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Abstract: The tuning of retrieval and ranking strategies in search engines is traditionally done manually by search experts
in a time-consuming and often irreproducible process. A typical use case is field boosting in keyword-based
search, where the ranking weights of different document fields are changed in a trial-and-error process to
obtain what seems to be the best possible results on a set of manually picked user queries. Hyperparameter
optimization (HPO) can automatically tune search engines’ hyperparameters like field boosts and solve these
problems. To the best of our knowledge, there has been little work in the research community regarding the
application of HPO to search relevance in e-commerce. This work demonstrates the effectiveness of HPO
techniques for optimizing the relevance of e-commerce search engines using a real-world dataset and evalu-
ation setup, providing guidelines on key aspects to consider for the application of HPO to search relevance.
Differential evolution (DE) optimization achieves up to 13% improvement in terms of NDCG@10 over base-
line search configurations on a publicly available dataset.

1 INTRODUCTION

Modern e-commerce platforms rely on search engines
to help customers find relevant products from cata-
logs containing millions of items. Configuring these
platforms is challenging and requires carefully mod-
eling the query intent, product attributes, customer be-
havior, and other factors influencing relevance. Most
search engines have numerous hyperparameters that
can significantly impact both retrieval and ranking of
results. Traditionally, these options are tuned man-
ually in a time-consuming and often irreproducible
process as the queries, products, and customer pref-
erences evolve continuously over time.

In recent years, hyperparameter optimization
(HPO) techniques have been successfully used to con-
figure automatically many types of algorithms as well
as complex machine learning models (Feurer and
Hutter, 2019; Eggensperger et al., 2019). HPO em-
ploys a class of models usually called black-box or
derivative-free, as no mathematical closed-form for-
mulation of an objective function is necessary and the
only requirement is a metric for numerical estimation.
These techniques search through a multi-dimensional
space of possible hyperparameter configurations to
find the settings that optimize a performance metric
such as NDCG (Wang et al., 2013).

To the best of our knowledge, there has been little
work in the research community on e-commerce ap-

plications of HPO for search relevance. One notable
exception is the work by Cavalcante et al. (Cavalcante
et al., 2020), who used Bayesian Optimization to tune
the ranking function of a customer support search ap-
plication on a private dataset. However, their work
did not explore different query structures, field boost-
ing, query intent or query classification (Di Fabbrizio
et al., 2024). Our work is one of the first to systemat-
ically apply HPO techniques to optimize relevance in
e-commerce and to provide guidelines regarding the
application of HPO to this context.

The main contributions of this work are: 1) ap-
plication of differential evolution (DE) on a publicly
available e-commerce dataset for search relevance op-
timization; 2) analysis of the dataset’s label distribu-
tion impact on search relevance; 3) tuning of precision
and recall-oriented Elasticsearch queries, and variants
thereof, observing improvements up to 13% in terms
of NDCG@10; 4) insights into the impact of field
boosting, query structure, and query understanding on
relevance; 5) guidelines on key aspects to consider
when applying HPO to search relevance, such as the
characteristics of the search space, multifidelity, or the
use of multiple metrics for multi-objective optimiza-
tion.

The remainder of this paper is structured as fol-
lows. Section 2 provides the problem definition. Sec-
tion 3 introduces HPO and DE. Section 4 describes
the WANDS evaluation dataset. Section 5 presents
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setup, results, and analysis of the experiments. Fi-
nally, Section 6 concludes the paper and outlines po-
tential future research.

2 PROBLEM DEFINITION

Users traditionally search by typing natural language
queries that define what they are looking for (user’s
intent). As a response, a search engine retrieves and
ranks a set of relevant documents from a corpus of
possibly multiple document types, whose specifics
are determined in dedicated document schemas. A
document type is represented as a collection of named
fields, also known as attributes or features, that are
employed to build ranking signals quantifying the rel-
evance of each field with respect to search queries.

2.1 Index Time and Query Time

Modern search engines index and query documents
at separate times, but decisions taken at index time
might impact on both the performance and quality
of results retrieved at query time. At index time,
the fields of each document are analyzed and in-
dexed: each feature is divided into tokens, mapped
to a type (e.g., string, numeric, date), processed and
transformed in one or more fields that are indexed
(i.e., according to the signals to be modeled). Also,
details about the keyword and vector algorithms to be
used for ranking are usually defined at this point. For
example, if using BM25 (Robertson and Zaragoza,
2009) as a ranking algorithm, its b and k1 hyperpa-
rameters could be optimized during this phase.

Although the application of HPO is possible at
both stages, doing so at index time is significantly
more expensive from a computational perspective -
changes to the index usually require the reindexing of
the whole corpus. This work focuses only on query-
time applications of HPO, but the same techniques
can be applied to optimize hyperparameters with im-
pact at index time.

2.2 HPO for Search Relevance

The application of HPO involves two steps. First, de-
fine the hyperparameters to tune (i.e., type, range, re-
lationships with other hyperparameters) and a budget
to spend for the optimization process (e.g., number
of function evaluations). Second, run an optimization
loop where a search algorithm iteratively explores the
space defined previously to find the best possible con-
figuration of the hyperparameters by using some user-
defined metric to evaluate each configuration.

In search relevance optimization (SRO), hyperpa-
rameters correspond to properties of the search engine
query (e.g., values of field boosts, type of logical op-
erators), while user-defined metrics are information
retrieval (IR) metrics like precision, recall, or NDCG.
Therefore, in order to evaluate a retrieval and ranking
strategy over a corpus of documents, a dataset should
contain a representative set of search queries and a
collection of sets of relevance labels, defining the rel-
evance of each document that could appear in the top
results of each user query.

More precisely, let D be a dataset of triplets
(q,d,y) where q is a search query, d is a document
and y is a relevance label that defines the relevance of
d for q, and let S be a search engine with a given
index structure, whose output depends on a vector
of hyperparameters θ ∈ Θt that define an optimiza-
tion search space of dimension t. The optimization
goal is to heuristically find the best possible config-
uration θ∗ by using a training dataset Dtrain to esti-
mate the performance of S during the optimization
and a validation dataset Dval to prevent overfitting, so
that θ∗ generalizes to a test dataset Dtest that was not
employed during the optimization. Ideally, all these
datasets should be large enough to ensure statistically
sound decisions. If D is not large enough, meth-
ods like k-fold-cross-validation can be used to split
available data in folds to be combined as k training
and test sets. Therefore, the performance of any θ

is estimated as ptrain,θ = S(θ,Dtrain) and, at the end
of the optimization, the quality of θ∗ is estimated as
ptest,θ∗ = S(θ∗,Dtest). Finally, to evaluate the contri-
bution of the optimization, the whole process is re-
peated k times and the optimized performance of S is
estimated as

ptest =
1
k

k

∑
i=1

S(θ∗i ,Dtest,i) (1)

where θ∗i is the best configuration found at op-
timization i by using Dtrain,i as training dataset and
Dtest,i as test dataset from the i-th split. It is impor-
tant to highlight that all splits are based on folds com-
ing from the same initial randomized sampling pro-
cess. As a result, the repeated estimation and averag-
ing over multiple splits results in an estimate of gen-
eralization error with lower variance (Kohavi, 1995).

3 OPTIMIZATION

HPO algorithms are usually classified as model-free
(e.g., variants of stochastic search like differential
evolution) or model-based (e.g., Bayesian optimiza-
tion), where a model is used to estimate the re-
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sponse of the objective function to be optimized. Both
approaches have advantages and disadvantages, and
picking the right algorithm for the problem at hand
depends on multiple factors that include search space
characteristics (i.e., size, type of hyperparameters) or
latency requirements (Feurer and Hutter, 2019; Bischl
et al., 2023).

3.1 HPO Search Space and Latency

Due to the curse of dimensionality (Bellman, 1966),
the size of the search space has a large influence on
the optimization. The larger the size, the harder it is
for the algorithm to find well-performing configura-
tions of the hyperparameters. Furthermore, not all al-
gorithms are able to scale with the number of dimen-
sions. For example, standard Bayesian optimization
(BO) based on Gaussian processes is not usually effi-
cient on problems with more than 20 dimensions, but
it excels in continuous spaces (Eggensperger et al.,
2013; Frazier, 2018). In contrast, BO based on ran-
dom forests and evolutionary algorithms like DE are
not as efficient. Still, they are able to handle larger
search spaces based on mixed hyperparameters as
well.

When performance evaluations are computation-
ally expensive, which can happen when the objective
function requires training on large datasets, it might
be helpful to consider multi-fidelity algorithms like
Successive Halving (Jamieson and Talwalkar, 2016)
or Hyperband (Li et al., 2017) to schedule monotoni-
cally the use of low-fidelity (less expensive) and high-
fidelity (more expensive) evaluations during the opti-
mization, to spend the budget efficiently. For exam-
ple, DEHB (Awad et al., 2021) uses Differential evo-
lution (DE) as an optimization algorithm to search θ

in combination with a variant of hyperband, perform-
ing better than the more famous BOHB (Falkner et al.,
2018) on a wide range of problems, including the tun-
ing of deep learning networks.

Optimization algorithms differ as well in their par-
allelizability capabilities. In fact, model-free algo-
rithms are usually more scalable since model-based
methods are less parallelizable due to the presence of
a common model that must be iteratively updated. For
more details, refer to (Feurer and Hutter, 2019; Bischl
et al., 2023).

3.2 Differential Evolution

The optimization algorithm used in the experiments is
Differential evolution (Storn and Price, 1997), which
is an evolutionary algorithm inspired by the concepts
of biological evolution and natural selection, specifi-

cally by how the offspring inheriting the best traits of
a population evolve over generations.

At the beginning of the process, a population p0 =
(θ1, . . . ,θn) is randomly sampled from Θt . Until some
user-defined optimization budget b is consumed, DE
works iteratively in three steps: mutation, crossover,
and selection. During the mutation phase, each mem-
ber θ of the population pi at the current iteration i is
evaluated by computing S(θ,Dtrain). Then, a new set
of n offsprings is generated by applying a scaled per-
turbation to each dimension of a new offspring θnew
resulting from the combination of randomly picked
parents from pi. A crossover operator combines each
member of pi with one of the new offsprings θnew,
by picking for each dimension with some probability
which value from the two vectors should be used for
the mutant configuration θmutant . Finally, θmutant is
compared with θ, and θmutant possibly takes place of
θ if its quality is better.

4 EVALUATION DATASET

The Wayfair Annotation DataSet (WANDS) is an
open-source e-commerce product dataset designed to
evaluate the relevancy of e-commerce product search
engines (Chen et al., 2022). As described in Table 1,
the WANDS dataset contains:

• 480 search queries sampled from real search logs
of Wayfair, a major e-commerce retailer, with two
features: query text and class. For example, a
query like smart coffee table belongs to the Coffee
& Cocktail Tables class. The queries were strati-
fied sampled to cover various dimensions such as
popularity, seasonality, and whether they led to
customer purchases. This ensures the query set
is representative of real customer search behavior.

• 42,994 products sampled from Wayfair’s catalog,
with nine features of which only the following
five textual features were used for field boosting
in the experiments: product name, class, descrip-
tion, category hierarchy and list of features. For
example, a product named solid wood platform
bed belongs to the Bed class within a category hi-
erarchy like Furniture / Bedroom Furniture / Beds
and has a list of features that contains information
like color, material, size or weight.
For each query, Wayfair selected a set of poten-
tially relevant products using a combination of
customer click logs, lexical search systems, and
neural retrieval models. Specifically, the dataset
authors employed two strategies to construct the
product pool:
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1. They leveraged user engagement data (clicks
and add-to-cart events), hypothesizing that
products users clicked on are a good approxi-
mation of potentially relevant products, while
products users clicked on but didn’t add to the
cart could be hard negatives or almost-relevant
products.

2. They further mined the product catalog using
an open-source lexical search engine (Apache
Solr) and a neural product retrieval system
inspired by (Nigam et al., 2019). The two
systems provide complementary ways to re-
trieve relevant products, removing the bias re-
lated to the use of a single lexical retrieval
source. Moreover, this hybrid approach ensures
the product set contains both obviously rele-
vant products as well as more challenging cases
that can help discriminate between different re-
trieval systems.

• 233,448 (query, product) pairs assigning one out
of three relevance labels to the match of query and
product: exact (1.0) if the product is completely
relevant to the query, partial (0.5) if the product
matches some but not all aspects of the query, and
irrelevant (0.0) if the product is not relevant to the
query.

Note that the statistics are based on the most re-
cent version available on GitHub1 which is slightly
different from the version in (Chen et al., 2022).

A group of trained human annotators provided the
labels following a rigorous set of annotation guide-
lines. Each (query, product) pair was judged by up
to 3 annotators, and the ratings were aggregated us-
ing a majority vote. The WANDS dataset was con-
structed through multiple rounds of annotation and
refinement. The inter-annotator agreement, measured
by Cohen’s Kappa (Cohen, 1960), improved from a
moderate 0.467 in the initial months to a substantial
0.826 after a few iterations of guideline refinement
and annotator training. This indicates the dataset la-
bels are of high quality and consistency.

A key feature of WANDS is that it aims for com-
pleteness - i.e., for a given query, the dataset tries
to include relevance labels for all the relevant prod-
ucts from the catalog subset, not just the top few re-
sults. This is achieved through an iterative “cross-
referencing” process during dataset construction that
identifies potentially relevant products that were not
covered in the initial labeling. Completeness is im-
portant for unbiased offline evaluation as it avoids
missing relevant products that could unfairly penalize
certain retrieval systems. The complete, multi-graded

1https://github.com/wayfair/WANDS

relevance labels allow for a robust evaluation of the
ranking quality of search engines using metrics like
NDCG.

To evaluate the difficulty of the search relevance
task in the WANDS dataset, we analyzed the distribu-
tion of relevance labels (exact match, partial match,
irrelevant) across the queries. The goal was to un-
derstand how many queries have products labeled as
only exact matches, only partial matches, only irrele-
vant, or a mixture of these labels. This analysis pro-
vides insights into the difficulty of ranking the search
results for each query.

Assuming that, on average, each query contains
the same proportion of exact, partial, and irrelevant la-
bels as the overall distribution in the dataset, we found
that:

• 0 queries have products with only the Exact label,
24 queries have products with only the Partial la-
bel, 1 query has products with only the Irrelevant
label

• 33 queries have products with only Exact and Par-
tial labels, 11 queries have products with only Ex-
act and Irrelevant labels, 76 queries have products
with only Irrelevant and Partial labels

This analysis reveals that 25 queries do not have
an impact on NDCG, and 11 queries should have re-
sults that are relatively easy to rank. Around 100
queries are of medium difficulty, while the rest are
more challenging. However, the distribution of la-
bels across queries is not balanced, which is an im-
portant consideration for learning to rank (LtR) mod-
els (Goswami et al., 2018). If the number of labels
per type is imbalanced, the model may be more prone
to overfitting. For example, queries with a highly
skewed distribution of exact and partial matches are
easier to achieve a good NDCG score compared to
queries which have a more balanced distribution of
exact and partial matches.

This analysis highlights the importance of consid-
ering the distribution of relevance labels when eval-
uating the difficulty of the search relevance task and
the potential impact on the performance of ranking
models. The WANDS dataset provides a diverse set
of queries with varying levels of difficulty, making it
a valuable resource for evaluating and comparing dif-
ferent search engines and ranking algorithms in the
e-commerce domain.

5 EXPERIMENTS AND RESULTS

We provide experimental results to demonstrate how
hyperparameter optimization can be leveraged to
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Table 1: Summary of key data statistics about the WANDS dataset.

Feature Value

Number of queries 480
Number of products 42,994
Number of (query, product) relevance labels 233,448
Relevance label scale 0-2
Relevance label distribution Exact: 25,614 Partial: 146,633 Irrelevant: 61,201
Search queries from Real search logs of Wayfair
Products sampled from Wayfair’s catalog
Annotators per (query, product) pair Up to 3
Inter-annotator agreement (Cohen’s Kappa) 0.826

automate solutions to many information retrieval
and search problems commonly encountered in e-
commerce. The focus is on optimizing hyperparam-
eters of search queries and ranking signals used by
search engines in keyword search. Elasticsearch is
used as an experimental framework, but the tech-
niques mentioned in this section are applicable to any
other engine that supports the manual tuning of its
components.

Experiments start from the consideration that both
TF-IDF and BM25 have some ranking strategy limits,
which can be partially addressed through the use of
optimization for field boosting. It is worth mentioning
that well-tuned boosts are critical not only to rank the
expected importance of different signals but also to
balance the range of the respective BM25 scores.

5.1 BM25 Limits and Field Boosting

Scores based on TF-IDF have some shortcomings,
which are partially solved by the BM25 formulation.
TF-IDF’s score for a term in a corpus is computed
as the product of term frequency and inverse docu-
ment frequency. A problem comes from the uncon-
strained impact of term frequency on the score (i.e., a
term that appears n times in a document implies that a
document is n times more relevant than another doc-
ument without any occurrence). Also, the length of a
document does not weight the relevance of its terms
(e.g., if a term appears once in a document contain-
ing 10 words, it is considered to be as relevant as if
the term appears once in a document containing 1000
words). BM25’s b parameter restrains the degree to
which term frequency can impact the score, determin-
ing a penalty for documents longer than the average,
and the influence of common terms on the score is
saturated by BM25’s k1 parameter.

Nonetheless, the scores of fields can be on differ-
ent scales due to distribution differences of frequen-
cies and document lengths and are, therefore, not di-
rectly comparable. Also, by definition, these scores

are biased towards information, usually against users’
needs (i.e., rare matches within a document score
higher, while users usually look for popular items).
Field boosting helps counterbalance the aforemen-
tioned problems by prioritizing and balancing signals
from different fields. In fact, a search query usually
contains more than one string and possibly multiple
concepts. It does not come as a surprise that the in-
formation required to return relevant results is often
stored in multiple fields.

Elasticsearch tries to solve some of TF-IDF’s
problems by changing how token frequencies are
combined to compute scores during a multi-field
search by considering the frequencies coming from
multiple fields at the same time. In particular, field-
centric search (e.g., multi match best fields and
most fields) focuses towards precision by promot-
ing results which satisfy criteria based on the sig-
nals which are expected to match the user’s search,
while term-centric search (e.g., cross fields,
combined fields) focuses towards recall, by select-
ing all possibly relevant search results (Turnbull and
Berryman, 2016). The use of either conjunctive
(AND) or disjunctive operator (OR) further pushes
these queries towards precision or recall, respectively.

The combination of recall-oriented and precision-
oriented clauses in a stratified query improves the
ranking of the results returned to the user (Turn-
bull and Berryman, 2016). In Elasticsearch, this can
be achieved using a boolean query, which matches
documents satisfying boolean combinations of other
queries (e.g., multi match queries), where some
clauses provide a recall-oriented base score that is im-
proved by other precision-oriented clauses. For exam-
ple, the base score may come from a multi match
cross fields query searching in all text fields,
while other scores may come from multi match
best fields or most fields queries based on high-
quality signals.
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5.2 User’s Intent

Understanding the user’s intent is another critical sig-
nal that significantly improves search relevance in e-
commerce. This involves classifying whether the user
is searching for a specific product category or asking
a broader, more informational question. By using a
machine learning model to predict the user’s intent
based on query structure, search patterns, and histori-
cal behavior, the system can adjust its ranking strategy
to deliver more relevant results. For example, when
seeking a specific product, search results can priori-
tize relevant items from the desired category. Con-
versely, if the user’s query is informational, the sys-
tem can prioritize results such as FAQs, reviews, or
other informative content. Incorporating intent pre-
diction into the search optimization process allows for
more accurate recommendations and a highly person-
alized shopping experience.

5.3 Multi-Objective Optimization

In the experiments, we use NDCG@10 over the la-
beled dataset to evaluate the relevance performance
of a given search engine configuration θ. The nor-
malized discounted cumulative gain (NDCG) (Wang
et al., 2013) measures the relevance of the top-ranked
results, putting more emphasis on the relevance of re-
sults at higher ranks (Järvelin and Kekäläinen, 2000).
This aligns well with users’ behavior and preferences
on e-commerce search result pages, who tend to focus
mainly on the first page of results. Still, while a single
metric is a good starting point for assessing the qual-
ity of search relevance performance, it might only tell
part of the story.

NDCG assumes that labeled documents are uni-
formly distributed in the ranked list, which is usually
untrue. In Section 4, we showed that even a well-built
dataset like WANDS falls in more extreme situations
where not all relevance labels are found for more than
100 use queries, and in some cases, only one class
of relevance labels might be retrieved. A metric like
NDCG cannot detect such scenarios and would return
a perfect value even if some queries were evaluated,
for example, only on irrelevant documents. To ob-
tain robust evaluations, one should combine at least
an order-aware metric like NDCG or Mean Recipro-
cal Rank with an order-unaware metric like Precision
or Recall. For further details about these indicators or
variants thereof, please refer to (Valcarce et al., 2018).

The optimization of multiple equally important
but conflicting objectives is named multi-objective
optimization, where solutions that optimize all ob-
jectives simultaneously usually do not exist (Helfrich

et al., 2023). In this scenario, heuristic algorithms
try to find efficient, non-dominated solutions concern-
ing the defined objectives. An alternative solution is
to employ scalarization techniques to systematically
approximate a multi-objective optimization problem
into a regular single-objective optimization problem
with the help of additional parameters such as weights
and use regular optimization problems to solve the re-
sulting scalarization. For further details about multi-
objective HPO algorithms, please refer to (Feurer and
Hutter, 2019; Bischl et al., 2023).

5.4 Experimental Setup

Text fields from WANDS were indexed using Elastic-
search’s English analyzer, without any additional pre-
processing steps. In particular, all experiments were
run on Elasticsearch 8.8.2 and Python 3.10. To ensure
replicability and improved comparison of results, all
splits and optimization runs were carried out multi-
ple times with a common set of random seeds. This
ensured that the evaluations utilized to build estima-
tors were paired. In addition, we computed random
ranking values based on 5 repetitions, similar to how
k-fold cross-validation was employed with k = 5. Ac-
cording to the experiment, the search space size varies
from 8 to 27 dimensions, and each optimization run is
executed up to a budget b of 400 function evaluations.
Results on the test set are considered only for evalu-
ation purposes at b = 50, 100, 200, and 400. Unless
explicitly defined, the experiments’ optimized hyper-
parameters were defined as in Table 2. For further de-
tails about the role of these hyperparameters in multi-
field queries, please refer to Elasticsearch documen-
tation. Finally, the DE implementation used in the ex-
periments is the default version available on GitHub2

from the Python package created by the authors of
DEHB.

5.5 Random and Standard Baselines

In this work, we consider both random and standard
ranking as baselines against which to evaluate the
contribution of HPO. The random ranking provides a
ranking baseline for the problem, by assigning to each
document from the set of results of a retrieval strategy
a pseudorandom number in the range [0,1]. As a re-
sult, it is possible to compute any performance met-
ric on the resulting ranked list. For example, if using
NDCG, higher values imply easier ranking problems.
Similar considerations can be achieved analyzing the
distribution of relevance labels across the dataset.

2https://github.com/automl/DEHB
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Table 2: Hyperparameter used in the experiments.

Name Type Range Default value

operator categorical {and, or} or
type categorical {best fields, most fields, cross fields} none
minimum should match ordinal {0%, 20%, 40%, 60%, 80%, 100%} none
tie breaker float [0, 1] 0
boost float [0, 100] 1

Standard ranking quantifies how the standard config-
uration of a search engine’s ranking strategy performs
with respect to a completely random ranking strategy.
Unlikely the general HPO scenario, where good ini-
tial configurations of hyperparameters are usually un-
known, search engines come with default values that
work well on average. As a consequence, the corre-
sponding ranking performance should be considered
as well as a baseline.

5.6 Optimization Improvements

The contribution of the optimization to ranking strate-
gies is empirically estimated by showing the improve-
ment that DE is able to achieve with respect to the
standard ranking of multiple retrieval queries with
a fixed structure and increasing difficulty. Results
show that the optimization contributed, on average,
to an improvement of approximately 0.05 in terms of
NDCG@10 on 12 cases. Our optimization strategy
was not only employed to fully optimize both retrieval
and ranking parts of each type of Elasticsearch query
used in the experiments, but it also proved its effec-
tiveness. It was able to reach comparable results with
respect to its optimized counterparts with a fixed re-
trieval structure, providing reassurance about its suc-
cess.

Results were built on three main types of Elastic-
search queries that were increasingly difficult. In the
first set of experiments (Table 3, top), basic types of
multi-field query are used distinctively in combina-
tion with both conjunctive and disjunctive operators.
On average, the optimization achieves an improve-
ment of 0.07. Once optimized, precision-oriented
queries achieve the same results, and therefore, only
one of the two is going to be considered in the fol-
lowing experiments. A Boolean query is employed
to build a stratified query in the second set of exper-
iments (Table 3, middle). On average, the optimiza-
tion achieves an improvement of 0.05. The best re-
sults are interestingly achieved by combining a recall-
oriented query based on the conjunctive operator and
a precision-oriented query based on the disjunctive
operator. In the third set of experiments (Table 3, bot-
tom), the best stratified query from the previous ex-

periments is extended with an additional multi-field
query that considers user intent. On average, the op-
timization achieves an improvement of 0.04, and the
introduction of user intent contributes approximately
0.03 - 0.04 with respect to the best results from the
previous sets of experiments.

5.7 Retrieval Relaxation Improvements

All results show that, on average, queries using
the conjunctive operator perform worse than queries
adopting the disjunctive operator. In particular, ran-
dom ranking results allow us to infer that performance
values can be improved by relaxing the matching re-
quirements and retrieving more potentially relevant
documents that could be otherwise excluded from fur-
ther ranking refinement. This behavior aligns with
modern multi-stage IR systems that rely on multiple
ranking phases, where the first phase focuses on recall
and successive steps towards precision (Dang et al.,
2013; Zhou and Devlin, 2021).

6 CONCLUSIONS

This work demonstrates the potential for HPO tech-
niques to substantially improve the search relevance
of e-commerce engines with minimal human effort in
a reproducible and automatic process, providing in-
sights into the impact of field boosting, retrieval query
structure, and query understanding on relevance, as
well as guidelines on the application of HPO to search
relevance in e-commerce.

By leveraging the WANDS evaluation dataset and
DE as HPO algorithm, we automatically optimized
both retrieval and ranking strategies of Elasticsearch
queries, improving NDCG@10 up to 13% with re-
spect to baseline configurations. The introduction of
the user’s intent in the search strategy, defined as cor-
respondence between the category of user query and
document, brought an improvement of up to 4 %.
Finally, results showed that the relaxation of the re-
trieval strategy led to significantly better results. De-
fault search engine configurations leave significant
room for relevance improvements that can be un-
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Table 3: Best results from the first set (top), the second set (middle), and the third set of experiments (bottom). All performance
metrics are expressed as averaged NDCG@10 with standard deviation, and results with highest average are in bold for each
column.

Query type Operator Space Size Random Standard Optimized

cross fields OR 8 0.53 ± 0.01 0.60 ± 0.00 0.73 ± 0.02
cross fields AND 8 0.49 ± 0.00 0.52 ± 0.01 0.59 ± 0.02
best fields OR 8 0.54 ± 0.01 0.60 ± 0.01 0.73 ± 0.01
best fields AND 8 0.46 ± 0.00 0.48 ± 0.01 0.52 ± 0.04
most fields OR 8 0.60 ± 0.00 0.69 ± 0.00 0.73 ± 0.01
most fields AND 8 0.49 ± 0.00 0.51 ± 0.01 0.52 ± 0.04
optimized optimized 10 / / 0.75 ± 0.02

stratified OR, OR 17 0.62 ± 0.00 0.71 ± 0.00 0.74 ± 0.02
stratified OR, AND 17 0.59 ± 0.00 0.64 ± 0.00 0.74 ± 0.03
stratified AND, OR 17 0.64 ± 0.00 0.72 ± 0.00 0.75 ± 0.02
stratified AND, AND 17 0.52 ± 0.00 0.55 ± 0.01 0.58 ± 0.02
optimized optimized 21 / / 0.74 ± 0.02

stratified, most fields AND, OR, AND 21 0.65 ± 0.00 0.74 ± 0.00 0.77 ± 0.02
stratified, cross fields AND, OR, OR 21 0.65 ± 0.00 0.74 ± 0.00 0.78 ± 0.03

optimized optimized 27 / / 0.78 ± 0.02

locked with HPO, through a reproducible process that
does not keep humans in the never-ending loop of
manual search relevance optimization.

Picking the best algorithm for search relevance
optimization depends on various factors including the
size and type of hyperparameters, as well as multi-
fidelity and multi-objective requirements. Evolution-
ary algorithms like DE are capable of handling large
mixed search spaces, but unless the size of the search
space goes beyond hundreds of dimensions, random-
forests-based BO is another possible option. Further-
more, when performance evaluations are expensive
due to the need for large datasets, options such as
multi-fidelity HPO algorithms should be considered.
Finally, to obtain robust configurations, one should
consider multi-objective HPO algorithms to optimize
for both order-aware and order-unaware metrics, or to
create a scalarization of such metrics to apply regular
HPO algorithms like DE.

While the optimal configuration will vary for each
search application, this work establishes a general
framework, methodology, and best practices for ap-
plying HPO to improve search relevance. With the in-
creasing availability of easy-to-use HPO libraries and
their integration with popular search engines, we be-
lieve this is a highly promising direction to improve
the search experience for e-commerce customers with
less manual effort and greater reproducibility.

This work focuses on optimizing keyword-based
search, but it is worth noting the complementary role
of dense vector search using learned semantic rep-
resentations (Mitra and Craswell, 2018). In many
search use cases where user queries primarily con-

sist of named entities like product names or brands,
exact keyword matching remains critical and even
preferable. However, modern search engines offer
hybrid search capabilities that combine the strenghts
of sparse keyword-based retrieval with dense vector
search. This hybrid approach is commonly used in
retrieval augmented generation (RAG) architectures,
as purely semantic search can miss obvious keyword
matches needed for accurate product retrieval in e-
commerce and for more strongly grounded factual
knowledge retrieval (Lewis et al., 2020).

Finally, other several exciting avenues for future
work in this area include:

• Exploration of the benefits that HPO can bring
to hybrid search, such as improvements to the
fine-tuning process of embedding models used in
dense vector search or the configuration of other
hyperparameters used in multi-stage IR systems;

• Application of multi-objective optimization to
jointly optimize multiple metrics that measure dif-
ferent aspects of the results;

• Investigation of possible interactions as well as
differences between HPO and LtR techniques for
search relevance.
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