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Abstract: Deep learning and computer-aided detection (CAD) methods play a pivotal role in the early detection and 

diagnosis of various cancer types. The significance of AI in the medical field has become particularly 

pronounced during the coronavirus pandemic. This study aims to develop a deep learning-based system for 

segmenting and detecting nodules in the lung parenchyma, utilizing the Luna-16 challenge dataset. The 

algorithm is divided into two phases: the first phase involves lung segmentation using the previously 

developed LungQuant algorithm to identify the region of interest (ROI), and the second phase employs a 

specifically designed and fine-tuned Attention Res-UNet for nodule segmentation. Additionally, the 

explainable AI (XAI) technique, Grad-CAM, was used to demonstrate the reliability of the proposed 

algorithm for clinical application. In the initial phase, the LungQuant algorithm achieved an average Dice 

Similarity Coefficient (DSC) of 90%. For nodule segmentation, the DSC scores were 81% test sets. The model 

also achieved average sensitivity and specificity metrics of 0.86 and 0.92. 

1 INTRODUCTION 

Lung cancer imposes a significant global health 

burden, with an alarming annual incidence of over 1.6 

million new cases worldwide. As the second most 

common form of cancer, it surpassed breast cancer in 

incidence among women in developed nations. 

Despite advances in medical technology, the 

prognosis for lung cancer remains challenging 

(Houda et al., 2024). 

Early detection of lung cancer is crucial for 

effective treatment and improved survival rates 

(Mohamed et al., 2024). Despite physical symptoms 

(Durstenfeld et al., 2022), more accurate diagnostic 

methods are necessary to initiate treatment. Computed 

Tomography (CT) is a highly sensitive imaging 

modality. However, frequent CT scans, as required by 

possible screening programs, can lead to overexposure 

to ionizing radiation. To mitigate this risk, Low Dose 

CT (LDCT) scans are now employed for high-risk 

patients, allowing the reduction of radiation exposure 

through advanced reconstruction and analysis software 

(Barca et al., 2018). LDCT is effective in detecting 

early-stage lung cancer and has been shown to reduce 

mortality rates by 20% (Silva et al., 2022). 

Medical image analysis is a challenging task that 

requires a high degree of concentration and substantial 

expertise, with significant variability among 

specialists. This is particularly true in the context of 

lung cancer, where small nodules indicate positive 

cases, yet these nodules frequently lack uniform size, 

volume or location which make them difficult to 

detect. This variability is crucial during the early stages 

of treatment and can greatly affect a patient's long-term 

survival prospects (Peters et al., 2021). 

The significance of AI in medical imaging has been 

further underscored during the COVID-19 pandemic, 

where researchers have developed CAD systems to aid 

in detecting infected lesions in lung CT scans. These 

AI-powered tools serve as invaluable aids to 

radiologists, enhancing diagnostic accuracy and 

expediting patient care processes (Greenspan et al., 

2020). 

During the COVID-19 pandemic, researchers 

developed several CAD systems (Karimkhani et al., 

2022; Lizzi et al., 2023) to assist physicians in 

detecting infected lesions in lung CT scans. AI-based 

software has proven to be a supportive tool for 

radiologists, capable of highlighting potential 

abnormalities in CT scans that might be overlooked, 
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thereby prompting further review or additional tests 

by human experts. (Gozes et al., n.d.) developed a 

deep learning-based CT image analysis system that 

could accurately differentiate between COVID-19 

positive and negative patients. This system localized 

lung abnormalities and provided quantitative 

measurements, supporting radiologists' diagnostic 

and prognostic assessments. 

The AI system consisted of multiple components, 

analysing CT cases at two levels: 3D analysis for 

nodules and focal opacities using existing algorithms, 

and 2D analysis of each slice to detect larger diffuse 

opacities, such as ground-glass infiltrates. 

Additionally, (Fang et al., 2021) designed an AI-

powered framework to assess disease severity and 

predict outcomes for COVID-19 patients. This 

framework was evaluated using datasets from two 

hospitals and compared against manual assessments 

by radiologists, demonstrating superior accuracy in 

predicting ICU admissions and mortality. The study 

highlighted the potential of AI-based methodologies 

to enhance the management of COVID-19 patients 

(Scapicchio et al., n.d.). 

The AI system's performance was compared to eight 

human observers and the clinical assessments of 

patients, including RT-PCR testing. The findings 

revealed that CORADS-AI successfully automated 

the scoring of chest CT scans, aligning with the CO-

RADS and CT severity score metrics, and performed 

comparably to human observers in terms of CT 

severity scores, with equal or superior proficiency in 

identifying COVID-19 positive patients. 

In recent years, deep learning (DL) methods have 

emerged as powerful tools for medical image 

analysis, offering significant improvements in the 

segmentation of lung nodules. These methods 

leverage large datasets and complex algorithms to 

identify and delineate nodules with high precision. 

One such algorithm, adapted from the LungQuant 

approach, forms the foundation of our method’s 

initial phase in finding the ROI. 

Despite their potential, the "black-box" nature of DL 

models raises concerns about their transparency and 

interpretability, which are crucial for clinical 

adoption. Therefore, incorporating XAI techniques is 

imperative to ensure the transparency and reliability 

of these models, thereby fostering trust among 

medical professionals. We will present our approach 

to lung nodule segmentation using DL methods, 

supplemented by XAI results, to demonstrate the 

accuracy and interpretability of our models. By doing 

so, we aim to highlight the transformative potential of 

DL in lung cancer diagnosis and advocate for the 

integration of XAI in clinical practice. 

2 MATERIAL AND METHODS 

The main goal of our project is to create a reliable and 

robust CAD for lung cancer detection utilizing deep 

learning methods. In the first step of our paper we 

implemented a two-step algorithm using the Luna-16 

dataset alongside with explainable AI techniques to 

demonstrate the reliability of the model. Fig.1 

illustrates the schematic representation of the 

proposed algorithm. 

2.1 Dataset 

A noteworthy dataset used in our study is the Lung 

Nodule Analysis 2016 challenge (Luna-16) (Murphy 

et al., 2009), renowned for its application in lung 

cancer detection. Comprising CT scans from 888 

patients, Luna-16 provides ground truth information 

for ROI segmentation, along with the coordinates of 

nodules in a 3D scale. Luna-16 is derived from the 

LIDC-IDRI dataset, featuring specific nodule 

volumes and low-dose CT screening. For the first 

phase obviously, we used original CTs with ground 

truth of lung parenchyma for training. Then, for the 

second phase of the algorithm, we generated a 3D 

cube with nodules in the determined coordinates, so 

during the training process each slice of segmented 

ROI can match with the generated mask. Before 

segmentation, we applied initial preprocessing to the 

CT scans, which included normalizing the image 

intensities and the Hounsfield Unit of CTs. 

2.2 Phase 1: Lung Segmentation 

Lung nodule segmentation is a challenging task for 

AI due to factors such as image noise, imbalanced 

data, and the complex structure of lung tissues. To 

address these challenges, we implemented several 

techniques. In the initial step, identifying the ROI 

helps to reduce the complexity of the image structure. 

For this purpose, we utilized first part of the 

LungQuant algorithm to segment the lung region 

from body organs in CT scans. 

LungQuant is a fully automated deep learning-

based system designed to assist radiologists in 

detecting lung lesions indicative of COVID-19 

infection (Lizzi et al., 2022). The initial version, 

introduced in 2023, demonstrated significant 

promise. A subsequent version was released with a 

refined structure to enhance the segmentation 

accuracy of lung parenchyma and COVID-19 

pneumonia in CT scans (Lizzi et al., 2023). This 

section will explore the details of the LungQuant 

methodology.  
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Figure 1: Diagram of proposed algorithm. 

LungQuant was developed using deep learning 

algorithms in multiple steps and have been evaluated 

to asses with various datasets (Scapicchio et al., 

2023). Initially, an AlexNet-based DNN predicts two 

points to define a bounding box around the 3D voxel 

data of the lungs, aiding in the localization of the lung 

parenchyma for further analysis. The next phase 

employs two U-nets: the first segments the lung 

parenchyma, which we have utilized in this paper, 

and the second uses these results to accurately 

identify and delineate COVID-19 lesions. Pre-

processing and data augmentation were applied to 

prevent overfitting and improve model performance. 

2.3 CLAHE Preprocessing  

After segmenting the lung region using LungQuant, 

we applied Contrast Limited Adaptive Histogram 

Equalization (CLAHE) to the segmented lung images 

(Kyriakopoulou, 2020). CLAHE is an advanced 

image preprocessing technique used to enhance the 

contrast of images, particularly in medical imaging 

for improving the visibility of features within an 

image. This technique improves the contrast of an 

image in a localized manner, making it easier to 

detect features like lung nodules in medical images. 

By limiting the contrast enhancement, CLAHE 

reduces the risk of noise amplification while 

preserving fine details and edges in the image, which 

is crucial for accurate diagnosis and analysis in 

medical imaging. 

2.4 Phase 2: Nodule Segmentation 

In the second phase of our methodology, we focus on 

the segmentation of lung nodules using an advanced 

deep learning model. This phase builds upon the 

output of the first phase, where the lung region was 

isolated using the LungQuant algorithm. 
To achieve accurate nodule segmentation, we 

employed an Attention Res-UNet architecture. This 

model is designed to enhance the focus on relevant 

features while maintaining the spatial details crucial 

for precise nodule detection. The Attention Res-UNet 

incorporates attention blocks that selectively 

highlight important features in the image, reducing 

the impact of irrelevant background information. This 

mechanism improves the model’s ability to detect 

small and subtle nodules amidst the lung parenchyma.  

Moreover, the architecture utilizes residual 

connections, allowing the model to learn more 

effectively by mitigating the vanishing gradient 

problem. This enhancement helps in preserving the 

gradient flow through deep layers, ensuring better 

learning of complex patterns. For the training process, 

we generated 3D cubes with nodules at the specified 

coordinates provided by the LUNA-16 dataset. Using 

the nodule coordinates from the dataset, we created 

binary masks for each nodule. These masks are 

essential for training the model, providing the ground 

truth for the nodule locations. We used the Dice Loss 

function (Sudre, C.H., Li, W., Vercauteren, T., 

Ourselin, S., Jorge Cardoso, 2017), which is 

particularly effective for imbalanced data, where 

background voxels are more than nodules one. The 

fine-tuning process involved training on the 

generated data and refining the model’s architecture 

to enhance its ability to distinguish nodules from 

surrounding tissue, thereby yielding promising results 

in lung nodule segmentation This pre-processing 

ensures that each slice of the segmented ROI can be 

matched with the corresponding mask.  
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Figure 2: Results of Lung segmentation with LungQuant’s first phase. 

2.5 Model Explanation and 
Performance Evaluation 

Explainable AI is crucial in various applications, 

especially in high-stakes fields like healthcare, for 

building trust and transparency in order to demystify 

the “black box” nature of deep learning models to 

make their decision transparent. Moreover, In 

healthcare, decisions based on AI can have significant 

consequences. XAI ensures that AI models can be 

held accountable for their decisions, providing 

explanations that can be analysed.  

To ensure the interpretability of our model, we 

applied the Grad-CAM (Gradient-weighted Class 

Activation Mapping) technique. Grad-CAM 

(Selvaraju et al., 2016) is a powerful visualization 

tool that helps in understanding and interpreting the 

decisions made by deep learning models. It highlights 

the regions in the input image that contribute most 

significantly to the model's predictions, thereby 

providing a visual explanation of the model's focus 

and attention. For each CT scan slice processed by the 

Attention Res-UNet, we generated Grad-CAM 

heatmaps.  

These heatmaps were overlaid on the original CT 

images to highlight the regions where the model 

focused its attention while identifying nodules. The 

visual explanations provided by Grad-CAM helped in 

validating the model’s predictions by confirming 

whether the identified regions correspond to actual 

nodules. This step is crucial for gaining the trust of 

medical professionals and ensuring the reliability of 

the AI system. By analysing the Grad-CAM 

heatmaps, we could identify any potential areas 

where the model might be making incorrect 

predictions or missing nodules. This feedback loop 

allowed us to fine-tune the model and improve its 

performance iteratively. 

2.6 Metrics 

To assess the performance of each phase, we applied 

appropriate metrics for thorough evaluation and 

comparison. For the first phase, lung segmentation 

performance validation, we used the DSC to measure 

the overlap between prediction and ground truth. For 

the second phase of nodule segmentation, we utilized 

sensitivity, specificity, and the average False Positive 

Rate (FPR) per scan. These metrics provide a 

comprehensive evaluation of the algorithm's accuracy 

and reliability in both lung region segmentation and 

nodule detection. 

3 RESULTS  

In this section, we present the outcomes of our study 

on lung nodule segmentation using DL methods, 

supported by XAI. The results are organized to 

demonstrate the efficacy of our approach, the 

performance of the model, and the interpretability of 

its decisions.  

Up to this point, we have elaborated on the details 

of the proposed algorithm. Broadly speaking, we have 

three distinct objectives in this paper. The first 

objective is to use and evaluate the performance of 

LungQuant for lung segmentation purposes. By 

achieving this, we aim to obtain a more precise ROI 

and demonstrate the robustness of our deep learning-

based algorithm. This step is crucial in ensuring the 

accuracy of subsequent phases and in showcasing the 

efficacy of LungQuant in clinical applications. In the 

original LungQuant paper, a 96% DSC was achieved 

on the COVID-19-CT-Seg dataset. For our first 

objective, we evaluated the lung segmentation task 

using DSC and obtained an average score of 90% 

based on the provided ground truth. Fig. 2 

demonstrates the algorithm's robustness across 

different datasets and highlights LungQuant's 

exceptional performance in the more challenging 

regions of the lung, i.e. the bases. 

In the second phase, we developed an Attention 

Res-UNet architecture specifically for the nodule 

segmentation task. To enhance the clarity of lung 

tissue and reduce noise, we applied CLAHE to the 

outputs from the first step. This preprocessing step 

Explainability Applied to a Deep-Learning Based Algorithm for Lung Nodule Segmentation

135



 

Figure 3: Prediction of Attention Res-Unet. 

 

Figure 4: Results of Grad-Cam for Explainability of Nodule segmentation. 

was essential for improving the visibility of subtle 

features within the lung images. Subsequently, we 

fine-tuned the Attention Res-UNet model, optimizing 

its parameters to achieve robust performance in 

detecting and segmenting lung nodules. The trained 

neural network achieved Dice Coefficients of 85%, 

83%, and 81% for the training, validation, and test 

sets, respectively. Additionally, the model reached 

average sensitivity and specificity metrics of 0.86 and 

0.92, with an average FPR of 2.25 per scan, 

demonstrating its effectiveness and reliability in lung 

nodule segmentation. Figure 3 showcases the 

accurate segmentation results of our fine-tuned model 

for nodule detection. The comparison between the 

predicted points and the generated mask highlights 

the model’s outstanding performance. 

Final objective of this paper is to visualize the 

areas where the Attention Res-UNet model focused 

during prediction. Grad-CAM generates heatmaps 

that highlight important regions in the input image for 

predicting lung nodules, providing insights into the 

model’s decision-making process. In Fig. 4, the Grad-

CAM visualization shows a focused heatmap around 

a small, distinct region within the lung parenchyma.  

The highlighted region corresponds to a suspected 

nodule, indicating that the model successfully 

identified this area as important for nodule detection. 

The concentration of the heatmap around the nodule 

demonstrates the model's ability to localize the 

nodule accurately. Moreover, in the case with 

presence of two nodules the high-intensity heatmap 

accurately highlights the nodule's location.  

4 DISCUSSION  

As mentioned before, our project’s goal is to develop 

a deep learning-based CAD algorithm for lung cancer 

detection. Up to this point, we have designed, fine-

tuned, and tested several complex deep neural 

networks to evaluate and compare the performance of 

different models, i.e. U-Net, Res U-Net, Attention U-

Net, on the LUNA-16 dataset. 

Recent research indicates that attention 

mechanisms can perform well with complex data like 

medical images. Specifically, in our scenario of 

detecting lung nodules with low volume amidst lung 

tissues, the attention mechanism can effectively focus 

on the target parts. Additionally, residual blocks help 

to mitigate the vanishing gradient issue, which is 

likely due to the similar structure of the data.  

One of the long-term goals of this project is to 

implement the developed algorithm in clinical 

environments, which necessitates ensuring the 

reliability and robustness of the CAD system. The 

integration of our proposed DL-based methodology, 

particularly the use of LungQuant for lung 

segmentation, and an Attention Res-UNet for nodule 

EXPLAINS 2024 - 1st International Conference on Explainable AI for Neural and Symbolic Methods

136



segmentation, has the potential to improve diagnostic 

workflows in clinical settings. This approach can 

assist radiologists by providing accurate and reliable 

segmentation, thereby reducing workload and 

improving early detection rates of lung cancer. 

 Incorporating XAI techniques, such as Grad-

CAM, is vital for guaranteeing the transparency and 

trustworthiness of AI models in medical imaging. 

XAI offers insights into the model’s decision-making 

process, thereby enhancing the interpretability and 

acceptance of AI-based tools by medical 

professionals. 

In this process, we encounter several challenges. 

One limitation of our study is the relatively small 

dataset size, which may impact the generalizability 

and robustness of our results. Furthermore, variations 

in image quality and the assumptions made during 

model training and evaluation could influence the 

overall performance. To handle some of these issues 

for our future research we intend to focus on 

expanding the dataset to include more diverse cases, 

further improving the model architecture, and 

integrating additional preprocessing techniques to 

enhance segmentation accuracy. Moreover, extensive 

clinical trials are necessary to validate the efficacy of 

the proposed methodology in real-world clinical 

environments. 

5 CONCLUSIONS 

In this study, we emphasize the critical role of deep 

learning-based CAD systems in the detection of lung 

cancer using CT datasets, highlighting the importance 

of early detection in improving patient survival rates. 

We employed the LungQuant automated system for 

segmenting the lung region and demonstrated the 

generalization of this algorithm with different 

datasets, achieving an average of 90% DSC with 

Luna-16, in comparison to the 96% reported in the 

original study. We then applied CLAHE 

preprocessing to reduce noise and enhance tissue 

details in the lung parenchyma. These pre-processed 

images were input into an Attention Res-UNet for the 

nodule segmentation task, resulting in DSC scores of 

85%, 83%, and 81% for the training, validation, and 

test sets, respectively. The model achieved average 

sensitivity and specificity metrics of 0.86 and 0.92, 

with an average FPR of 2.25 per scan. Our findings 

indicate that attention mechanisms and residual 

blocks significantly enhance segmentation 

performance, even in complex scenarios. This work 

underscores the transformative potential of deep 

learning and explainable AI in lung cancer diagnosis, 

advocating for their integration into clinical practice 

to improve patient outcomes. For future work, we aim 

to further refine the model to reduce the false positive 

rate per scan, thereby enhancing its clinical utility and 

reliability. 
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