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Abstract: This paper presents a nonlinear control for the hand axes of a robot with three pneumatic muscles. A vector-
based approach is employed for the modeling. Due to the structure of the system, a flatness-based control 
method is chosen and used. A control system is designed in which three types of compensators, including 
feedback, feedforward, and observer (estimator) are used to improve the trajectory tracking of the main joint 
angles and the muscle force control. The Kalman Filter is used to estimate the disturbance friction torque in 
the system. Through a combination of theoretical analysis and experimental validation, the proposed methods 
demonstrate significant improvements in control accuracy and system stability. As a result, the control system 
tracks the desired trajectories very well, as various trajectories are implemented to test the tracking behavior 
of the control system.  

1 INTRODUCTION 

The integration of automatic control systems has 
become pivotal in modern industries, enhancing both 
efficiency and precision across a wide range of 
applications. While open-loop control systems suffice 
for the operation of simpler devices, such as 
household appliances, the demand for increasingly 
complex feedback control systems has steadily 
grown. Feedback control systems, which 
continuously monitor and adjust outputs to align with 
desired set points, are essential for high-precision 
tasks, ranging from industrial automation to delicate 
surgical procedures.  

Although control using electric actuators is more 
common due to its processing flexibility, pneumatic 
control, which operates based on the pressure and 
force of compressed air, remains crucial in modern 
industry (Franklin et al., 2019). Pneumatic actuators 
are commonly used in automation and robotics due to 
their lightweight and naturally compliant behavior, 
which comes from air's compressibility. This 
compliance, adjustable through pressure control, is 
essential for safe human-machine interactions and 
delicate tasks like handling fragile objects. In 
contrast, hydraulic and electric systems are more rigid 
and require relatively more complex feedback control 
to achieve similar flexibility (Daerden et al., 2002). In 

addition, because pneumatic muscles can produce 
relatively big forces and make these forces last long 
without much effort, using them is also advantageous 
(Schindele et al., 2013). 

Pneumatic robots, characterized by their inherent 
compliance and safety, present unique challenges in 
control due to their nonlinear behavior and dynamic 
uncertainties. These robots are particularly 
advantageous in environments where human-robot 
interaction is frequent, as their compliant nature 
reduces the risk of injury. However, the nonlinear 
dynamics of pneumatic actuators necessitate 
advanced control strategies to achieve precise and 
reliable performance. 

This experiment addresses the critical need for 
robust nonlinear control and state estimation 
techniques for the hand axes of a pneumatic robot, in 
which the axes of the three pneumatic muscles are 
regarded as the axes of the robot hand. The 
experiment aims for optimization of the control 
process by merging all the compensators (feedback, 
feedforward, and observer) together, while the model 
is also considered as similar as possible to the real 
physical system. 

Figure 1 shows two images of the robot, in which 
its main components are introduced, while the 
muscles are still not filled with the compressed air. A 
comprehensive approach is proposed that includes the 
development   of   nonlinear   controllers  designed  to  
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Figure 1: The pneumatic robot. The system consists of four 
major parts: the joint top plate (1), the joint level (2), the 
three pneumatic muscles (3) and the two measuring 
cylinders or potentiometer sensors (4).  

enhance trajectory tracking and force control 
accuracy.  

This paper is structured as follows: First, the 
system is modeled using vectors and various 
coordinate systems to simplify calculations. While 
some components, like the chains and fully realistic 
top plate, are approximated, the model closely 
represents the real system, resulting in minimal 
residual errors. Multiple coordinate systems, tailored 
to the shape, degrees of freedom, and movement 
directions, make the modeling and logic easier to 
understand. Transformation matrices facilitate easy 
variable transfers between coordinate systems. Next, 
the equations for modeling the pneumatic muscles, 
including required coefficients, are derived 
experimentally. New coefficients and muscle 
characteristics specific to this system are calculated. 
Furthermore, flatness-based controllers are designed 
for the desired control response. Initial controllers 
manage angles that approximate the rotated top plate 
angles. Secondary controllers manage the pneumatic 
system, controlling muscle forces based on desired 
torques and mean force. Moreover, the desired 
trajectories and feasible variable ranges, considering 
the real physical system, are explained. Movement, 
pressure, and force limitations in the pneumatic 
system are detailed, such as restricted rotation angles 
of the top plate and pressure limits affecting muscle 
forces. As the air mass flow rate 𝑚ሶ  is considered the 
manipulated variable of the control system, the initial 
and the maximum air pressure in the muscles are 
considered 1 bar and 8 bars, respectively. 
Additionally, data derived from plotting the results in 
MATLAB/Simulink indicate that the desired mean 
force should not fall below 15 newtons to ensure 

logical system responses. Observers are also used to 
estimate and compensate for friction as a disturbance. 
The Kalman Filter is chosen as an optimal method 
among various observer options. Finally, the entire 
control system model is evaluated regarding its 
responses and results, comparing them to expected 
outcomes. As a result, it is shown that the desired 
trajectories are being tracked fast with a high 
accuracy, due to the precise design of the control 
system, including different compensators. The paper 
concludes by summarizing the thesis aims and 
discussing system applications.  

2 MULTI-BODY MODELING 

As discussed in the introduction, the kinematic 
modeling of the robot is based on vectors and 
different coordinate systems, corresponding to the 
system's parts and their movement directions. The 
bottom plate, located at the base of the pneumatic 
muscles, remains stationary, so the initial point (O1) 
of the primary coordinate system (system 1) is set at 
the center of this plate.  

The main joint, which allows two perpendicular 
angular rotations, is located in the middle of the joint 
level. These rotation angles are the main controlling 
angles. The center of this joint is the center point (O2) 
of the next coordinate system (system 2), formed by 
rotating system 1 around the x-axis by angle 𝜑1. The 
final coordinate system is created by rotating system 
2 around its y-axis (y2-axis) by angle 𝜑2. Figure 2 
shows the simplified system model, including the 
three coordinate systems.  

The robot hand axes design benefits from 
symmetry, simplifying calculations and modeling. 
Additionally, the end joints of the pneumatic muscles 
are aligned with the main joint's center, further easing 
the modeling process. 

2.1 Modeling the Hand Axes and the 
Pneumatic Actuators 

The primary goal in modeling the robot hand axes is 
to determine the relationship between the vectors of 
the model's different parts, the rotation angles, and the 
changes in the lengths of the two potentiometer 
sensors, X10 and X11, as shown in figure 1. Since X10 
and X11 are the only means of measuring the current 
positions or lengths of other components, establishing 
this relationship is crucial. The modeling process is 
conducted in several steps, as described in the 
following sections. 
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Figure 2: The simplified model, including the bottom 
surface of the muscles, top triangular surface and the 
sensors’ bottom and top positions.  

2.1.1 Selecting Different Coordinate Systems 

As mentioned briefly earlier, the modeling involves 
three coordinate systems. To explain the system's 
behavior better, the second and third coordinate 
systems are placed at the main joint just below the top 
surface. Key points for calculations include the 
centers of the pneumatic muscle top joints (D, E, and 
F), as shown in figure 2.   

2.1.2 Vector-Based Modeling  

In the modeling approach, muscles and their chains 
together are treated as vectors in three-dimensional 
space for calculations and coding purposes. As 
previously mentioned, the goal is to relate these 
vectors to the rotation angles of the main central joint, 

O2, to the outputs from sensors X10 and X11. For this 
purpose, a vector must represent each pneumatic 
muscle.      

The secondary coordinate system, system 2, 
centered at the main joint with origin O2, simplifies 
calculations for vectors such as 1 𝑟D 1, which represent 
distances like O1 to D. These vectors are transformed 
into the initial coordinate system using a 
straightforward multiplication by a transformation 
matrix explained in section 2.1.3. 

2.1.3 Derivation of the Transformation 
Matrix 

In subsection 2.1.2, the concept of representing 
vectors in different coordinate systems is introduced. 
In order to calculate each vector component in a new 
coordinate system, a transformation matrix is 
required. The transformation matrix to form a new  
coordinate system 3, after two consequent rotations 
about x- and y-axes, can be stated as (Woernle, 
2016)  
        13T  =        ൥ 𝑐𝑜𝑠 𝜑ଶ 0 𝑠𝑖𝑛 𝜑ଶ𝑠𝑖𝑛 𝜑ଵ 𝑠𝑖𝑛 𝜑ଶ 𝑐𝑜𝑠 𝜑ଵ − 𝑠𝑖𝑛 𝜑ଵ 𝑐𝑜𝑠 𝜑ଶ− 𝑐𝑜𝑠 𝜑ଵ𝑠𝑖𝑛 𝜑ଶ 𝑠𝑖𝑛 𝜑ଵ 𝑐𝑜𝑠 𝜑ଵ 𝑐𝑜𝑠 𝜑ଶ ൩ . 

(1) 

Similarly, this 2 degrees of freedom (DOF) 
system involves rotations around the main center joint 
along x- and y-axes. Thus, analogous to the equation 
(1), separate transformation matrices are developed: 
12T, 23T, and 13T, representing movements between 
coordinate systems. Therefore, each vector can be 
calculated in the third coordinate system to ease the 
calculations, by having its components in the first 
coordinate system as follow           

 1 𝑟 = 13T   . 3 𝑟  .            

2.2 Experimental Identification of 
Unknown Parameters  

Pneumatic systems involve diverse muscle types, 
each with specific characteristics like air pressure 
requirements for contraction. A key challenge in 
pneumatic muscles is hysteresis. This effect in 
pneumatic muscles arises from the relative motions 
occurring during muscle inflation or deflation, which 
increase the system's nonlinearities and complexities 
(Vo et al., 2010). Internal friction between the aramid 
fibers and the surrounding elastic material also 
contributes to hysteresis (Deaconescu et al., 2016). 
Despite its potential impact, hysteresis is negligible in 

(2)
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 this experiment and is omitted in the pneumatic 
control model design.  

 The complete force characteristic FMi can be 
stated as (Schindele et al., 2013) 

 
 FMi = FMi,st + FMi,hys , 

 
where FMi,st, and FMi,hys denote the static muscle force 
and the hysteresis effect, respectively.  

Because the hysteresis effect, FMi,hys, is negligible 
in this experiment, therefore, complete force 
characteristic FMi is considered approximately equal 
to the static muscle force FMi,st. As a result,  

 
FMi ≈ FMi,st . 

 
The muscle force depends on internal pressure 𝑝ெ௜ and contraction length Δ𝑙ெ௜ approximated by 

                  𝐹ெ௜,௦௧(𝑝ெ௜, Δ𝑙ெ௜) = 
 

 ൜ 𝐹തெ௜(𝑝ெ௜, Δ𝑙ெ௜)    𝑖𝑓 𝐹തெ௜ ൏ 00                   𝑒𝑙𝑠𝑒   , 

                                                                                                                                       

 

 
 
The amounts of the coefficients 𝑎௠ and bn can be 

defined experimentally. The Recursive Least Squares 
(RLS) method is a reliable approach for parameter 
estimation (Xie et al., 2011), requiring extensive data 
collection—about 20,000 states of pMi , 𝛥𝑙Mi , and FMi  
are practically analyzed in the university laboratory. 
Figure 3 illustrates results for 10 internal muscle 
pressures. 

By using the RLS method, the quantities for 𝑎௠ 
and bn can be calculated. 

Consequently, the resulting three-dimensional 
figure for the identified force characteristic of the 
pneumatic muscle can be plotted as figure 4.  

3 DESIGN OF THE NONLINEAR 
MIMO AND INVERSE SYSTEM 
MODEL 

The flatness-based control approach is chosen, due to 
the suitable trajectory tracking structure and inclusion 
of the feedforward compensator, as it is discussed in 
more detail in section 3. 

Figure 3: The resulting curves, including the relationship 
between the created muscle force and the contraction length 
for 10 different pressures. 

Figure 4: The force characteristic of the pneumatic muscle. 

In order to design a complete flatness-based 
feedback cascade control for a Multiple-Input 
Multiple-Output (MIMO) system, it is necessary to 
design not only the MIMO system model, but also the 
nonlinear inverse system model. The inputs of the 
MIMO system model are the controlled outputs of the 
nonlinear inverse model.  

The design of the MIMO system and the inverse 
system models is discussed in this section, however, 
the design of the flatness-based controllers is 
discussed in the next section, as mentioned earlier.  

3.1 Design of the Nonlinear MIMO 
System Model 

The initial inputs of the MIMO system model are the 
controlled muscle forces, which must sequentially be 
transformed into the torques, rotation angles, and 
sensors' lengths change. Figure 5 shows the schematic 
block diagrams of the whole MIMO system model.  

(3)

(4)

(5)

(6)
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Figure 5: The block diagrams of the whole MIMO system 
model. 

3.1.1 Transforming the Muscle Forces into 
the Toques  

Based on the physical laws of angular rotation, the 
corresponding torques can be calculated as follows 
 

τ   = r  ×  F  ,                                                  
 

where τ , r  and F  represent the resulting torques 
matrix, the distance vector and the muscles forces 
matrix, respectively. Figure 6 shows the simplified 
model of the robot hand axes in which the related 
vectors to calculate the first muscle vector are shown 
in blue. 

The step-by-step calculations to get the first 
muscle vector are as follows 

 
1 𝑟D 3   = 13T  . 3 𝑟D 3    , 

 
1 𝑟D 1   = 1 𝑟3 1   +   

1 𝑟D 3   , 
 

1 𝑟D A   = 1 𝑟D   1   - 1 𝑟A 1 . 
 

If the coordinates of the first muscle force vector 
1 𝑟D A   along x- , y-  and z-axis are considered 𝑟஽஺,௫, 𝑟஽஺,௬, and 𝑟஽஺,௭, respectively, the whole length 
of 𝑟DA can be stated as 

 𝑙 D A  = ඥ𝑟஽஺,௫ଶ + 𝑟஽஺,௬ଶ  + 𝑟஽஺,௭ଶ .                                             
 

Therefore, the unit vector of the first muscle 
force vector in the first coordinate system can be 
expressed as  

1𝑒D A  =  ଵ௟ ವಲ  .  1  𝑟D A  .                                              
 

Similarly, the unit vector of the second and third 
muscle vector in the first coordinate system can be 
determined by the following equations  

1𝑒EB  =  ଵ௟ ಶಳ  .  1 𝑟EB  , 

1𝑒FC  =  ଵ௟ ಷ಴  .  1  𝑟FC  .                                               

Figure 6: The simplified system model to calculate the first 
muscle vector, 𝑟D A. 

To correctly show the pulling direction of the 
muscle forces, the unit matrices must be multiplied by 
-1, resulting in the following vector 

 
1 𝐹⃗M 1  = - FM 1 . 1𝑒D A  ,                                           

 
where FM 1 denotes the scalar value of the produced 
forces of the first pneumatic muscle. 

To simplify the further calculations, the related 
vectors must be brought into the third coordinate 
system, therefore  

 
3 𝐹⃗M 1    =  13T -1  . 1𝐹⃗M 1    , 

 
Consequently, based on the equation (7) the 

produced torque of the first muscle can be calculated 
as follows 

 
3 𝜏1  =   3 𝑟1  ×  3 𝐹⃗M 1  , 

 
The corresponding vectors of the second and the 

third muscles can be calculated similarly. As a result,  

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(7)
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the aggregate torque can be stated as 
 

∑ τ =  3 𝜏1  + 
3 𝜏2  +  

3 𝜏3  .                                                  

3.1.2 Transforming the Torques into the 
Angles 

According to the physical laws of rotation, the 
relationship between the angular velocity and the 
corresponding torque stated as  

 
∑ τ = J ⋅ 𝜑ሷ   , 

 
where J denotes the moment of inertia of the mass to 
which the torque has been applied. Therefore, the 
angular velocity can be stated as 
 𝜑ሷ   =  J -1 . ∑ τ  . 

 
In order to calculate J, the top plate is considered 

a triangular prism. The detailed calculations can be 
found in (Mirafzal, 2023).  

Correspondingly, the matrix of the rotation 
angles can be calculated easily by two consecutive 
integrator blocks in Simulink. 

3.1.3 Transforming the Angles into the 
Changes in the Sensors' Lengths 

To calculate the sensors' lengths change, each of the 
corresponding sensor vectors must be calculated 
separately. Figure 7 shows the simplified model of the 
robot hand axes in which the related vectors to 
calculate the X11 sensor vector are shown in blue. 

Consequently, the X11 sensor vector, 𝑟11H , can be 
calculated by the following equations. 

 
1 𝑟11 3  = 13T   . 3 𝑟11 3 , 

 
1 𝑟11 1  = 1 𝑟3 1   + 1 𝑟11 3 , 

 
1 𝑟11 S  = 1 𝑟11 1   - 1 𝑟S  1 , 

 
1 𝑟11 H  = 1 𝑟11 S  - 1 𝑟H S  . 

 
As a result, the length of the X11 sensor can be 

stated as 
 𝑙X 11 = ඥ𝑟ଵଵு,௫ଶ + 𝑟ଵଵு,௬ଶ + 𝑟ଵଵு,௭ଶ . 

Accordingly, if the initial sensor length is 
considered 𝑙s0, the length change of the X11 sensor 
can be stated as  𝛥𝑙X 11  = 𝑙X  11  - 𝑙s 0 . 

Figure 7: The simplified system model to calculate the X11 
sensor vector, 𝒓ሬ⃗ 11H.   

A similar approach can be followed to calculate 
the length change of the X10 sensor, 𝛥𝑙X 10 .  

3.2 Design of the Nonlinear Inverse 
System Model 

As shortly discussed previously, it is necessary to 
design an inverse system model to complete the 
flatness-based control block diagram. As the first 
inverse block, the output values for the changes in the 
sensors’ lengths, 𝛥𝑙X 11 and 𝛥𝑙X 10, must be converted 
into the corresponding rotation angle values, 𝜑1 and 𝜑2. These output rotation angles as well as the desired 
rotation angles are the inputs of the first flatness-
based angle controller, which is explained in more 
detail in section 4. Figure 8 shows the schematic 
block diagrams of the whole inverse system model.  

 

 

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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Figure 8: The block diagrams of the whole inverse system 
model, in which 𝜑d , 𝜏ௗ, 𝐹௠ௗ, and 𝐹ௌ represent the desired 
rotation angle, torque, mean force, and muscle force, 
respectively.  

3.2.1 Transforming the Changes in the 
Sensors’ Lengths into the Rotation 
Angles  

Although the changes in the sensors’ lengths can be 
analytically calculated from the rotation angles in the 
MIMO system model, the rotation angles cannot be 
calculated analytically by the MATLAB “solve” 
function, due to the complexity of the nonlinear 
inverse model to calculate the angles. Therefore, a 
lookup table is employed in Simulink to output the 
rotation angles from the inputs, which are the changes 
in the sensors’ lengths, numerically. 

3.2.2 Transforming the Rotation Angles into 
the Desired Torques 

Given the rotation angles, that result from the lookup 
table, the desired torques can be outputted. To do this, 
the designed angle controller, which is described in 
the equation (32) in section 4, must take the rotation 
angles from the lookup table, as well as the desired 
angles, that can be chosen by considering the system 
limitations. Next, the controller outputs the second 
derivative of the rotation angles, as the controlled 
values. Then, the desired torques can be calculated, 
having the moment of inertia, as described in the 
equation (33) in section 4.   

3.2.3 Transforming the Desired Torques 
into the Desired Muscle Forces 

The conversion of the desired torques to the desired 
muscle forces could be challenging, due to the 
complex nonlinear structure of the equations. 
Nevertheless, by using an innovative approach, the 
problem is solved completely analytically.  

Due to the fact that the coefficients of the desired 
muscle forces, FM1, FM2 and FM3 , can be totally 
separated from the muscle forces in the matrix of the 
desired torques, the desired torques matrix can be 
rewritten as follows 

Af  ∙ FMd  = ൥ 𝜏ଵௗ𝜏ଶௗ𝐹௠ௗ൩  , 

 
where Af   and FMd  can be written as   
 Af  =  ൦𝑎௙ 𝑏௙ 𝑐௙𝑑௙ 𝑒௙ 𝑓௙ଵଷ ଵଷ ଵଷ ൪   ,    

 

 FMd  =  ൥𝐹ெଵௗ𝐹ெଶௗ𝐹ெଷ,ௗ൩   , 
 

and 𝐹௠ௗ denotes the desired mean muscle force. 
As a result, the desired muscle force matrix can be 

calculated by  
 FMd  = Af  -1 ∙ ൥ 𝜏ଵௗ𝜏ଶௗ𝐹௠ௗ൩  . 

 
The desired muscle forces are used as the 

reference values for the flatness-based force 
controller, which is discussed in section 4.  

4 SYSTEM ANALYSIS AND 
DESIGN OF A NONLINEAR 
TRAJECTORY TRACKING 
CONTROL   

Flatness-based control is a method that offers a cost-
effective and straightforward approach for nonlinear 
models, enabling easy tracking of desired inputs with 
the inclusion of feedforward as a compensator. 
The general formula to design a flatness-based 
controller can be stated as (Lévine, 2009) 
 𝜈 = 𝑦௜ௗ(௡) + ෍ 𝑎௝ ൫𝑦௜ௗ(௝) − 𝑦௜(௝)൯ ௡ିଵ

௝ୀ଴ ,  
where 𝜈 denotes the control input to the system, 𝑦௜ௗ    
represents the desired flat output or the reference 
trajectory, 𝑎௝  refers to the feedback coefficient 
ensuring stability (typically chosen to form a Hurwitz 
polynomial), and n is the relative degree of the 
system.  

This approach effectively controls angles and 
muscle forces (or pressures) and is implemented in 
the control system, detailed in this section. 

(27)

(28)

(29)

(30)

(31)
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4.1 Design of the Flatness-based Angle 
Controller  

The angles 𝜑1 and 𝜑2 are determined using sensor 
feedback and the relationship between its length 
change to the other components of the robot by means 
of the vector-based modeling. Using numerical 
methods, including lookup tables in 
MATLAB/Simulink, sensor data can be converted 
into controlled outputs. 

For systems suitable for flatness-based control, 
like this system, the design is straightforward. As the 
relative degree of the angels in the system is 2, 
according to equation (31), the control equations for 
the main joint angles can be stated as  

 
 𝜑ሷ i = 𝜑ሷ id + 𝑎଴ . (𝜑id – 𝜑i) + 𝑎ଵ . (𝜑ሶ id – 𝜑ሶ i) .   

 
Here, i={1, 2} for each of the angles and 𝜑ሷ id is the 
desired angular acceleration, also acting as the 
feedforward compensator, while 𝑎଴  and 𝑎ଵ are 
positive constants ensuring system stability. 

Desired angle trajectories, e.g. varying sine 
functions, can be freely chosen within physical 
constraints, detailed further in section 5. 

Next, torques are computed from the angular 
accelerations, which are used to calculate total 
torques about x- and y-axes  
  ቂ𝜏ଵௗ𝜏ଶௗቃ = ൤𝐽ଵଵ 𝐽ଵଶ𝐽ଶଵ 𝐽ଶଶ൨ . ൤𝜑ሷ ଵ𝜑ሷ ଶ൨ , 

 
where 𝐽 denotes the moment of inertia of the mass at 
the top of the robot hands to which the torques have 
been applied, that has been approximated by a 
triangular prism. This process is implemented in the 
angle controller. 

4.2 Design of the Flatness-based Force 
Controller of the Pneumatic 
Muscles 

In addition to rotation angles, it is crucial to control 
the pneumatic muscle forces through a separate 
tracking controller.  

The muscle force 𝐹ெ௜  comprises the static force 𝐹ெ௜,௦௧ and the hysteresis force 𝐹ெ௜,௛௬௦, with the latter 
being negligible, as written in equation (4) in section 
2.  

As mentioned earlier, the static force is calculated 
using coefficients 𝑎௠  and 𝑏௡ determined via the 
Recursive Least Squares (RLS) method, as described 
in section 2, equations (5) and (6). The derivative of 

muscle pressure 𝑝ሶMi is expressed as (Schindele et al., 
2013) 

 𝑝ሶMi  = ௡௏ಾ೔ ା ௡ ങೇಾ೔ ങ೛ಾ೔   ቂ𝑅௅𝑇ெ௜𝑚ሶ ெ௜ − డ௏ಾ೔ డ୼௟ಾ೔ ୢ୼௟ಾ೔ୢ௭೔  𝑧ሶ௜  𝑝ெ௜ቃ                              

  = 𝑘௨௜ (Δ𝑙ெ௜, 𝑝ெ௜) 𝑚ሶ ெ௜ −  𝑘௣௜ ൫Δ𝑙ெ௜, Δ𝑙ሶ ெ௜, 𝑝ெ௜൯ 𝑝ெ௜ , 
 
 
where i = {1, 2, 3},  𝑉ெ௜  denotes the volume of the 
pneumatic  muscles,  RL  = 287  the  air  gas  constant,  
n = 1.26    the    identified     polytropic   exponent, 
TMi = 294 K the internal temperature, and Δ𝑙ெ௜ the 
contraction length.  

The volume of the pneumatic muscles 𝑉ெ௜ is 
defined as  

 𝑉ெ௜ (Δ𝑙ெ௜, 𝑝ெ௜)  = ෍൫𝑎௞Δ𝑙ெ௜௞൯ 𝑝ெ௜ ଷ
௞ୀ଴  

                                      + ෍ 𝑏௟Δ𝑙ெ௜௟ ,ଷ௟ୀ଴           

where the coefficients 𝑎௞  and 𝑏௟ can be identified 
experimentally, just like the polynomial function of 
the muscle forces. 

The mass flow rate 𝑚ሶ ெ௜ is given by:  𝑚ሶ ெ௜ = ௙భ೔ ௞೛೔ ௣ಾ೔ି௙ሶభ೔ ௣ಾ೔ା ௙ሶమ೔ାఔ೔௙భ೔ ௞ೠ೔     ,          

where 𝑓ଵ௜ and 𝑓ଶ௜  are derived from the equation (6). 
By considering 𝜈௜ = 𝐹ሶெ௜, similar to designing the 
angle controller based on equation (31), and 
considering that the relative degree of the muscle 
forces in the system is 1, the flatness-based force 
controller can be formulated as   𝐹ሶெ௜ = 𝐹ሶெ௜ௗ + 𝑎଴ . (𝐹ெ௜ௗ − 𝐹ெ௜) . 

Here, i={1, 2, 3} for each of the muscles, and 𝐹ሶெ௜ௗ 
act as the feedforward compensator, while 𝑎଴ must be 
chosen positive to ensure the system stability. 

5 DETERMINATION OF THE 
DESIRED TRAJECTORIES 

The robot pneumatic system has restrictions such as 
the rotation angles, 𝜑1 and 𝜑2, of the main joint and 
the maximum pressure from the pneumatic control 
unit (PCU), due to its physical characteristics. These 

(32)

(33)

(34)

(36)

(37)

(35)
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limitations must be incorporated into the model for 
realism. Typically, a target polynomial is used for the 
desired angles to improve control response and 
derivatives (Mirafzal, 2023). This section details 
these system restrictions, methods, and resulting 
trajectories. 

5.1 Minimum Force/Pressure 
Requirements  

The pulling force of the pneumatic muscles is limited 
by the compressed air pressure. The initial pressure is 
approximately 1 bar, while the laboratory maximum 
is 8 bars due to the pneumatic control unit's 
constraints. Additionally, the muscle forces have 
minimum and maximum limits. Tests showed that the 
desired mean force, Fm, should not fall below 15 
newtons, as lower values result in unrealistic negative 
forces. Consequently, the maximum forces and 
torques are functions of the compressed air pressure, 
which is capped at 8 bars, limiting the corresponding 
forces and torques. 

5.2 Feasible Trajectories for the end 
Effector Rotation Angles  

The primary constraints of the pneumatic robot 
system include the feasible rotation angles due to 
physical limitations. Rotations about the z-axis are 
not allowed, and rotations about the x- and y-axes are 
limited and cannot approach e.g. 90 degrees. Not all   
combinations of the main angles, 𝜑 1 and 𝜑 2, are 
practically achievable. Practical trajectory plots for 
the changes in the sensors’ length are created in the 
laboratory to determine the possible angles from 1377 
different states, as shown in figure 9. 

Figure 9: The possible trajectories for the changes in the X10 
and X11 sensors’ lengths that are measured practically in the 
laboratory for 1377 reachable points. 

As a result, the corresponding 𝜑1 and 𝜑2 angles 
can be plotted using MATLAB, as shown in figure 
10. 

Figure 10: The corresponding trajectories for the main 
angles for all of the 1377 measured points resulting from 
the sensors data. 

Some maximum points in Figure 10 are achieved 
manually, not through full compressed air pressure, 
indicating some unreachable points. In addition, the 
plot should be symmetric, due to the symmetric 
structure of the system, revealing missing points.  

6 ESTIMATION OF THE STATE 
AND DISTURBANCE 

In advanced control systems, feedback alone is often 
insufficient for achieving quick and accurate 
responses due to errors, noise, and disturbances. 
Feedback compares current outputs with set points to 
identify errors but compensates only after errors 
occur, leading to potential delays. In addition to 
feedback, two main compensators, including 
feedforward and observer (estimator), are typically 
employed to address the mentioned issues.  
Feedforward, as explained briefly in the flatness-
based control design, anticipates errors using prior 
knowledge of disturbances, compensating before 
errors are detected by feedback. Furthermore, the 
observer, or estimator, is used when employing 
sensors is impractical or costly, as it estimates system 
states and reduces noise and cost, making it essential 
for complex systems where direct measurement is 
impossible. These strategies work together to enhance 
error correction and improve system performance.  

The system model described earlier is idealized 
and does not account for real-world disturbances, 
particularly friction, which significantly affects 
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mechanical systems. The nonlinear friction model for 
such systems can be expressed as (Mirafzal, 2023)  𝜏௨ = 𝜏ோ . 𝑡𝑎𝑛ℎ ቀఝሶఌ ቁ , 

where 𝜏௨  denotes the nonlinear friction, 𝜏ோ and ε are 
constants, with ε typically set to a small value, such 
as 0.01, based on experience. Damping, especially 
speed-proportional damping, also affects the system 
and is represented as b. 𝜑ሶ , where b is a constant 
relating angular velocity to friction. 

Thus, the total friction torque can be stated as  𝜏௙ =  𝑏. 𝜑ሶ +  𝜏ோ . 𝑡𝑎𝑛ℎ ቀఝሶக ቁ . 

In this experiment, the constants are considered  
b = 0.1, 𝜏ோ = 0.0015, and 𝜀 = 0.01 The state space 
representation for the torque about each rotation axis 
is given by  

 ൤𝜑ሶ𝜑ሷ ൨ = ൥ 𝜑ሶఛ௃ − ௕௃  𝜑ሶ −  ଵ௃  𝜏ோ . 𝑡𝑎𝑛ℎ ቀఝሶఌ ቁ ൩ , 

where      
 
                     , 

 
and 
 

                             .  
 
Here, ym refers to the state vector. Equation (40) 

can be applied separately to each rotation angle, 𝜑ଵ and 𝜑ଶ, with 𝜏 representing the torque about the x- 
and y-axes, respectively.  

Therefore, this friction will be estimated and used 
as a compensator in the control system model. 

In this system model, various states, such as the 
main angles of the central joint, can be estimated. 
However, compensating friction disturbances has 
higher priority. Given that friction influences the 
aggregate torques and the model uses a linear 
approach for these calculations, the Kalman Filter can 
estimate friction in this system (Welch et al., 2006). 
Consequently, it is employed to estimate the 
disturbance torque attributed to friction. The detailed 
design of the Kalman Filter can be found in (Mirafzal, 
2023). 

The next section will compare the estimation 
results with the noisy model disturbance torque and 
analyze the overall model control response. 

 
 

7 SIMULATIVE 
INVESTIGATION AND 
EVALUATION 

To evaluate the control system’s response, 
adjustments are made to simulate real-world 
conditions with disturbances, noise, and initial 
conditions. Potentiometers and pressure sensors 
received noise with specified variances. System limits 
and delays are also set. Friction is estimated and 
compensated using a Kalman Filter. 

The system's response is evaluated against desired 
trajectories for both angles and muscle forces. The 
next step is to tune the controllers to receive a 
satisfactory response of the system. Effective tuning 
of flatness-based controllers is achieved by adjusting 
coefficients iteratively. To adjust the coefficients of 
the controllers, the eigenvalues should be chosen for 
each controller. Through multiple rounds of trial and 
error and examining how well the outputs can track 
the desired trajectories in Simulink, the eigenvalues 
of -225 and -1100 are chosen for the angle controller 
and the force controller, respectively. As a result, the 
characteristic polynomial for the angle controller can 
be stated as  

 𝑃(𝑆) = (𝑆 + 225)ଶ                      = 𝑆ଶ + 450 𝑆 + 50625 . 
 

Therefore, the coefficients of the flatness-based 
angle controller in equation (32) can be chosen as     𝑎଴ = 50625 and 𝑎ଵ = 450. 

Similarly, the characteristic polynomial for the 
force controller can be stated as 

  𝑃(𝑆) = 𝑆 + 1100 . 
 

As a result, the coefficient of the flatness-based 
force controller in equation (37) can be chosen as     𝑎଴ = 1100.  

After implementation of the selected control 
coefficients, the tracking behavior of the system 
shows high accuracy and fast response to the desired 
trajectories.  

Figures 11 and 12 show the tracking behavior of 
the system as a response to the desired sine wave 
trajectories. Figure 13 also illustrates how well the 
Kalman Filter estimates the friction torques.  

(38)

(39)

(40)

(43)

(44)

(41)

(42)
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Figure 11: The output of the second angle, 𝜑2, compared to 
sample reference sine wave trajectories.  

 
Figure 12: The output of the third muscle force, FM3, 
compared to the reference values. 

 
Figure 13: The estimated friction torque about y-axis 
compared to the reference values. 

Similarly, figures 14 and 15 illustrate how well 
the system follows more complex desired trajectories 
for the first rotation angle and the third muscle force, 
respectively, demonstrating effective control despite 
assumed disturbances. The Kalman Filter also 
effectively estimates friction torques, as shown in 
Figures 16, aligning closely with real values under 
various conditions. 

Overall, the simulation results validate the proper 
determination of the physical conditions, as well as 
the suitability of the controller designs and the 
coefficient selections, ensuring the system performs 
well under different operating conditions, in which 
factors such as friction torque play important roles in 
the system’s response.   

 
Figure 14: The output of the first angle, 𝜑1, compared to 
sample reference trajectories.  

 
Figure 15: The output of the third muscle force, FM3, 
compared to the reference values. 

 
Figure 16: The estimated friction torque about y-axis 
compared to the reference values. 

8 CONCLUSIONS 

This experiment focuses on modeling and controlling 
a pneumatic robot hand axes system, with a key 
emphasis on central joint rotation angles and 
pneumatic muscle forces. Using transformation 
matrices simplifies kinematic relationships, while 
Recursive Least Squares helps characterize 
pneumatic muscle behavior. 

A flatness-based control approach is chosen for its 
ability to effectively track desired trajectories despite 
system non-linearities.  
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To enhance realism, disturbances like friction 
torques and sensor noise are introduced and mitigated 
using a Kalman Filter observer. Tuning controller 
coefficients through iterative testing optimizes 
system response, ensuring outputs closely matches 
desired values.  

In conclusion, this research demonstrates the 
practicality and efficiency of pneumatic actuators in 
generating substantial forces, supported by robust 
flatness-based controllers. Future work could explore 
alternative actuators and control strategies like the 
Backstepping or the Sliding-Mode-Control for 
further system enhancement. 
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