Both approaches run on the
client within the browser, and some predefined meth-
ods must be implemented to integrate the applica-
tion into the HTML page. The integration is declar-
ative in both cases and parameters can be passed to
the application. The programming model allows pro-
grammatic access to the DOM tree of the embedding
website, similar to the web components. With Java
Database Connectivity (JDBC) (Reese and McLaugh-
lin, 2003) there is also a sophisticated access API for
relational databases available. The applets are inte-
grated into the web pages using the elements embed

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

298



or object. From the mid-2010s, however, browser
manufacturers gradually discontinued support for ap-
plets (Oracle, 2020).

3.4 Low Code Development

The evolution of low-code development platforms
will significantly transform software engineering
tasks and help business developers build applica-
tions themselves without being too deep into coding
(Prinz et al., 2021). Low-code development platforms
(LCDPs) offer a visual approach to application devel-
opment, primarily through model-driven design and
declarative programming (Elshan et al., 2023; Prinz
et al., 2021). The LCDPs also provide web appli-
cations as an output, such as the low-code platform
Xelence by Sagitec Software (Arora et al., 2020).

In the study of Prinz et al. the participants men-
tioned using low-code solutions because of the re-
duced coding effort and the low learning curve (Prinz
et al., 2021)

As part of the low-code initiative, a number
of application builders have emerged, such as Cas-
pio (Caspio, 2024), Budibase (Budibase, 2024),
webflow (Webflow, 2024), and Bubble.io (Bubble,
2024), which make it possible to develop web-based
applications in the form of single-page applications
with little or no programming effort. However, these
represent a self-contained system that cannot be inte-
grated into existing web applications, or only with dif-
ficulty. Our low-code web components provide such
functionality with ease of development, interoperabil-
ity, extensibility and maintainability.

4 OVERALL ARCHITECTURE

Figure 1 illustrates the overall architecture of the
application. The developed web components (with
prefix db-) operate in the browser and communicate
with each other through method calls or via a public-
subscribe mechanism.

Communication with the databases does not oc-
cur directly between the components and the database
but between the component db-server and a RESTful
web service (rdbms.php), which acts as an interface
to the connected relational databases. We used the
php-crud-api REST Service (van der Schee, 2024)
by Maurits van der Schee as a core, which we ex-
tended with a number of additional modules. In ad-
dition to php-crud-api, there are a number of other
existing libraries, such as db2rest (db2rest, 2024),
which could have been used instead. For an overview,
see (Bohdan, 2024). The web service provides the

following functionality:

Database Selection: To support multiple databases
dynamically, a separate entry point (rdbms.php)
was implemented. Databases that should be ac-
cessible from the RESTful API are specified in a
configuration file. The authentication method is
also defined at this point. Each database is spec-
ified by a logical name under which it can then
be accessed from the web components. Figure 4
(middle) shows the structure of the entries in the
configuration file.

Access Control: The php-crud-api-server already
offers an interface to use different authentica-
tion mechanisms like authentication via API key,
username/password combination and JWT to-
ken (Peyrott, 2024). All these mechanisms are
based on transporting authentication information
in the HTTP header. To also support local HTML
files accessed via the file URI schema (Kerwin,
2017), we have integrated an additional mecha-
nism that sends an API key as an HTTP param-
eter. The reason for this are CORS (Hossain,
2014) restrictions that would otherwise not allow
access from the web components to the web ser-
vice when accessing the HTML document via a
file URI (like file:///tmp/dbwc-demo.html).
This type of access places the least demands on a
business developer, as only an editor to create the
HTML documents and a browser with an internet
connection are required to access and visualize the
database content.

CRUD Functionality: For retrieving the data for a
single table and the modification of datasets, we
use the functionality of the previously mentioned
RESTful php-crud-api service. The software is
very easy to install, by only copying a single PHP
script to our web server and provides the full func-
tionality we need to extract, create, modify, delete,
filter and sort datasets. The software can also be
easily extended by defining and integrating your
own controllers.

Metadata Access: This extension returns metadata
about the available databases. These include
(1) available databases, (2) available tables per
database, (3) columns, data types and constraints
of the individual tables. The constraints include
primary keys, foreign key relationships, not null,
and unique constraints.
Metadata plays an important role, as it allows, for
example, the resolution of foreign key relation-
ships, the monitoring of non-null constraints, and
the performance of data type checks on the client
side. Furthermore, visualization and editing op-

Enable Business Users to Embed Dynamic Database Content in Existing Web-Based Systems Using Web Components and Generic Web
Services

299



tions corresponding to the data types can be im-
plemented.

SQL Module: The SQL module extension makes it
possible to directly issue SQL statements to the
relational database. The statements are passed
as arguments from the db-query web component
(Section 5.5), which is then also responsible for
displaying the result data records.

Figure 1: Architecture of our database web components.
The module rdbms.php receives the requests from the
db-server web-component and forwards them to the
database specified in the request. The access information
for the database is stored in the database configuration (see
Figure 2) on the server. The results are then returned to the
web components via the rdbms module.

5 COMPONENTS

As part of our research work, we have developed a se-
ries of web components for the declarative integration
of database functionality into HTML pages.

db-server: This component establishes the connec-
tion between the components and the backend.
Except for user authentication, it has no visual

representation, but is used by the other compo-
nents to communicate with the database via the
RESTful service.

db-table: Component that represents a database ta-
ble or a part of it.

db-row: Component representing a single dataset
(row in a table). The functionality of this com-
ponent ranges from the simple predefined visual-
ization of the component to the creation and edit-
ing of datasets using internal or external forms to
its use as a controller in a Model-View-Controller
setup.

db-field: Component that represents a single at-
tribute of a db-row component.

db-select: The functionality corresponds to the
HTML select element, in which an entry can be
selected from a series of predefined values. In the
database context, it can resolve and set foreign key
values.

db-query: Component that represents an SQL select
query.

In the following section, we will present these com-
ponents in detail. The data in the example screen-
shots shown comes from the Mondial database (May,
1999). Since the php-crud-api module we use does
not support updates of records with composite keys,
we have modified the schema of the Mondial database
by replacing the composite keys with artificial numer-
ical keys and adjusted the foreign keys accordingly.

5.1 Server-Component

The first component we present is responsible for
communicating with the web service. The server
component can occur several times so that multiple
databases can be accessed from one HTML page.

Figure 2 shows the mapping between the db-
server component inside a HTML page to a specific
database. The component db-server specifies the end-
point of the RESTful service and a logical database
name using the parameters url and database) (left
side of the figure). On the REST-API side (middle),
there exists a configuration file that maps the logi-
cal database name (i.e. webist-demo) to a specific
database (right side of the figure). This mechanism is
similar to ODBC or Oracle tns-names (Oracle, 2024).
Note that the database can run on any computer and
not necessarily on the computer with the REST-API
endpoint.

To access the URL of the RESTful service from
the browser, you must either allow Cross-Origin Re-
source Sharing (CORS) on the server or configure a

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

300



Figure 2: Database mapping - the RESTful service maps the logical database name (webist-demo) specified in the web
component (left-side) to the access information stored in the database configuration file (middle) and uses this to access the
specified database (right side).

reverse proxy that forwards the request from the orig-
inal host to the specified URL, if the URL points to
another host.

5.2 Table-Component

The db-table component is responsible for displaying
the content of a database table or a part of it. The
functionality ranges from the static display of a ta-
ble with pre-defined conditions (selection) on the data
records and the selection of certain columns (projec-
tion), to a highly interactive component that reacts dy-
namically to changes in the table content and offers a
range of interaction options.

Figure 3 shows in the upper part the appearance
of the component db-table inside the browser. The
component allows page-by-page scrolling (1), sorting
by column values (2), in-line editing (3), and the for-
mulation of additional conditions (4) as well as the
possibility to edit/delete datasets (5).

The corresponding HTML-code is shown in the
lower part of Figure 3. Beside the db-table compo-
nent, also the corresponding db-server component
is shown.

The attribute-list attribute defines the
columns to be displayed, while the action attribute
defines the possible functionalities of the component.
Specifically, inline-edit (3), filtering (4), as well
as editing and deleting data records (5) and page-
by-page scrolling (1) are activated. The pagesize
attribute specifies the number of data records per
page. In addition to the parameters from Table 1, the
component’s appearance can also be adapted to your
requirements using cascading stylesheets (CSS).

Figure 3: Visual appearance of the web component db-table
(top) and the corresponding HTML code (bottom). The at-
tributes attribute-list, action, and pagesize specify
the visual appearance and behaviour of the table.

5.3 Row-Component

The component db-row has several tasks. The stan-
dard configuration allows you to edit a data set spec-
ified by the primary key in a formula provided by
the component. This component extensively uses
the metadata provided for a table by metadata mod-
ule of the RESTful-service. This applies to informa-
tion about the data types of the fields, the not null
constraint and information about foreign-key relation-
ships.

This function is shown above in Figure 4, which
displays the dataset for ”France”. Here, the value of
the foreign key attribute Capital, which refers to the
capital of a country, is not displayed as a numerical
foreign key value, but a selection field that displays
the referenced value and simply offers the possibil-

Enable Business Users to Embed Dynamic Database Content in Existing Web-Based Systems Using Web Components and Generic Web
Services

301



Table 1: db-table Attributes.

Attribute Description Mandatory
table Name of the table yes
filter Mandatory filter condition, every dataset must fulfil no

pagesize Maximum number of rows on a page no
order Sort order (column name) no

direction Sort direction (asc, desc) no
page Page to display no

connection Id of a db-server web component. If the attribute is not set, the default server
component is chosen

no

attribute-list Comma separated list of attributes to display (default: all) no
actions Allows the activation of ”inline-edit”, ”delete”, ”edit”, ”filter”, and ”paging”

functionality
no

refresh-rate Time in seconds after which the table data is reloaded from the database no

ity to change it using the full-text search function of
the web component db-select described later in sec-
tion 5.4.

The lower part of Figure 4 shows the correspond-
ing declaration of the db-row element inside the
HTML page. The key attribute is used here to pro-
vide the primary key value of the dataset of ”France”.
If the attribute key is omitted, the component offers a
form for creating a new data record.

Figure 4: Web component db-row: Visual presentation (top)
and embedding in a HTML page (bottom). The record with
the primary key value 60 (attribute key) of table country
(attribute table) is displayed. The foreign key column
Capital is resolved and displayed as a db-select com-
ponent in which the possible values can be selected.

The component has various options for customiz-
ing the appearance of the provided form using CSS.
If these design options are not sufficient, the compo-
nent also offers the option of working with external
forms. This leads to significantly more possibilities
for influencing the layout.

If the dataset should only be displayed but not
changed, there is a ”read-only” mode in which the
dataset is shown in tabular form (2 columns). Again,
style sheets can be used to customize the layout. The
additional use of the db-field component is even
more flexible in terms of visualisation. In this case,

several db-fields are linked to a db-row compo-
nent. The db-row component then only serves as a
data source for the db-fields components but is no
longer responsible for the output, which is then taken
over by the db-fields components. This allows any
desired page layout.

Using the controller parameter, the component
can be used as a controller within an Model View
Controller (MVC) setup. In this case, the component
reads the values of a dataset either from the GET pa-
rameters of the current URL or from a JSON string
passed to the data parameter and writes the dataset to
the database. Depending on the transferred attributes,
an SQL INSERT or an UPDATE statement is exe-
cuted. The distinction is made on the basis of the ex-
istence and value of the primary key attribute. Alter-
natively, another attribute can be specified that takes
over the role of the primary key. If a data record al-
ready exists in the database with a matching value for
this attribute, an SQL-UPDATE is performed. Oth-
erwise, an INSERT operation is executed. After exe-
cuting the SQL statement, the web component loads
the referring page or an arbitrary page, which can
be specified with the additional parameters target-url
and error-url. In Section 6 an application in the con-
text of the MVC paradigm is shown, in which a page
containing a form acts as a view and the HTML page
with the db-row component takes over the controller
part.

5.4 Selection-Component

The db-select web component shows a selection box
from which values can be selected. The values of
the selection box can either originate from a table by
specifying the table name and an optional condition or
be specified through an SQL statement. Analogous to
the behaviour of the standard HTML-select box, one
or two values can be specified. The first value is the

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

302



value to be returned from the form, and the second is
the text to be displayed. A simple text-match search
and a prefix search are offered to find the entries you
are looking for. Figure 5 (top) shows the appearance
of the db-selection box. The search text entered is
highlighted in colour in the matching entries. The un-
derlying markup code can be seen in the lower part of
the figure. Attribut table specifies the table where
the values come from. The attribute name represents
the name of the element within the formular (element
form), which is passed on to the formular together
with the selected value. The attribute label names
the column in the table, from which the values being
displayed are taken, while the attribute key specifies
the column whose value is passed to the form.

Figure 5: Web component db-select. Prefix search in col-
umn name (attribute label) of table country (attribute
table).

5.5 Query-Component

The db-query component is quite similar to the db-
table component. The main difference is that no table
and optional parameters such as filter and order
are specified, but an arbitrary SQL select statement.
The upper part of Figure 6 shows the component’s ap-
pearance in a browser, while the lower part shows the
embedding of the web component in the HTML page.
The provided SQL-Statement, returns the number of
bordering states and the total length of external bor-
ders for each country, sorted by total border length in
descending order.

Just as with the db-table component, additional
optional parameters such as refresh-rate, pagesize,
etc. can be specified.

5.6 Schema Independence

Due to the consistently generic structure of the com-
ponents and the RESTful service, our components are
independent of any schema changes to the database
(as long as the tables used continue to exist and no
columns explicitly specified in the components are

Figure 6: Visual appearance of the web component db-
query (top) and the corresponding HTML code (bottom).

omitted). This is realized by the components and the
RESTful service having access to the meta informa-
tion of the relational database, which always returns
the current state of the database schema and is the
only basis for structural information within the com-
ponents.

5.7 Customization

The components are displayed with a standard lay-
out. However, this layout can be customized using
CSS and a series of possible attributes for the compo-
nents. Additionally, the db-row component can be
adapted to the layout preferences using an external
HTML form or additional db-field components.

As an example, Table 1 gives an overview of the
supported attributes for the db-table component.

6 EXAMPLE APPLICATION

Our example scenario involves a distributor of food
and beverages for gastronomy operating within a
web-based ERP system that also includes a Customer
Relationship Management (CRM) module. In this or-
ganisation, the purchasing department has a second
application that lacks API connectivity to the CRM.
Therefore, users must email the purchasing depart-
ment if they request new items to purchase. Intro-
ducing our low-code approach into this environment

Enable Business Users to Embed Dynamic Database Content in Existing Web-Based Systems Using Web Components and Generic Web
Services

303



Figure 7: Example Application: Embedded web components in customer view of the SoftEngine ERP-Suite (View with
HTML form and db-table component (top, right), controller markup (bottom).

will streamline the business process and significantly
support our stakeholders.

Internal and external service agents are responsi-
ble for their customers. During phone calls or on site,
the customer confronts the service with requests for
new articles, when they need them and how much
they would like to purchase per week. The service
agent can enter the demand information on the cus-
tomer data sheet through the low-code web compo-
nents for the purchasing department embedded in the
CRM. In Figure 7 (top), our web component table
is included in the SoftEngine ERP-Suite (Eggert and
Meier, 2010). The data directly persisted in the pur-
chasing system, and the purchaser could operate with
the data. The service agent can see if the customer
demand was accepted by the attribute done through
a status dashboard provided by the web components
inside the CRM.

So far, we have seen how the service agents inter-
act with the integrated web components in this busi-
ness process. However, the system administrator and
business developer must first integrate these compo-
nents. The system administrator’s role in integrating
the web components is crucial. He makes the rele-
vant tables in the purchasing system database acces-
sible through a new database user for the web compo-
nents. Then, he defines the connection settings within
the configuration of the data-providing web service,
which they had installed previously. The system ad-
ministrator then hands over the name of the database
configuration file to the business developer.

The business developer integrates our low-code

web components. In this specific case, it uses a
db-server component for accessing the database, a
db-row component that enables the creation of a new
customer request, and a db-table component that
lists the previous customer requests. How the inte-
gration looks is described in Section 5 and will there-
fore not be discussed further here. The business de-
veloper uses the system administrator’s configuration
to connect to the database via the RESTful web ser-
vice. He is also responsible for matching the user re-
quirements, such as selecting the right attributes and
features, to build a solution that meets the needs of
the target user group. In our case, the users are our
distributor’s service agents. In the lower part of Fig-
ure 7 you can see the complete markup code of the
controller component. The db-row component runs
in controller mode (controller="true") and writes
the key-value pairs of the GET request to the wishlist
table (action="store-from-get-request"). With
the db-server component it is noticeable that the
parameter url, which specifies the RESTFul service
endpoint, is not given. In this case the component
assumes that the url matches the path of the src pa-
rameter from which the web components were loaded
(<script src="...">).

7 LIMITATIONS AND
IMPROVEMENTS

In this section, we describe the technical limitations
of our web components and the room for further im-

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

304



provements. These limitations are structured in (1)
look and feel, (2) parameterization and configuration
and (3) security and network.

In Figure 7, we see the database column names,
which are not always intuitive. To overcome this is-
sue, we must dynamically integrate display names for
each column. In addition, the resolution of foreign
keys is currently not yet supported by the component
db-table. This should be optional in future versions.
However, this can already be simulated by the alterna-
tive use of the db-query component and correspond-
ing SQL-join operations. Another point is the ex-
tension of the db-select web component to enable
the selection of multiple entries. This would allow
the manipulation of n : m relationships between data
records.

Support for parameterizable SQL statements
would also be interesting. For example, this would al-
low displaying additional information from other ta-
bles for a specific data set without using JavaScript
functionality. In this case, the parameters used would
refer to a db-row or db-field component (i.e. a for-
eign key attribute). For the future, we are also plan-
ning a wizard that will make it possible to interac-
tively build the desired HTML tags with the necessary
parameters to be integrated into the HTML pages.

The authentication and authorisation mechanisms
are currently limited because we do not support mech-
anisms like Oauth2 or Open ID connect. The Mi-
crosoft Active Directory connection would be bene-
ficial in an enterprise context. In addition, we need to
implement a detailed RBAC system so that users only
see specified columns or edit the dataset only if they
have a particular role. Regarding network access, we
have no fallbacks if the web services are unreachable
by the client’s device. This could happen if the user
operates outside the company and the web services
are only reachable in the local area network segment.

8 CONCLUSION AND OUTLOOK

In this paper, we have developed and prototypically
implemented a concept for a client-side, declara-
tive integration of dynamic database content within
HTML pages as a low-code technique. To this end,
a series of components for interaction with relational
databases were developed using web components
technology without needing an individual server-side
scripting language or web framework. On the server
side, we have implemented a RESTful API service
as an interface between the components and the con-
nected databases.

The application spectrum of the components

ranges from the rapid development of a functional
prototype that uses the internal capabilities for creat-
ing, editing and displaying data records to pages that
use the db-row component in conjunction with the
db-field components or external forms can there-
fore implement any layout.

Users of content management systems such as
WordPress can also use the components, as only
HTML pages need to be adapted to integrate database
content. Beside the RESTful service, which is typi-
cally provided by the IT department, no web server
is required, as the components also work with the
browser’s file URI schema.

Building on this basic functionality, we have iden-
tified future enhancements such as usability, detailed
security with RBAC and configurability. These en-
hancements are influenced by the limitations of our
low-code web components described in the previous
Section 7.

Our current prototype can help solve the chal-
lenges of our described stakeholders, like the shortage
of IT personnel, and empower business developers.
Still, we have to evaluate it with the described stake-
holders in a company environment to evaluate the de-
veloper experience of our low-code package.

REFERENCES

Almaree, K., Bowman, A., Berenice, B., Visser, C., Ber-
goer, D., Fullard, D., Moses, G., Brown, S.-L., Born-
man, J., and Bruwer, J.-P. (2015). The usefulness
of cash budgets in micro, very small and small retail
enterprises operating in the cape metropolis. Expert
Journal of Business and Management, 3(1).

Arora, R., Ghosh, N., and Mondal, T. (2020). Sagitec soft-
ware studio (s3)-a low code application development
platform. In 2020 International Conference on Indus-
try 4.0 Technology (I4Tech), pages 13–17. IEEE.

Bajenaru, A. (2010). Software-as-a-service and cloud com-
puting, a solution for small and medium-sized com-
panies. Bulletin Of The Transilvania University Of
Brasov. Series V: Economic Sciences, pages 173–184.

Boese, E. (2009). An Introduction to Programming with
Java Applets. Jones & Bartlett Learning.

Bohdan, D. (2024). Github: dbohdan/automatic-api . https:
//github.com/dbohdan/automatic-api. (Accessed on
2024-09-16).

Breaux, T. and Moritz, J. (2021). The 2021 software de-
veloper shortage is coming. Communications of the
ACM, 64(7):39–41.

Bubble (2024). Bubble: The full-stack no-code app builder.
https://bubble.io/. (Accessed on 2024-09-16).

Budibase (2024). Github: Budibase/budibase . https:
//github.com/Budibase/budibase. (Accessed on 2024-
09-16).

Enable Business Users to Embed Dynamic Database Content in Existing Web-Based Systems Using Web Components and Generic Web
Services

305



Business Research (2024). Application (large businesses,
small businesses, colleges and universities, govern-
ment, non-profits), regional insights and forecast to
2031. (Accessed on 2024-09-16).

Caspio (2024). Caspio: Low-Code Platform - Build Online
Database Apps. https://www.caspio.com/. (Accessed
on 2024-09-16).

CECE (2017). Informatics Education in Europe: Are We
All In The Same Boat? Technical report, Association
for Computing Machinery, New York, NY, USA.

db2rest (2024). Github: kdhrubo/db2rest . https : / /
github.com/kdhrubo/db2rest. (Accessed on 2024-09-
16).

Eggert, S. and Meier, J. (2010). ERP-Marktüberblick–107
Systeme im Vergleich. ERP-Manage, 6(3):48–55.

Elshan, E., Dickhaut, E., and Ebel, P. (2023). An investiga-
tion of why low code platforms provide answers and
new challenges. In Hawaii International Conference
on System Sciences (HICSS), Maui, Hawaii.

Florescu, D., Levy, A., and Mendelzon, A. (1998).
Database techniques for the world-wide web: A sur-
vey. ACM Sigmod Record, 27(3):59–74.

Grooss, O. F. (2024). Digitalization of maintenance activi-
ties in small and medium-sized enterprises: A concep-
tual framework. Computers in Industry, 154:104039.

Haug, A., Graungaard Pedersen, S., and Stentoft Arlbjørn,
J. (2011). It readiness in small and medium-sized en-
terprises. Industrial Management & Data Systems,
111(4):490–508.

Herbsleb, J. D. and Grinter, R. E. (1999). Splitting the or-
ganization and integrating the code: Conway’s law re-
visited. In Proceedings of the 21st international con-
ference on Software engineering, pages 85–95.

Hossain, M. (2014). CORS in Action: Creating and con-
suming cross-origin APIs. Manning.

Hyrynsalmi, S. M., Rantanen, M. M., and Hyrynsalmi, S.
(2021). The war for talent in software business-how
are finnish software companies perceiving and coping
with the labor shortage? In 2021 IEEE International
Conference on Engineering, Technology and Innova-
tion (ICE/ITMC), pages 1–10. IEEE.

Kerwin, M. (2017). The ”file” URI Scheme. RFC 8089.
May, W. (1999). Information extraction and integration

with florid: The mondial case study. Technical report,
Citeseer.

Minoli, D. (2008). Enterprise architecture A to Z: frame-
works, business process modeling, SOA, and infras-
tructure technology. Auerbach Publications.

Oracle (2020). Java Client Roadmap Update.
https : / / www.oracle.com / technetwork / java / javase /
javaclientroadmapupdatev2020may - 6548840.pdf.
(Accessed on 2024-09-16).

Oracle (2024). Local Naming Parameters in the
tnsnames.ora File. https : / / docs.oracle.com / en /
database / oracle / oracle - database / 23 / netrf / local -
naming-parameters- in- tns-ora-file.html. (Accessed
on 2024-09-16).

Peyrott, S. (2024). JWT Handbook. https://auth0.com/
resources/ebooks/jwt-handbook. (Accessed on 2024-
09-16).

Prinz, N., Rentrop, C., and Huber, M. (2021). Low-code
development platforms-a literature review. In AMCIS.

Reese, G. and McLaughlin, B. (2003). Java Database Best
Practices. O’Reilly & Associates, Inc., USA.

Richardson, L., Ruby, S., and Demmig, T. (2007). Web-
Services mit REST. O’Reilly.

Statista (2024). IT-Fachkräfte nach Qualifikation 2023 —
Statista. https://de.statista.com/statistik/daten/studie/
166070/umfrage/veraenderung- der- qualifikationen-
von-it-spezialisten-in- itk-unternehmen/. (Accessed
on 07/16/2024).

StB (2024). Small and medium-sized enterprises (SME)
- German Federal Statistical Office. https : / /
www.destatis.de / EN / Themes / Economic - Sectors -
Enterprises / Enterprises / Small - Sized - Enterprises -
Medium - Sized - Enterprises / ExplanatorySME.html.
(Accessed on 07/11/2024).

Uittenbogaard, B., Broens, L., and Groen, A. J. (2005).
Towards a guideline for design of a corporate en-
trepreneurship function for business development in
medium-sized technology-based companies. Creativ-
ity and innovation management, 14(3):258–271.

van der Schee, M. (2024). PHP-CRUD-API. https://
github.com/mevdschee/php-crud-api. (Accessed on
2024-09-16).

Web (2024). HTML Living Standard. https : / /
html.spec.whatwg.org/dev/. (Accessed on 2024-09-
16).

Webflow (2024). Webflow: Create a custom website — Vi-
sual website builder. https://webflow.com/. (Accessed
on 2024-09-23).

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

306


