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Abstract: The Hopfield network model and its generalizations were introduced as a model of associative, or content-
addressable, memory. They were widely investigated both as an unsupervised learning method in artificial
intelligence and as a model of biological neural dynamics in computational neuroscience. The complex-
ity features of biological neural networks have attracted the scientific community’s interest for the last two
decades. More recently, concepts and tools borrowed from complex network theory were applied to artificial
neural networks and learning, thus focusing on the topological aspects. However, the temporal structure is
also a crucial property displayed by biological neural networks and investigated in the framework of systems
displaying complex intermittency. The Intermittency-Driven Complexity (IDC) approach indeed focuses on
the metastability of self-organized states, whose signature is a power-decay in the inter-event time distribu-
tion or a scaling behaviour in the related event-driven diffusion processes. The investigation of IDC in neural
dynamics and its relationship with network topology is still in its early stages. In this work, we present the
preliminary results of an IDC analysis carried out on a bio-inspired Hopfield-type neural network comparing
two different connectivities, i.e., scale-free vs. random network topology. We found that random networks
can trigger complexity features similar to that of scale-free networks, even if with some differences and for
different parameter values, in particular for different noise levels.

1 INTRODUCTION

The Hopfield model is the first example of a recur-
rent neural network defined by a set of linked two-
state McCulloch-Pitts neurons evolving in discrete
time. The Hopfield model is similar to the Ising model
(Ernst, 1925) describing the dynamics of a spin sys-
tem in a magnetic field, but with all-to-all connec-
tivity among neurons instead of local spin-spin in-
teractions. More importantly, in his milestone pa-
per (Hopfield, 1982), Hopfield first introduced a rule
for changing the topology of network connections
based on external stimuli. Hopfield first proposed
and investigated the properties of this network model
in (Hopfield, 1982) and in successive works (Hop-
field, 1984; Hopfield, 1995). In particular, he also
proposed an extension of the original 1982 model
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to a continuous-time leaky-integrate-and-fire neuron
model (Hopfield, 1984), also considering the case of
neurons with graded response, i.e., with a sigmoid
function mediating the voltage inputs from upstream
neurons. The main property of the Hopfield model
is that the connectivity matrix is allowed to change
according to a Hebbian rule (Hebb, 1949), which is
often summarised in the statement: “(neuron) cells
that fire together wire together” (Löwel and Singer,
1992). To our knowledge, with this rule, the Hopfield
neural network model results in being the first model
used for the investigation of associative, or content-
addressable, memory. In the Artificial Intelligence
(AI) jargon, external stimuli correspond to the cases
of a training dataset that trigger the changes in the
connectivity matrix. This process involves decoding
the input data into a map of neural states (see, e.g.,
(Hopfield, 1995)).

The Hopfield neural model, as such and its varia-
tions, belong to the class of Spiking Neural Networks
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(SNNs). SSNs are still attracting considerable atten-
tion due to energy efficiency and high sensitivity to
temporal features of data and, even if they are nowa-
days less efficient concerning the classical deep neu-
ral networks, are thought to have great potential in
the context of neuromorphic computing (Davies et al.,
2018).

An interesting aspect studied by Hopfield is the
emergence of collective, i.e., self-organizing be-
haviour in relation to the stability of memories in the
network model. In this framework, Grinstein et al.
(Grinstein and Linsker, 2005) investigated the role
of topology in a neural network model extending the
Hopfield model to a more biologically plausible one,
but partially maintaining the computational advantage
of two-state McCulloch-Pitts neurons with respect to
continuous-time extension of the model. This was
achieved by introducing a maximum firing time and
a refractory time in the single neuron dynamics.

Since the last two decades, the interest towards the
complex topological features of neural networks has
gained momentum in many scientific fields involv-
ing concepts and tools of computational neuroscience
and/or AI (see, e.g., (Kaviani and Sohn, 2021) for a
survey). In particular, neural networks with complex
topologies, such as random (Erdös-Rényi) (Erdös and
Rényi, 1959), (Gros, 2013), small-world or scale-
free networks (Boccaletti et al., 2006), were shown
to outperform artificial neural networks with all-to-all
connectivity (McGraw and Menzinger, 2003; Torres
et al., 2004; Lu et al., 2006; Shafiee et al., 2016; Ka-
viani and Sohn, 2020; Adjodah et al., 2020; Kaviani
and Sohn, 2021).

Complexity is a general concept related to the
ability of a multi-component system to trigger self-
organizing behaviour, a property that is manifested
in the generation of spatio-temporal coherent states
(Paradisi et al., 2015; Grigolini, 2015; Paradisi and
Allegrini, 2017). Interestingly, in many research
fields, many authors consider the complexity of a sys-
tem as a concept essentially referring to its topolog-
ical structure, which is an approach borrowed from
graph theory and complex networks (Watts and Stro-
gatz, 1998; Barabási and Albert, 1999; Albert and
Barabási, 2002; Barabási and Oltvai, 2004). How-
ever, another aspect, which is often overlooked and
instead is typically a crucial feature of complex self-
organizing behaviour, is the temporal structure of the
system. This is intimately related not only to the
topological/geometrical structure of the network but
also to its dynamical properties, both at the level of
single nodes, of clusters of nodes, and as a whole.
Hereafter we refer to Temporal Complexity (TC),
or Intermittency-Driven Complexity (IDC), as the

property of the system to generate metastable self-
organized states, the duration of which is marked by
rapid transition events between two states (Grigolini,
2015). The underlying theories of TC/IDC refer
to Cox’s renewal theory (Cox, 1970), Cox’s failure
events are reinterpreted in a temporal sense, that is,
precisely as rapid transitions or jumps in the sys-
tem’s observed variables. The rapid transitions can
occur between two self-organized states or between a
self-organized state and a disordered or non-coherent
state. The sequence of transition events is then de-
scribed as a point process and the ideal condition for
TC/IDC is the renewal one (Cox, 1970; Bianco et al.,
2007; Paradisi et al., 2009), which is not easily de-
termined being mixed to spurious effects such as sec-
ondary events and noise (Paradisi and Allegrini, 2017;
Paradisi and Allegrini, 2015). The self-organizing be-
haviour can be detected by the recognition of given
patterns in the system’s variables, e.g., eddies in a tur-
bulent flow or synchronization epochs in neural dy-
namics, and the identification of events is achieved
by means of proper event detection algorithm in sig-
nal processing (Paradisi and Allegrini, 2017; Paradisi
and Cesari, 2023).

A general concept commonly accepted in the
complex system research field is that complexity fea-
tures are related to the power-law behaviour of some
observed features, e.g.: space and/or time correlation
functions, the distribution of some variables such as
the sequence of inter-event times and the size of neu-
ral avalanches (Beggs and Plenz, 2003). In TC/IDC a
crucial feature to be evaluated is the probability den-
sity function (PDF) of inter-event times, or Waiting
Times (WT). However, the WT-PDF is often blurred
by secondary events related to noise or other side ef-
fects (Allegrini et al., 2010; Paradisi and Allegrini,
2015). A more reliable analysis relies on diffusion
processes derived by the sequence of events and on
their scaling analysis (Akin et al., 2009).

This approach involves several scaling analyses
widely investigated in the literature that were inte-
grated in the Event-Driven Diffusion Scaling (ED-
DiS) algorithm (Paradisi and Allegrini, 2017; Paradisi
and Allegrini, 2015). This approach was also success-
fully applied in the context of brain data, being able to
characterize different brain states from wake, relaxed
condition to the different sleep stages (Paradisi et al.,
2013; Allegrini et al., 2013; Allegrini et al., 2015).

At present, the relationships between network
connectivity and temporal complexity by one hand
and the complexity of connectivity matrix and learn-
ing efficiency are still not clear. In this work, we
present some preliminary results regarding the first
aspect, having in mind the potential applications
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regarding the second aspect, i.e., connectivity vs.
learning efficiency. Along this line, an IDC anal-
ysis is carried out on a bio-inspired Hopfield-type
neural network comparing two different connectivi-
ties, i.e., scale-free vs. random network topology.
In Section 2 we introduce the methods to generate
the network topologies and the details of the bio-
inspired Hopfield-type neural network model. Sec-
tion 3 briefly describes the event-based scaling anal-
yses. In Section 4 we describe the results of numeri-
cal simulations and of their IDC analyses that are dis-
cussed in Section 5. Finally, we sketch some conclu-
sions in Section 6.

2 MODEL DESCRIPTION

2.1 Network Topology: Scale-Free vs.
Erdös-Rényi

We here consider two types of networks, both with
N number of nodes1. Our networks are constrained
to have the same minimum number k0 of links for
each neuron and the same average number of links
⟨k⟩. In both cases, self-loops and multiple directed
edges from one node to another are excluded, fol-
lowing the methodology outlined in (Grinstein and
Linsker, 2005). The first class of networks is that
of Scale-Free (SF) graphs, characterized by a power-
law node out-degree distribution. The probability of a
node i to have ki outgoing links is given by:

∀i = 1, ...,N : PSF(ki) =
m
kα

i
(1)

m =
α−1

k(1−α)
0 − (N −1)(1−α)

(2)

For the construction of SF networks, we used a
power-law exponent α = 2.5.

The second class of networks is that of Erdös-
Rényi (ER) graphs, which are random graphs where
each pair of distinct nodes is connected with a prob-
ability p. In an ER network with N nodes and with-
out self-loops, the average degree is simply given by:
⟨k⟩ER = pER (N −1). Then, from the equality of de-
gree averages: ⟨k⟩ER = ⟨k⟩SF we simply derive:

pER =
⟨k⟩SF

N −1
(3)

1Let us recall that the degree of a node in the network is
the number of links of the node itself. In a directed network,
each node has an out-degree, given by the number of outgo-
ing links, and an in-degree, given by the number of ingoing
links.

The theoretical mean out-degree of the SF network is
approximated by the following formula:

⟨k⟩ ≃ m
k2−α

0 − (N −1)2−α

α−2
=

=
α−1
α−2

k2−α

0 − (N −1)2−α

k1−α

0 − (N −1)1−α

that is obtained by considering k as a continuous ran-
dom variable. However, due to the large variability
of SF degree distribution, different statistical samples
drawn from PSF can have very different mean outde-
grees. Thus, we have chosen to numerically evalu-
ate the mean out-degree associated with the sample
drawn from PSF and to use this value instead of the
theoretical one to define PSF .

The algorithm used to generate the two network
topologies is as follows:

(SF)(a) For each node i, choose the out-degree ki as
the nearest integer of the real number defined
by:

ki = (((N −1)(1−α)− k(1−α)
0 )ξi + k(1−α)

0 )
1

1−α

(4)
being ξ a random number uniformly dis-
tributed in [0,1]. This formula is obtained by
the cumulative function method. The drawn
ki are within the range [k0,N −1].

(b) Given ki for each node i, the target nodes
are selected by drawing ki integer numbers
{ ji

1, ..., ji
ki
} uniformly distributed in the set

{1, ..., i−1, i+1, ...,N}.
(c) Finally, the adjacency or connectivity matrix

is defined as:

A
SF

i j =

{
1 if j ∈ T i = { ji

1, ..., ji
ki
}

0 otherwise
(5)

With this choice, the in-degree distribution
results in a mono-modal distribution similar
to a Gaussian distribution.

(ER)(a) From the adjacency matrix A
SF

i j the actual
mean out-degree ⟨k⟩SF is computed.

(b) For each couple of nodes (i, j) with j ̸= i a
random number ξi, j is drawn from a uniform
distribution in [0,1].

(c) Finally, the adjacency matrix is defined as:

A
ER

i j =

{
1 if ξi, j < pER
0 otherwise (6)

where pER is given by Eq. (3).
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2.2 The Grinstein Hopfield-Type
Network Model

Grinstein et al. (Grinstein and Linsker, 2005) mod-
ify the Hopfield network by adding three elements:
(i) a random endogenous probability of firing pendo
for each node; (ii) a maximum firing duration, thanks
to which the activity of a node shuts down after tmax
time steps; (iii) a refractory period such that a node,
once activated and subsequently deactivated, must re-
main inactive for at least tre f consecutive time-steps.
Each neuron i has two states: Si = 0 (”not firing”)
and Si = 1 (”firing at maximum rate”). The weight of
link from j to i is given by Ji j (Nonconnected neurons
have Ji j = 0). The network is initialized at time t = 0
by randomly setting each neuron state Si(0) equal to
1 with a probability pinit that we chose equal to the
endogenous firing probability. At each time step the
weighted input to node i is defined:

Ii(t) = ∑
j

Ji jS j(t) (7)

as in the Hopfield network dynamics. The state of
the node i evolves with t according to the following
algorithm:
1. If Si(τ) for all τ = t, t − 1, · · · , t − tmax + 1, then

Si(t +1) = 0 (maximum firing duration rule).

2. If Si(t) = 1 and Si(t + 1) = 0 then S(τ) = 0 for
(t +1)< τ ≤ (t + tre f ) (refractory period rule).

3. If neither rule 1 nor rule 2 applies, then

(a) If Ii(t)≥ bi then Si(t +1) = 1;
(b) If Ii(t)< bi then Si(t+1) = 1 with a probability

equal to pendo otherwise Si(t +1) = 0.

where bi is the firing threshold of neuron i.
In our study, unlike Grinstein and colleagues, the

link’s weights and the firing thresholds are taken uni-
formly throughout the network: Ji j = J and bi = b.

3 EVENT-DRIVEN DIFFUSION
SCALING ANALYSIS

The diffusion scaling analysis is a powerful method
for scaling detection and, when applied to a se-
quence of transition events, can give useful informa-
tion on the underlying dynamics that indeed gener-
ate the events. The complete IDC analysis involves
the Event-Driven Diffusion Scaling (EDDiS) algo-
rithm (Paradisi and Allegrini, 2015; Paradisi and Al-
legrini, 2017) with the computation of three different
random walks generated by applying three walking
rules to the sequence of observed transition events

and the computation of the second moment scaling
and the similarity of the diffusion PDF. The gen-
eral idea is based on the Continuous Time Random
Walk (CTRW) model (Montroll, 1964; Weiss and Ru-
bin, 1983), where a particle moves move only at the
event occurrence times. Here we limit to the so-called
Asymmetric Jump (AJ) walking rule (Grigolini et al.,
2001), which simply consists of making a unitary
jump ahead when an event occurs and, thus, corre-
sponds to the counting process generated by the event
sequence:

X(t) = #{n : tn < t}. (8)
The method used to extract events from the sim-

ulated data and the scaling analyses are described in
the following.

3.1 Neural Coincidence Events

The IDC features here investigated are applied to
coincidence events that are defined as the events at
which a minimum number Nc of neuron fires at the
same time. Then, given the global set of single neu-
ron firing times, the coincidence event time is defined
as the occurrence time of more than Nc nodes fir-
ing simultaneously, i.e., in a tolerance time interval
of duration ∆tc. Hereafter we always set ∆tc equal
to a sampling time, i.e., ∆tc = 1, which is equiva-
lent to look for simultaneous events. The total ac-
tivity distribution of the network corresponds to the
size distribution of coincidences with minimum num-
ber Nc = 1: P(nc|Nc = 1). The actual threshold Nc
here applied is defined by computing the 35th per-
centile of P(nc|Nc = 1). Then, each n-th coincidence
event is described by its occurrence time tc(n) and its
size Sc(n).

3.2 Detrended Fluctuation Analysis
(DFA)

DFA is a well-known algorithm (see, e.g., (Peng et al.,
1994)) that is widely used in the literature for the eval-
uation of the second-moment scaling H defined by:

F
2
(∆t) = ⟨(∆X(∆t)−∆Xtrend(∆t))2⟩ ∼ t2H (9)

F(∆t) = a ·∆tH ⇒
⇒ log(F(∆t)) = log(a)+H · log(∆t) (10)

being ∆X(t,∆t) = X(t +∆t)−X(t). We use the no-
tation H as this scaling exponent is essentially the
same as the classical Hurst similarity exponent (Hurst,
1951). Xtrend(∆t) is a proper local trend of the time
series. The DFA is computed over different values of
the time lag ∆t and the statistical average is carried
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out over a set of time windows of duration ∆t into
which the time series is divided. In the EDDiS ap-
proach, DFA is applied to different event-driven dif-
fusion processes (see, e.g., (Paradisi et al., 2012; Par-
adisi and Allegrini, 2017)). To check the validity of
Eq. (10) on the data and evaluate the exponent H is
it sufficient to carry out a linear best fit in the loga-
rithmic scale. To perform the DFA we employed the
function MFDFA of package MFDFA of Python (Ry-
din Gorjão et al., 2022).

3.3 Diffusion Entropy

The Diffusion Entropy (DE) is defined as the Shannon
entropy of the diffusion process X(t) and was exten-
sively used in the scaling detection of complex time
series (Grigolini et al., 2001; Akin et al., 2009). The
DE algorithm is the following:

1. Given a time lag ∆t, split the time series X(t)
into overlapping time windows of duration ∆t and
compute: ∆X(t,∆t) = X(t + ∆t)− X(t), ∀ t ∈
[0, t −∆t].

2. For each time lag ∆t, evaluate the distribution
p(∆x,∆t).

3. Compute the Shannon entropy:

S(∆t) =−
∫ +∞

−∞

p(∆x,∆t) log p(∆x,∆t)dx (11)

If the probability density function (PDF) is self-
similar, i.e., p(∆x,∆t) = f (∆x/∆tδ)/∆tδ, it re-
sults:

S(∆t) = A+δ log(∆t +T ) (12)

To check the validity of Eq. (12) on the data and
evaluate the exponent δ is it sufficient to carry out
a linear best fit with a logarithmic scale on the
time axis.

4 NUMERICAL SIMULATIONS
AND RESULTS

We performed a comprehensive parametric analysis
with a fixed tmax value of 3, while systematically vary-
ing the other parameters. These include J which was
constrained to integer values ranging from 1 to 4,
pendo set to 0.001, 0.01 and 0.1, k0 limited to integers
spanning from 1 to 5, b with two options of either 2
or 3, and tre f set at 0, 4, 6, 8 and 10. For dimen-
sional reasons, the model’s dynamics depend only on
the adimensional parameter π = J

b , which is conve-
niently used in the plots summarising the parametric

analysis, i.e. Figs. 1 and 2. The simulations were car-
ried out for 20000 time steps within networks com-
prising N = 1000 neurons. We analyzed the network
behaviours by examining two key metrics: the total
activity distribution P(nc|Nc = 1) and the average ac-
tivity over time. The parametric analysis results are
reported in Fig. 1 and Fig. 2. For the ER networks
we have identified the following qualitative behaviors
in the total activity distributions:

1. Asymmetric Bell Curve distribution

2. Symmetric Bell Curve distribution

3. Bell curve and transition to multi-modal distribu-
tion

4. Cycle distribution

5. Mono-modal at zero distribution

6. Multi-modal distribution

7. Peak with Power-Law distribution

8. Peak with Power-Law and transition to multi-
modal distribution

9. Power-Law distribution

10. Power-Law with Multiple Peaks distribution

For the SF networks we have identified the follow-
ing qualitative behaviors in the total activity distribu-
tions:

1. Asymmetric Bell Curve distribution

2. Symmetric Bell Curve distribution

3. Cycle distribution

4. Mono-modal at zero distribution

5. Multi-modal distribution

6. Peak with Power-Law distribution

7. Peak with Power-Law and transition to multi-
modal distribution

8. Power-Law distribution

9. Power-Law and transition to cycle distribution

Figures 4 and 5 report the results for ER and SF
networks, respectively.
We selected specific cases for further investigation us-
ing TC/IDC analysis. Specifically, we analyzed the
WTs between successive coincidence events by ap-
plying the DFA and DE analyses. We report some
of the results in Fig. 3, where a few relevant cases
involving power-law behaviour were selected. The
best-fit values of the scaling exponents H and δ are
reported in Table 1.
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Figure 1: Results of parameter analysis derived from the behaviour of the total activity distribution in ER networks.

Figure 2: Results of parameter analysis derived from the behaviour of the total activity distribution in SF network.

5 DISCUSSION

Our numerical simulations showed a large variety of
behaviours in the Hopfield-type network in both net-
work topologies, i.e., random (ER) and scale-free

(SF). As can be seen from Figs. 4 and 5, most quali-
tative behaviors can be found in both network topolo-
gies, but with different sets of parameters. However,
some differences can be seen: (i) “bell curve with
multimodal” and “power-law with multiple peaks”
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Table 1: Result of fits for DFA and DE. For the “Power-Law with Cycle (SF)” row: Power-Law part is indicated with (PL), and
Cycle part is indicated with (C). In the “Power-Law (SF)” case, the fit δ = 0.184 for DE in the time range ∆t ∼ 103 −3 ·103

was not reported.

DFA (H) DE (δ)
Short-Time Long-Time Short-Time Long-Time

Power-Law (ER) 0.061 1.164 / 0.352
Power-Law (SF) 0.070 1.061 / 0.382

Power-Law with Multiple Peaks (ER) 0.084 1.075 / 0.407
Power-Law with Cycle (SF) 0.105 (PL) 1.138 (PL) / /

0.078 (C) 1.327 (C) / /

(a) DFA (b) DE

Figure 3: DFA and DE analyses. Panels (1) and (2) same parameter set k0 = 5, tre f = 10, b = 2, J = 3 and pendo = 0.01 (same
as panels (9) of Fig. 4 and (9) of Fig. 5). Panels (3) and (4) same as before but with different noise level pendo = 0.001 (same
as panels (10) of Fig. 4 and (8) of Fig. 5).

behaviours appear only in the ER network topology
(panels (3) and (10) in Fig. 4), while (ii) “power-
law with cycle” behaviour is exclusive of the SF net-
work topology (panels (9) of Fig. 5). Interestingly, all
other behaviours are seen in both topologies, even if
with slight differences. In particular, the emergence
of power-law behaviour in the total activity distribu-
tion (compare, e.g., panel (9) of Fig. 4 with panel
(8) of Fig. 5). It is worth noting that different kinds
of power-law behaviours are seen in both topologies
(panels (7-10) of Fig. 4 and panels (6-9) of Fig. 5).
As can be seen also from Figs. 1 and 2, for the pure
power-law behaviour (red dots) the main difference
seems to lie in the different noise levels: pendo = 0.01
for ER and pendo = 0.001 for SF.
Another remarkable observation regards the abrupt
transition among different behaviours seen in some
specific cases. In particular, some cases display a ini-
tial power-law behaviour that can persist for a very
long time, but then it is followed by an unexpected
transition to multimodal or cycle behaviour (panels

(8) in Fig. 4 and panels (7) and (9) in Fig. 5). Only
in ER networks, it is also seen a transition between
a mono-modal to a multi-modal distribution where
maxima are shifted towards higher values of total ac-
tivity (panels (3) of Fig. 4 ).
Fig. 3 shows some relevant behaviours in both DE
and DFA functions. In particular, we chose to an-
alyze: (i) pure power-law behavior in both topolo-
gies (panels (1) and (4)), which surprisingly arises
for similar parameter sets apart from the noise level;
(ii) power-law with multiple peaks in ER (panel (3))
and (iii) power-law with a transition to a cycle for SF
(panel (2)). Regarding “power-law with cycle” (panel
(2)), due to the rapid transition from the power-law
to the cycle behaviour, DFA and DE were applied
separately to the two regimes. Surprisingly, the cy-
cle regimes gives a pattern of DFA and DE similar to
that of the power-law regime, even if with different
slopes. Reliable fit values for H and δ are reported
in Table 1. It can be seen that the qualitative be-
haviour of DFA are essentially the same in the differ-
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(a)

(b)

Figure 4: (a) Average Activity plots over time and (b) Histograms of Total Activity for all the qualitative behaviours found in
ER networks. Parameters for each panel: (1) k0 = 1, tre f = 4, b = 2, pendo = 0.01, and J = 1; (2) k0 = 1, tre f = 4, b = 2, pendo =
0.1, and J = 1; (3) k0 = 2, tre f = 0, b = 2, pendo = 0.01, and J = 1; (4) k0 = 4, tre f = 0, b = 2, pendo = 0.01, and J = 1; (5) k0 =
1, tre f = 4, b = 2, pendo = 0.001, and J = 1; (6) k0 = 3, tre f = 6, b = 3, pendo = 0.1, and J = 2; (7) k0 = 5, tre f = 6, b = 3, pendo =
0.1, and J = 1; (8) k0 = 5, tre f = 6, b = 3, pendo = 0.1, and J = 2; (9) k0 = 5, tre f = 10, b = 2, pendo = 0.01, and J = 3; (10) k0 =
5, tre f = 10, b = 2, pendo = 0.001, and J = 3.

ent cases. All the investigated cases have the same pa-
rameters, except for the noise level, which is given by
pendo = 0.01 for the top panels and 0.001 for the bot-
tom panels. In summary, we have: (i) short-time with

very low H, associated with highly anti-persistent cor-
relations; (ii) long-time with very high H ∼ 1, except
in panel (3) where H > 1, associated with highly per-
sistent correlations and superdiffusion. Interestingly,
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(a)

(b)

Figure 5: (a) Average Activity plots over time and (b) Histograms of Total Activity for all the qualitative behaviours found in
SF networks. Parameters for each panel: (1) k0 = 1, tre f = 0, b = 2, pendo = 0.01, and J = 1; (2) k0 = 1, tre f = 0, b = 2, pendo =
0.1, and J = 1; (3) k0 = 5, tre f = 0, b = 3, pendo = 0.01, and J = 2; (4) k0 = 1, tre f = 0, b = 2, pendo = 0.001, and J = 1; (5) k0 =
3, tre f = 0, b = 3, pendo = 0.1, and J = 1; (6) k0 = 3, tre f = 10, b = 3, pendo = 0.1, and J = 2; (7) k0 = 5, tre f = 10, b = 3, pendo =
0.1, and J = 2; (8) k0 = 5, tre f = 10, b = 2, pendo = 0.001, and J = 3; (9) k0 = 5, tre f = 10, b = 2, pendo = 0.01, and J = 3.

we get H ≃ 1 for pendo = 0.001 in both topologies,
while the pure power-law, which occurs for different
noise levels in the two topologies gives a larger value
of H for the ER network (H ≃ 1.16). The DE dis-
plays a power-law only in the long-time regime that
is, at variance with the DFA, in agreement with a sub-
diffusive behaviour. This is not directly related to the
persistence of correlations, but directly to the shape
of the diffusion PDF. In summary, in the long-time
regime of time lags, the diffusion generated by the

coincidence events, which are a manifestation of self-
organizing behaviour, shows highly persistent corre-
lations, as revealed by DFA, associated with a subd-
iffusive behaviour in the DE analysis. This could be
compatible with a very slow power-law decay in the
WT-PDF, i.e., ψ(τ)∼ τµ with µ < 2.
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6 CONCLUDING REMARKS

Here we have investigated a Hopfield-type model
and, in particular, the model proposed in (Grinstein
and Linsker, 2005), being a simple prototype of bio-
inspired neural model. This includes bio-inspired
features, such as the refractory time and the maxi-
mum firing time that can be tuned and interpreted,
in the context of AI, as hyper-parameters. A partic-
ularly interesting bio-inspired feature is also encoded
in the learning mechanism of Hopfield-type networks,
which is exactly the Hebbian bio-inspired, unsuper-
vised, learning. The network topology is recognized
to also play a central role in both global network dy-
namics and learning efficiency. This last feature is of
particular interest in the AI field.

In particular, some authors focused on the effect
of topological structure on learning features (Kaviani
and Sohn, 2021), in some cases finding a better learn-
ing performance associated with specific topologies,
e.g., scale-free and/or small-world (Lu et al., 2023).
The present work represents a preliminary investiga-
tion of the relationships among connectivity features
and temporal complexity of a simple spiking neural
network without learning algorithms. Interestingly,
different topological structures can give similar dy-
namical behaviours and complexity features (see, e.g,
Fig. 4b, panel (9), with Fig. 5b, panel (8), and Fig.
3a, panels (1) and (4)).
Regarding the relationship between connectivity
and temporal complexity, further investigations are
needed to better understand the reason why very dif-
ferent topologies can give similar complexity. We ex-
pect these further investigations to deepen the under-
standing of the relationship between dynamical fea-
tures of the network, e.g., temporal complexity, con-
nectivity structure and learning features, such as stor-
age capacity.
We also plan future investigations regarding the re-
lationship between connectivity structure and learn-
ing algorithms, to study how the performance mea-
sures, jointly with the evaluation of complexity in-
dices, change with the number of stored patterns (e.g.,
in the Hopfield model).
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