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Representation learning has produced embedding for structure and unstructured knowledge constructed in-
dependently, not sharing a vectorial space. Alignment between text and RDF triples has been explored in
natural language generation, from RDF verbalizers to generative models. Existing approaches have treated
the semantics in these data via unsupervised approaches proposed to allow semantic alignment with adequate
application studies. The existing datasets involved in text-triples are limited and have only been applied to
text-to-triple generation rather than for representation. This research proposes a supervised approach for rep-
resenting triples. Our approach feeds an existing pretrained model with triple-text pairs exploring measures
for the semantic alignment between the pair elements. Our solution employs a data augmentation technique
with contrastive loss to address the dataset limitation. We applied a loss function that requires only positive
examples, which is suitable for the explored dataset. Our experimental evaluation measures the effectiveness
of the fine-tuned models in two main tasks: ’Semantic Similarity’ and ’Information Retrieval’. These tasks
were addressed to measure whether our designed models can learn triple representation while maintaining the
semantics learned by the text encoder models. Our contribution paves the way for better embeddings targeting
text-triples alignment without huge data, bridging unstructured text and knowledge graph data.

1 INTRODUCTION

The evolution of natural language processing in recent
years has been driven by the introduction of large lan-
guage models (LLMs) (Min et al., 2023), demonstrat-
ing the ability to process a large amount of text. They
seem to understand human language properly, and
their main application is suited to developing more
powerful question-and-answer systems. In these ap-
plications, LLMs suffer problems with hallucinations
(Perkovi¢ et al., 2024) when they answer with no ac-
curate information. This behavior can be explained
by the nature of knowledge acquired by LLMs from a
large corpus of unstructured text, which might not be
appropriately curated.

Existing research has investigated the possibility
of integrating structure knowledge with LLMs. For
instance, Pan et al. (Pan et al., 2024) proposed a
roadmap to incorporate Knowledge Graphs (KG) with
LLMs to overcome hallucination issues, taking ad-
vantage of the structure and modeling of KGs and
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their interpretability.

Working with LLM-KG means dealing with their
input elements (text and triples), which are heteroge-
neous data underlying different semantics. One of
the most well-known tasks that work with aligning
these data is the task of Natural Language Genera-
tion (NLG) in converting triples into natural text (La-
palme, 2020; Zhu et al., 2019) and natural text into
triples (Regino et al., 2023). These applications cover
the aligning triple to text to create one of them. Exist-
ing projects make datasets available for this challenge
(Castro Ferreira et al., 2020).

We understand that existing approaches related to
NLG need to discuss the semantics of text and triple
in terms of embedding representations. Constructing
embeddings representing the text develops further and
achieves new state-of-the-art with the introduction of
Transformers pre-trained model to represent text (Xia
et al., 2020), in which a text is mapped to a numeri-
cal vector. Similarly, Knowledge graph embeddings
(KGE) (Cao et al., 2024) create a vector representa-
tion for their elements, entities, and relations.

Representing triples as a single embedding has
been investigated in the literature (Fionda and Pirro,
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2020; Kalinowski and An, 2022) due to their impor-
tance in triples classification, clustering, and recom-
mendation systems. Generating vectors to represent
triplets (as a whole) instead of separate vectors for
specific triple elements (entities and relations) alters
the representation of elements in a KG in a vector
space. We understand that such an approach is fur-
ther adequate and advances representation learning.

These developments have achieved new, recent,
state-of-the-art encoders (Patil et al., 2023). How-
ever, investigating encoders capable of representing
facts, such as triples and texts, has followed indepen-
dent paths. This entails separating two approaches
that define the knowledge. Without a common rep-
resentation for such knowledge, intermediate spaces,
such as using SPARQL queries (generated by humans
or generative models), are necessary. Treating lan-
guages such as RDF as texts with a proper knowledge
representation in vector spaces might result in poor
results using incorrect information.

This article presents an investigation into devel-
oping a prevalent method for convergent semantic
alignment using a small dataset with triples and nat-
ural texts. Our study develops a more robust solu-
tion capable of representing knowledge in the same
vector space, considering KG triples and instructed
texts in an integrated way. Our approach covers the
task of using pre-trained language models and fine-
tuning them using parallel data of triples and their re-
spective equivalents in natural texts. To improve the
alignment quality, we proposed a data augmentation
technique over the small dataset WEBNLG (Gardent
et al., 2017), which provides examples of triple with
their respective meaning in natural text. The devel-
oped solution aims to guarantee the preservation of
semantic representation.

We evaluate our proposal by considering different
NLP tasks, such as Semantic Textual Similarity and
Information Retrieval (IR). The first collects and as-
sesses textual data, processing their embedding over
the STS-22 dataset and detecting if the finetuning pro-
cess degrades the STS benchmark. Finally, IR creates
embedding for triples and text from WEBNLG. We
conduct two main IR configurations: (1) we recover
text using a triple as a query, and then (2) we use text
to recover the adequate triples.

Our results demonstrate the need for improved
alignment between text and triples instead of apply-
ing these pretrained models directly because such an
approach only considers grammar sharing and not
a genuine semantic alignment. We found that fine-
tuning improved model effectiveness, particularly in
the retrieval task (MRR@1 score). Furthermore, us-
ing Contrastive loss and augmentation enabled effec-
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tive semantic learning with models without losing ef-
fectiveness in the semantic similarity task. Our find-
ings establish that learning the alignment between text
and triples is possible only using positive examples
(pairs of examples with the same meaning) in small
datasets.

The remainder of this article is organized as fol-
lows: Section 2 presents the background concepts
and discusses related studies associated with our in-
vestigation; Section 3 presents our proposed original
method to construct a semantic model alignment for
text and triples. Section 4 presents our experimen-
tal evaluation methodology based on two evaluation
scenarios. Section 5 reports on our obtained results,
whereas Section 6 discusses our findings and study
strengths; finally, Section 7 wraps up the article and
points out directions for future investigations.

2 LITERATURE REVIEW

Subsection 2.1 addresses background concepts rele-
vant to our study, and Subsection 2.2 presents a syn-
thesis of related studies to our proposal.

2.1 Background Concepts and
Techniques

Language Models. A Language model (Chang and
Bergen, 2024) is a probabilistic model that learns lan-
guage properties from unstructured text trained in a
task that does not require human annotation. These
trained tasks provide the underlying model knowl-
edge about how human languages are represented by
understanding how text is composed. This learns
from raw data rather than relying on annotating all
the grammar and syntax properties.

Large Language Models (LLM). LLM (Min
et al., 2023) stands for massive artificial intelligence
models with billions of parameters that can under-
stand human language and perform NLP tasks such
as writing, summarizing, and others. These models
improve traditional Language models, such as BERT
(Devlin et al., 2019), which require a finetuned pro-
cess over an specific task.

Text Embeddings. Creating a vector representa-
tion for the meaning of the texts has been developed
since the beginning of Natural Language Processing
(Patil et al., 2023). This includes techniques such as
Word2vec (Mikolov et al., 2013), which map words
into a unique vector, to pre-trained language mod-
els such as BERT (Devlin et al., 2019) that considers
the surrounding context around the words to assign
a vector and applies subword tokenization to avoid
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mapping each word to a numerical id. The develop-
ment of language models allowed the construction of
more robust embedding models, which could create
different vector representations for a word depending
on the surrounding words; we refer to this as context
because it determines the vector creations. This rep-
resents an advancement over the initial approaches,
such as a bag of words (Qader et al., 2019) by solving
a problem of polysemy (having the exact words with
different meanings).

Knowledge Graphs. KGs (Ji et al., 2022) are di-
rected graphs that model real-world facts. Each node
represents an entity in such graphs, and the edges rep-
resent a relation between them. Formally, we define a
KG as a set of Entities (E), relations (R), and triples
(T), such as:

KG={E,R,T},e; €cE,r;ieRt; €T

tj = (ex7ry7ez)

For example, the fact “The Star Wars film was di-
rected by George Lucas” can be represented by the
triple (starWarsFilm,directed,GeorgeLucas). Over
the same KG, we can obtain more triples with differ-
ent facts about other relevant information, such as the
film’s release date. KG requires knowledge model-
ing, giving a well-defined and correct semantic defi-
nition for concepts in a given domain. This is accom-
plished by using an Ontology as an artifact computa-
tionally representing knowledge (Ding et al., 2007).
KG provides an explanation and reasoning over the
inferences extracted from the graphs.

Knowledge Graph Embeddings (KGE). The
structured knowledge encoded in KGs requires a
query language such as SPARQL (Hogan, 2020) to
process and extract information from it. This lan-
guage allows the creation of specific queries to ex-
tract information from KGs. However, this creates
a new issue that requires either manually creating
these queries or using generative models to create
them..To overcome this problem, the KG embedding
(KGE) (Yan et al., 2022) aims to represent KG com-
ponents (entities and relations) in a semantic vec-
tor form. Such vectors aim to describe the seman-
tics involved in knowledge modeling accurately. In
this sense, similar entities must be near distances be-
tween their embeddings. The main application of
KG embeddings is creating an alternative format for
computer-consuming KG in machine learning mod-
els. This makes it possible to apply KG to link predic-
tion tasks, triplet classification, recommendation sys-
tems, and others (Wang et al., 2017).

2.2 Related Studies

Lapalme et al. (Lapalme, 2020) proposed an English
RDF verbalizer that uses a symbolic approach to pro-
cess an RDF-Triple, extracting the subject and predi-
cate corresponding to the subject and object in a sen-
tence. The predicate is then mapped to a verb phrase,
which determines the structure of the final sentence.
Human evaluation showed that this approach needs
more fluency and that the human work involved in the
application is difficult to scale for more customized
applications.

Similarly, Abhishek ez al. (Abhishek et al., 2022)
proposed a technique to address triples to text gener-
ation with the addition that they cover a scenario dif-
ferent from English languages. This demands more
datasets for non-English languages, so they created
XAlign, a multilingual dataset. These were con-
structed from facts to text generation, aligning triple
facts with natural text. Their work demonstrated the
relevance of creating triples and text alignment for
low-resource languages to reduce human efforts.

The other direction can also be explored (from text
to triples instead of triple to text). The study con-
ducted by Regino et al. (Regino et al., 2023) devel-
oped a framework called QART for generating RDF-
Triples from E-commerce Product Question Answer-
ing using an E-commerce dataset and pretrained LM
and LLM application in few-shot learning.

Daw et al. (Daw et al., 2021) proposed the align-
ment of English triples to Hindi sentences using NER-
based filtering that uses semantic similarity. Their ap-
proach maps Hindi and English into the same vector
spaces to recognize the most relevant words in En-
glish for a given word in Hindi. They used a key
phrase extraction to extract the critical phrase from
Hindi text and then applied POS-tag-based heuristics.
Then, the similarity is based on the key phrase and
the triples. This approach creates a heuristic for al-
lowing the alignment between text and triples. How-
ever, these intermediate steps map all words into the
same languages without providing training in creating
semantic alignment to the embedding spaces.

Moreover, Pahuja et al. (Pahuja et al., 2021) pro-
posed a method for aligning knowledge bases (KB)
with texts; the authors used data from Wikidata for the
structure knowledge and Wikipedia for unstructured.
This enables the possibility of testing the proposal’s
alignment methods. They considered alignment us-
ing the same embedding. This involves mapping the
entities from KB to a vector space for text data.

A synergy between LM and KG has been ex-
plored; Zhu et al. (Zhu et al., 2023) focused on
finding a unique representation creating a heteroge-
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neous language model trained based on unstructured,
semi-structured, and structured data. The work was
developed by training with a text corpus of tourism
websites and constructing a KG for a tourism context
using websites. They proposed a pre-trained model
that handles the formats of text, as well as triples.
The authors proposed a different training objective:
A mock language model, title matching (whether a ti-
tle matches a paragraph), and triple classification for
unstructured, semistructured, and structured, respec-
tively. As a consequence, these data were mapped
into the exact contextual representation. A primary
aspect of their study is that they do not use KGE di-
rectly. They use it to prepare their training objectives
in pretrained models. For example, they train a model
to perform the triple classification task.

Table 1 summarizes our related work review. We
identified existing studies that focus on alignment for
NLG tasks and studies that handle semantic represen-
tation require training from scratch, which is compu-
tationally expensive.

Our present study focuses on the challenge of
dealing with diverse data using various methods.
Compared to other researchers, we are not address-
ing the issue by using a pretrained encoder directly,
employing intermediate steps to map triples, or cre-
ating pretrained models from scratch, which is often
unsuitable. To the best of our knowledge, the study
of the application of text to triple alignment needs to
investigate whether the application of pre-trained en-
coders is suitable for unsupervised alignments. More-
over, a pre-trained model’s tuning process can change
the pretrained models’ semantic learning (capability
to understand the text and adequately recover a simi-
lar one).

Our study complements the presented investiga-
tions by asking how well and acceptable the cur-
rent strategies of the used pre-trained models to align
triples and text are for direct application to vector rep-
resentation work. Additionally, we attempt to deter-
mine whether it is possible to create embedding repre-
sentations using small-size datasets. We propose su-
pervised training in small datasets for fine-tuning cur-
rently open state-of-the-art models for semantic rep-
resentation between text and triples. We construct
a triple vector representation while maintaining ade-
quate text vector representation for the downstream
NLP applications. This aims to map vectors and
triples into the same vector spaces obtained by pre-
trained models. This might enhance current triple
alignment literature and open the field for future re-
search, which can help create robust triple-text align-
ment.
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3 SUPERVISED SEMANTIC
ALIGNMENT FOR
TRIPLE-TEXT EMBEDDING
CONSTRUCTION

We present our proposal for aligning text and triples
using supervised learning. Subsection 3.1 presents
the datasets explored in our study. Subsection 3.2
describes the models used in the finetuning process.
Subsection 3.4 presents the designed specific proce-
dure to conduct the learning representation process
and its outcome by involving our specific decisions.

3.1 Datasets

WebNLG. We chose WebNLG (Gardent et al., 2017),
a dataset from a challenge competition to transform
triples into text, and to the best of our knowledge,
it is the only one that aligned triples and text. This
dataset comprises examples of triples and their equiv-
alent in natural language text. The collection of triples
can be expressed in the natural text; for example,
the given two triples (Leonardo_da_Vinci, Profession,
Painter) and (Leonardo_da_Vinci, Born, Italy) can be
expressed in natural text with the sentences ‘Leonardo
da Vinci is an Italian painter.’

In this study, we focus on establishing a one-to-
many relationship between a single triple and multiple
texts to ensure each triple is aligned with a unique
text.

STS-12. We selected the STS-12 dataset for the
semantic textual similarity (STS) task, composed of
sentence pairs labeled with values from O to 5, in
which five expresses higher similarity. This dataset
was selected to maintain the model’s capability to
handle only textual data.

Table 2 presents the distribution of the data sets for
each stage; for STS-12, we reduce the original dataset
to guarantee a distribution similar in training and vali-
dation dataset concerning WEBNLG. Finally, we split
the original data set using 10% for validation.

3.2 Pretrained Language Models

Creating an intermediate vector representation for text
and triples requires significant training data to train
models from scratch. Limited data is available for
alignment, and triples are scarce.

Bringing triple representations to the same-
dimensional spaces for text might improve knowl-
edge representation, creating a bridge between KG el-
ements and natural language texts.

We analyze the effects and suitability of pretrained
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Table 1: Summary of related studies and their characteristics.

Text-triple Pretrained . . Semantic
aligmegt from scratch Unsupervised  Supervised  NLG Representation
Abhishek et al. (Abhishek et al., 2022) v v v
Regino et al. (Regino et al., 2023)
Lapalme et al. (Lapalme, 2020) v v
Daw et al. (Daw et al., 2021) v v
Pahuja et al. (Pahuja et al., 2021)
Zhu et al. (Zhu et al., 2023) v v v
Ours - This work v v v

Table 2: Dataset distribution for fine-tuned model into the
siamese networks.

Train/val  Test
2,234 3,108
3,598 774

STS-12
WebNLG

state-of-the-art encoder models; we fine-tune these
models for multimodality data (triple, text) to con-
struct bimodal dimensional spaces. In the following,
we present the models chosen and the rationale for
our decisions.

E5 encoder. E5 (Wang et al., 2024) refers to
a family of encoders trained with contrastive pre-
trained and weak supervision using approximately
a billion text pairs from multilingual datasets from
sources such as Wikipedia, Reddit, and others. These
ES5 models pass through a supervised fine-tuned with
high-quality annotated datasets; the knowledge des-
tination technique is used to improve the quality of
the embeddings from this family. In particular, we se-
lected the e5-multi-base (meS-base) and the e5-multi-
small (meS-small) model, which map text to 512 and
318 dimension vectors, respectively. We chose e5 be-
cause they were trained on curated datasets, which
have undergone a rigorous process. This makes them
more stable than options trained using unsupervised
learning.

DistilUSE.! This model (Reimers and Gurevych,
2019) refers to a Multilingual knowledge distilled
version of Multilingual Universal Sentence Encoder
(Yang et al., 2020) supporting more than 50 languages
a sentence and map text into a 512 dimensional. This
model represents a light version of bigger models, al-
lowing it to achieve good scores in STS benchmarks.

Paraphrase. This is another model for fine-tuning
semantic textual similarity mapping text into 378-
dimensional vectors (Reimers and Gurevych, 2019).
These models perform well in the semantic similarity
task (STS) on the MTEB benchmark (Muennighoff
et al., 2023). This is why we took it as a model in our
study.

Thttps://huggingface.co/sentence-
transformers/distiluse-base-multilingual-cased-v2

3.3 Data Augmentation Techniques

Our STS-12 dataset focuses on the semantic similar-
ity task in which text only covers text-text alignment.
Meanwhile, WEBNLG only covers a triplet-to-text
direction since this one contains similarity samples
(label 1). Further examples must be used to teach
the models when the triples and text differ. Figure 1
presents the ties between triples and text data. The
green lines represent the existing relations between
data in our dataset; to overcome the unexisting rela-
tions (red dashed lines), we proposed a data augmen-
tation technique to increase our dataset.

Triple-Triples (Negative): In contrast with the
text, each triple represents unique knowledge. Our
technique chooses a triple and randomly selects an-
other one as a negative example to create negative ex-
amples of a pair of triples. Additionally, to improve
the quality of our augmentation, the triple randomly
chosen belongs to the same category. We guarantee
this using the category metadata from the datasets.

Triple-Text (Negative): using the same principle
that triples are unique (they represent a unique knowl-
edge); and in WEBNLG, such triples are aligned to a
unique text (we guarantee this during the preprocess-
ing assigning a unique text to a triple); Our technique
selects a random sentence from the WEBNLG data
set to align triple with a negative sentence that does
not share semantic similarity.

1

(1] Triples Text Range 0-1

0

Figure 1: Existing relations between our bimodal datasets
- green lines refer to existing relations in our dataset
triple-text (WEBNLG) and Text-Text (STS). The orange
dashed lines represent the unexisting relations present in our
datasets. Label 1 describes a perfect similarity between el-
ements, while 0 indicates no similarity.
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3.4 Finetune Procedure for Aligning
Triples and Text

To finetune our semantic alignment for triples and
text, we propose adapting bi-encoder strategies from
sentence transformers? because their strategy for se-
mantic textual similarity is state-of-the-art (Reimers
and Gurevych, 2019), allowing the alignment of the
embedding of texts across different languages. In this
sense, we select this architecture to align semantic
over bimodal data (triple-text).

Figure 2 presents our fine-tuned approach using an
adapting bi-encoder network that contains two identi-
cal models. Each creates an embedding representa-
tion for the left and the right sides u and v, respec-
tively. Then, in the training strategies, similarity func-
tions such as cosine are used to measure the similarity
between the embeddings.

To perform the alignment, we pass the described
training dataset from WEBNLG, which acts as triple-
text pair alignments. Feeding the model only with
this dataset could overfit the modeling, losing the se-
mantic learning by the pretrained models. To over-
come this problem, we use the STS-72 dataset during
the finetuning to maintain effectiveness in tasks of se-
mantic textual similarity. This allows a common rep-
resentation between text and triples while still being
capable of using the vector from text and creating a
representation for triples.

Additionally, as encoder models treat the input as
a sequence of characters, we aim to create a seman-
tic embedding from the feeding dataset. We changed
the model structure by adding two unique tokens to
the vocabulary [TEXT] and [TRIPLES]. Such tokens
surround the specific data to characterize better and
allow flexible identification.

We fine-tuned the model using 90% of training
and 10% for validation. We select the same distribu-
tion for each dataset (WEBNLG and STS-12); as our
main objective is to align triples and text, we use an
embedding Information Retrieval evaluator from sen-
tence transformers to assess the capacity of the mod-
els to recover other kinds of data and decide whether
to continue training and save the best models.

Triples and textual data represent knowledge us-
ing structured and unstructured data, respectively. We
decided to test our study regarding supervised learn-
ing with two different losses to identify the more suit-
able one.

Contrastive Loss. (Hadsell et al., 2006) This is a
loss that does not follow a similarity score (range of
similarity). To compute the loss, contrastive requires
a pair of sentences: the first one is called anchor, and

2https://www.sbert.net
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StarWar3, directed By, GeorgeLucas ------------ The director of Star War 3 is George Lucas.

Semantic
Alignment

Triples <o > Texts

Figure 2: Fine-tuning a bi-encoder to align triples and texts.

this one is linked to another sentence that can be a
positive example (similar example to the anchor rep-
resented with label 1) and negative example (exam-
ple with dissimilarity with label 0). For this scenario,
all triple-text pairs are linked with a positive label.
In STS-12 dataset with a filter, sentences with high
similarity values greater than 0.9 are given label one,
while the remaining data are labeled zero.

Multiple  Negatives  Symmetric  Ranking
Loss(Henderson et al., 2017) This is a loss function
that only considers a pair of sentences: an anchor and
a positive (similar sentence to the anchor); this loss
computes first the loss for finding the positive for a
given anchor, and then, finding the anchor for a given
positive example.

Algorithm 1 presents our developed finetuning
process using different loss functions: (1) contrastive,
(2) contrastive with data augmentation, and (3) Multi-
ple Negative Symmetric Ranking Loss (MNSRL); for
the latter, we do not apply data augmentation due to
only need positive examples.

First, we pass four pre-trained models (line 1).
Each pretrained Encoder is selected to start the
finetuned; then, we add the datasets STS-/2 and
WEBNLG (line 2); afterward, we chose each loss
function configuration (line3); depending on the loss,
we conducted intermediate steps to filter the adequate
data (line 4 and 8). For example, we increased the
dataset with our data augmentation or filtered only the
positive examples for Multiple Negative Symmetric
Ranking Losses. Finally, the process begins with the
finetuned information retrieval task, passing the train
data, the pretrained encoder, and the loss (line 10).
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Algorithm 1: Iterative Fine-tuned process for text triples
alignment using Constrative and MultipleNegativesSym-
metricRanking loss (MNSRL).
Input: DistilUSE, Paraphrase,e5 —
base,e5 — small
Data: STS12,WEBNLG
Result: 12 Finetuned Text-Triples
FineEncoder)ssgncoder fOr €ach
model configuration

1 foreach (Encoder) €
DistilUSE , Paraphrase,e5 — base, eS — small
do

2 TrainData <

joinData(STS — 12,WEBNLG)

3 foreach (loss) €
Constrative,ConstrativeAug, MNSRL
do

4 if loss == ConstrativeAug then

5 | TrainData < DA(TrainData)

6 end

7 if loss == MSRL then

8 TrainData <

FilterPositive(TrainData)
9 end
10 FineEncoder)yssEncoder <—
Finetunedgrs(TrainData,Encoder,loss)
11 end
12 end

4 EVALUATION
METHODOLOGY

This section presents the evaluation methodology for
the fine-tuned models created via our approach. Our
solution creates embedding for text and triples, and
this study evaluates them using two main tasks. Fig-
ure 3 presents the evaluation methodology using the
two primary datasets explored in this study. Their
use emphasizes validating the models’ effectiveness
over specific tasks described in the following sections.
We compare our results of fine-tuned models with the
original models without any tuning. In the following,
we explain each task and metrics.

4.1 Task 1: Sentence Similarity

The semantic similarity task consists of computing
the similarity between the encoder representations of
two sentences and comparing the results with a human
label score of similarity (measuring the correlation).
Figure 4 presents how we perform our evaluation.

First, we extract samples from the STS-12-Test par-
tition; as each sample is composed of a pair of sen-
tences with a score of similarity, then we used the en-
coder (original pre-trained or our generated fine-tuned
ones) to encode sentences (S; and S,). Afterward,
we compute the similarity between the encoded vec-
tors (V1; and V2;) using the cosine function. Finally,
we compare CosineScore with score and compute the
correlation. This shows whether the models’ embed-
ding performs well with human judgments to score a
grade of similarity.

4.2 Task 2: Information Retrieval

This evaluation aims to assess the system’s capacity
to retrieve the alignment for a particular query cor-
rectly. For example, when presented with a “triple”,
the system should provide the associated text that ac-
curately represents its semantic meaning. Conversely,
when given an input text query, the system should re-
trieve the appropriate triple. Figure 5 presents the two
key steps: (A) the Population step, which creates the
vectors from the test datasets, and (B) the semantic
search step to recover the one with the highest simi-
larity.

In this evaluation, we start from an alignment
(X,Y); we conduct two main paths, one in X be-
ing a triple and Y as a text; this coverage is a di-
rection (triples — text). After that, we replicate the
steps having X as text and Y as triple to cover the
(text — triples direction).

We describe each step for validating the informa-
tion retrieval task in the following.

A) Population

Figure 5-A presents the process for our alignment
evaluation for IR-Task. First, we extract text from
the WEBNLG dataset in the test portion. Each of the
sentences is associated with unique triples. We pass
X (Triple or sentences) through our encoder models
(zero-shot or fine-tuned). This creates a vector for
each X (X,.cror), and then we save each vector in a
database to enable the semantic search.

B) Semantic Search

Figure 5-B presents the evaluation with information
retrieval in which a given ¥; (triple or text depending
on the direction of the evaluation) from WEBNLG;
we represent into a vector form using our encoder,
then the vector passes to the semantic search module
in which this vector recovers the sentence with higher
similarity using cosine metrics to compare the query
vector with the vectors stored in our database.
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Figure 3: Overall evaluation procedure regarding the generated encoders through two main tasks: Semantic similarity and
Information Retrieval. Specific metrics are computed for these tasks.
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Figure 4: Evaluation for Task 1: Sentence Similarity.
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4.3 Evaluation Metrics

We selected the most suitable metrics for each of the
investigated evaluation tasks.

Pearson Correlation Coefficient - Task 1

We choose Pearson’s correlation coefficient for ST'S,
which evaluates the linear correlation between two
datasets. This enables us to compare the human anno-
tation score with the cosine similarity of the embed-
dings of the trained models. The metrics values take
values between -1 and +1. The higher values repre-
sent a higher correlation.

Mean Reciprocal Rank (MRR) - Task 2

We approach the alignment problem as a retrieval is-
sue, opting to use Mean Reciprocal Rank (MRR) as
our primary metric for evaluating the accuracy of the
alignment between text and triples. We chose MRR
because it is a ranking metric that considers the po-
sition of the correct candidate when assigning scores.
This benefits our needs because it prioritizes higher
scores for correctly identifying the top candidates. In
conclusion, we decided to utilize MRR @1 (indicating
whether the system identified the right candidate) and
MRR @3 (to determine if the system correctly iden-
tified the right candidate among the top 3 recovered
documents) as our evaluation criteria.

5 RESULTS

This section presents the experimental results of eval-
uating the pretrained models (without fine-tuning)
and applying them to fine-tune based on our devel-
oped approaches using two different loss functions
and our data augmentation technique. We show the
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Figure 5: Evaluation concerning Task 2: Information Retrieval; A) Populating the triples from WEBNLG dataset to a vector
store database; and B) Semantic search evaluation to evaluate the models in the Information Retrieval task.

results for each evaluation task: Sentence Similarity
(cf. Subsection 5.1) and Information Retrieval (cf.
Subsection 5.2).

5.1 Result - Task 1: Sentence Similarity

Table 3 presents the results of STS-12 test datasets of
the fine-tuned models. We note that for the original
pre-trained models, the paraphrased models achieved
better correlation, followed by models from the e5
family. For the finetuned models with Contrastive
loss, only distil-use increases the value of the Pearson
coefficient, while the others decrease their values.

Applying data augmentation, we noticed a gain
in Pearson with e5-small and paraphrase. The other
models’ Pearson coefficient values decreased, but
their values did not deviate significantly from the
original.

Finally, MNSRL achieved better results with the
multilingual e5 base and increased effectiveness for
almost every model except for distil use.

Table 3: Results for Similarity Evaluator using STS-12 test
dataset and Pearson correlation to measure Coherence with
the human annotation. Over models without fine-tuned
(original), Contrastive Loss (LS) without and with Data
augmentation and using Multiple Negatives Ranking Loss
(MNSRL).

STS-12 Pearson Correlation Test set

Models Original CL. CL.DA MNSRL
me5-base 0.8426  0.8167 0.8358  0.8535
me5-small 0.8416 0.8152 0.8523 0.8373
distil-use 0.7935  0.8275 0.7907 0.8246
Paraphrase 0.8470  0.8275 0.8533 0.8510

5.2 Result - Task 2: Information
Retrieval

Task 2: Information Retrieval Text-Triples

Table 4 presents the results in terms of MRR@1
and MRR@3 for IR using the embedding of text
to recover triples; the pretrained models (original)
over e5-small achieved the highest values among pre-
trained models 0.6602 and 0.7965 for MRR@1 and
MRR @3, respectively.

Fine-tuned models with contrastive loss positively
affect the paraphrase multilingual models, while the
others suffer degradations of MRR@1. Moreover,
applying data augmentation techniques looks like the
degradation persists in terms of MRR @1, but we also
notice a slight growth in terms of MRR@3 (para-
phrase and distill-use)

We observed that fine-tuned models with MNSRL
slightly improved over all the models in MRR@1 and
MRR @3, which have notorious effects on the para-
phrase model.

Task 2: Information Retrieval Triples-Text

Table 5 presents the results of given a query triple re-
trieval similar texts over this table. Pretrained models
perform slightly lower than text-triple (cf. Table 4).

Similarly to the last table, the pre-trained models
from the e5-family achieved the best results without
any fine-tuning.

The e5 models reduce their MRR scores for con-
trastive loss, while the others increase the MRR score
values. We also noticed that data augmentation pro-
duces positive effects compared to the CL finetuned
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Table 4: Mean Reciprocal Rank (MRR @[ 1,3]) for Information Evaluator over the test dataset from WEBNLG challenge using
text as query and triples as a corpus for retrieval. Using Encoder without finetunning (Original), fine-tuned with contrastive
loss (CL) without and with Data augmentation (DA) and Multiple Negatives Symmetric Ranking Loss (MNSRL).

Text as query and Triples as a corpus for retrieval (MRR)

MRR@1 MRR@3
Models Original CL. CL.DA MNSRL Original CL. CL.DA MNSRL
meS-base 0.6576  0.6382  0.6499 0.6693 0.7937  0.7786  0.7929 0.8058
meS-small 0.6602 0.6447  0.6499 0.6654 0.7965  0.7883  0.7907 0.8019
distil-use 0.6395 0.6318  0.6499 0.6408 0.7816  0.7877  0.7866 0.7892
Paraphrase  0.5917  0.6473  0.6370 0.6460 0.7334  0.7705  0.7810 0.8531

Table 5: Mean Reciprocal Rank (MRR @[ 1,3]) for Information Evaluator over the test dataset from WEBNLG challenge using
triples as query and text as a corpus for retrieval. Using Encoder without finetunning (Original), fine-tuned with contrastive
loss (CL) without and with Data augmentation (DA), and Multiple Negatives Symmetric Ranking Loss (MNSRL).

Triples as query and Text as a corpus for retrieval (MRR)

MRR@1 MRR@3
Models Original CL. CL.DA MNSRL Original CL. CL.DA MNRSL
meS-base 0.6537 0.5969  0.6499 0.6615 0.7935 0.7418  0.7892 0.7991
meS-small 0.6576 0.5736  0.6395 0.6525  0.7922 0.7149  0.7784 0.7907
distil-use 0.6279 0.6408  0.6473 0.6486 0.7689  0.7780  0.7827 0.7901
Paraphrase 0.5646 0.5930  0.6292 0.6447 0.7110 0.7330  0.7661 0.7817

models. However, this improvement does not reach
values higher than pretrained models without tunned.

Finally, when we applied the MNSRL loss func-
tion, model e5 achieved the highest MRR (0.6615)
out of all the models tested. Additionally, this loss
function boosted all the models tested, resulting in
similar MRR @3 values.

6 DISCUSSION

The pretrained encoder models achieved reasonable
results over the two tested tasks; we notice that some
of them, such as e5 flavors, present well without any
tuning over task 2; this might explained by the simi-
larity grammar presented between entities and texts.

We observed that the models achieved good over-
all results in the Task 1, with all Pearson coefficients
higher than 0.79 (cf. Table 3), which correlates well
with human annotation. The results show that pre-
serving the semantics (STS) was possible in all con-
figurations, showing that the training did not consid-
erably decrease the Pearson correlation score.

We evaluated our models to perform retrieval in
two directions: returning the most similar triple given
a text query into natural text (Text—Triples, cf. Table
4) and retrieving the most similar text given a triple
(Triple—Text, cf. Table 4), where e5-base finetuned
with MNSRL achieved the best effectiveness in terms
of MRR@1 having 0.6693 and 0.6615 for retrieval
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text-triples and triples-text, respectively. The models
can reasonably recover the associated triple or text.

The paraphrase shows an increase in the MRR
metrics (cf. Table 4, Table 5), a comparison with STS
results (cf. Table 3) reveals a maintaining in Pearson
correlation. This suggests that the observed improve-
ments are learning triples and text alignment while
preserving the capability of the models in task 1. Our
results for the information retrieval task showed slight
improvements. This happens because the WEBNLG
test dataset contains some relations and entities not
present in the training dataset. As a result, it can be
more challenging to accurately identify the connec-
tions between the text and the triples to achieve cor-
rect alignments.

Additionally, applying the data augmentation
technique demonstrated positive effects when used
in combination with constructive loss and improved
their results in IR Triple-text (Table 5)). This im-
provement can also be appreciated by focusing on
MRR @3 metrics related to the retrieval system hav-
ing the correct sentence in the tree of most relevant
retrieved sentences.

Furthermore, the MNRSL loss was more adequate
for this experiment. This evidence shows we can align
text and triples by only providing positive examples.
The results were comparable and also outperformed
our results with data augmentation.

We found that having datasets with both triples
and text examples is necessary to accelerate the devel-
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opment of stronger models. Creating these datasets
could potentially impact the performance of our tested
loss, particularly for MNRSL. We observed that the
models maintain semantic integrity in Task 1 while
delivering improved results in Task 2.

7 CONCLUSION

Embeddings are crucial in combining KGs and lan-
guage models in modern digital applications. Nev-
ertheless, the literature lacks investigations into how
to create embeddings that align triples and text rep-
resentations using small-size datasets. This study ad-
vanced the state-of-the-art by exploring triple embed-
ding using pretrained models and attaching the evalu-
ation to two relevant tasks. We identified the need to
improve the alignment between text and triples before
directly applying the pretrained models. Our findings
revealed that some models responded well to the fine-
tuning improvement of their MRR @1 score (retrieval
task). This suggests that the nature of the models
and more refined techniques could contribute to better
alignment strategies for triples and texts. We demon-
strated that using multiple negatives symmetric rank-
ing loss enables semantic learning using all the pre-
trained models in a small dataset. Our findings indi-
cate that triple embeddings benefited from data aug-
mentation with Contrastive loss in combination with
text-text data (STS). Future research involves creat-
ing our triple-text datasets to increase their richness
for alignment. We plan to explore other languages
besides English to measure whether the applications
of low-resource languages are applicable. Finally,
we intend to examine the potential for self-supervised
learning techniques in enhancing text-triples’ align-
ment.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenagio
de Aperfeicoamento de Pessoal de Nivel Superior —
Brasil (CAPES) — Finance Code 001. This work
is also supported by the 'PIND/FAEPEX - “Pro-
grama de Incentivo a Novos Docentes da Unicamp”
(#2560/23) and the Sao Paulo Research Foundation
(FAPESP) (Grant #2022/15816-5)°

3The opinions expressed in this work do not necessarily
reflect those of the funding agencies.

REFERENCES

Abhishek, T., Sagare, S., Singh, B., Sharma, A., Gupta, M.,
and Varma, V. (2022). Xalign: Cross-lingual fact-to-
text alignment and generation for low-resource lan-
guages. In Companion Proceedings of the Web Con-
ference 2022, WWW ’22, page 171-175, New York,
NY, USA. Association for Computing Machinery.

Cao, J., Fang, J., Meng, Z., and Liang, S. (2024). Knowl-
edge graph embedding: A survey from the perspective
of representation spaces. ACM Comput. Surv., 56(6).

Castro Ferreira, T., Gardent, C., Ilinykh, N., van der Lee, C.,
Mille, S., Moussallem, D., and Shimorina, A. (2020).
The 2020 bilingual, bi-directional WebNLG+ shared
task: Overview and evaluation results (WebNLG+
2020). In Castro Ferreira, T., Gardent, C., Ilinykh,
N., van der Lee, C., Mille, S., Moussallem, D., and
Shimorina, A., editors, Proceedings of the 3rd Inter-
national Workshop on Natural Language Generation
from the Semantic Web (WebNLG+), pages 55-76,
Dublin, Ireland (Virtual). Association for Computa-
tional Linguistics.

Chang, T. A. and Bergen, B. K. (2024). Language Model
Behavior: A Comprehensive Survey. Computational
Linguistics, pages 1-58.

Daw, S., Sagare, S., Abhishek, T., Pudi, V., and Varma, V.
(2021). Cross-lingual alignment of knowledge graph
triples with sentences. In Bandyopadhyay, S., Devi,
S. L., and Bhattacharyya, P, editors, Proceedings of
the 18th International Conference on Natural Lan-
guage Processing (ICON), pages 629-637, National
Institute of Technology Silchar, Silchar, India. NLP
Association of India (NLPAI).

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Burstein,
J., Doran, C., and Solorio, T., editors, Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171-4186, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ding, L., Kolari, P.,, Ding, Z., and Avancha, S. (2007). Us-
ing Ontologies in the Semantic Web: A Survey, pages
79-113. Springer US, Boston, MA.

Fionda, V. and Pirro, G. (2020). Learning triple embeddings
from knowledge graphs. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):3874—
3881.

Gardent, C., Shimorina, A., Narayan, S., and Perez-
Beltrachini, L. (2017). Creating training corpora for
NLG micro-planners. In Barzilay, R. and Kan, M.-Y.,
editors, Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 179-188, Vancouver, Canada.
Association for Computational Linguistics.

Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimen-
sionality reduction by learning an invariant mapping.
In 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06), vol-
ume 2, pages 1735-1742.

61



KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development

Henderson, M., Al-Rfou, R., Strope, B., hsuan Sung, Y.,
Lukacs, L., Guo, R., Kumar, S., Miklos, B., and
Kurzweil, R. (2017). Efficient natural language re-
sponse suggestion for smart reply.

Hogan, A. (2020). SPARQL Query Language, pages 323—
448. Springer International Publishing, Cham.

Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. S.
(2022). A survey on knowledge graphs: Represen-
tation, acquisition, and applications. [EEE Trans-
actions on Neural Networks and Learning Systems,
33(2):494-514.

Kalinowski, A. and An, Y. (2022). Repurposing knowledge
graph embeddings for triple representation via weak
supervision. In 2022 International Conference on In-
telligent Data Science Technologies and Applications
(IDSTA), pages 129-137.

Lapalme, G. (2020). RDFjsRealB: a symbolic approach
for generating text from RDF triples. In Castro Fer-
reira, T., Gardent, C., Ilinykh, N., van der Lee, C.,
Mille, S., Moussallem, D., and Shimorina, A., edi-
tors, Proceedings of the 3rd International Workshop
on Natural Language Generation from the Seman-
tic Web (WebNLG+ ), pages 144—153, Dublin, Ireland
(Virtual). Association for Computational Linguistics.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space.

Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen,
T. H., Sainz, O., Agirre, E., Heintz, 1., and Roth, D.
(2023). Recent advances in natural language process-
ing via large pre-trained language models: A survey.
ACM Comput. Surv., 56(2).

Muennighoff, N., Tazi, N., Magne, L., and Reimers, N.
(2023). MTEB: Massive text embedding benchmark.
In Vlachos, A. and Augenstein, 1., editors, Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 2014-2037, Dubrovnik, Croatia. Association
for Computational Linguistics.

Pahuja, V., Gu, Y., Chen, W., Bahrami, M., Liu, L., Chen,
W.-P., and Su, Y. (2021). A systematic investigation
of KB-text embedding alignment at scale. In Zong,
C., Xia, F, Li, W., and Navigli, R., editors, Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1764-1774,
Online. Association for Computational Linguistics.

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., and Wu, X.
(2024). Unifying large language models and knowl-
edge graphs: A roadmap. IEEE Transactions on
Knowledge and Data Engineering, pages 1-20.

Patil, R., Boit, S., Gudivada, V., and Nandigam, J. (2023).
A survey of text representation and embedding tech-
niques in nlp. IEEE Access, 11:36120-36146.

Perkovié, G., Drobnjak, A., and Boticki, I. (2024). Halluci-
nations in llms: Understanding and addressing chal-
lenges. In 2024 47th MIPRO ICT and Electronics
Convention (MIPRO), pages 2084—2088.

Qader, W. A., Ameen, M. M., and Ahmed, B. 1. (2019).

62

An overview of bag of words;importance, implemen-
tation, applications, and challenges. In 2019 Interna-
tional Engineering Conference (IEC), pages 200-204.

Regino, A. G., Caus, R. O., Hochgreb, V., and dos Reis,
J. C. (2023). From natural language texts to rdf triples:
A novel approach to generating e-commerce knowl-
edge graphs. In Coenen, F., Fred, A., Aveiro, D., Di-
etz, J., Bernardino, J., Masciari, E., and Filipe, J., ed-
itors, Knowledge Discovery, Knowledge Engineering
and Knowledge Management, pages 149-174, Cham.
Springer Nature Switzerland.

Reimers, N. and Gurevych, 1. (2019). Sentence-BERT: Sen-
tence embeddings using Siamese BERT-networks. In
Inui, K., Jiang, J., Ng, V., and Wan, X., editors, Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3982-3992, Hong
Kong, China. Association for Computational Linguis-
tics.

Wang, L., Yang, N., Huang, X., Jiao, B., Yang, L., Jiang, D.,
Majumder, R., and Wei, F. (2024). Text embeddings
by weakly-supervised contrastive pre-training.

Wang, Q., Mao, Z., Wang, B., and Guo, L. (2017). Knowl-
edge graph embedding: A survey of approaches and
applications. IEEE Transactions on Knowledge and
Data Engineering, 29(12):2724-2743.

Xia, P, Wu, S., and Van Durme, B. (2020). Which *BERT?
A survey organizing contextualized encoders. In Web-
ber, B., Cohn, T., He, Y., and Liu, Y., editors, Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 7516—
7533, Online. Association for Computational Linguis-
tics.

Yan, Q., Fan, J., Li, M., Qu, G., and Xiao, Y. (2022). A
survey on knowledge graph embedding. In 2022 7th
IEEE International Conference on Data Science in
Cyberspace (DSC), pages 576-583.

Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant,

N., Hernandez Abrego, G., Yuan, S., Tar, C., Sung,

Y.-h., Strope, B., and Kurzweil, R. (2020). Multilin-

gual universal sentence encoder for semantic retrieval.

In Celikyilmaz, A. and Wen, T.-H., editors, Proceed-

ings of the 58th Annual Meeting of the Association for

Computational Linguistics: System Demonstrations,

pages 87-94, Online. Association for Computational

Linguistics.

H., Peng, H., Lyu, Z., Hou, L., Li, J., and Xiao, J.

(2023). Pre-training language model incorporating

domain-specific heterogeneous knowledge into a uni-

fied representation. Expert Systems with Applications,

215:119369.

Zhu, Y., Wan, J., Zhou, Z., Chen, L., Qiu, L., Zhang, W.,
Jiang, X., and Yu, Y. (2019). Triple-to-text: Convert-
ing rdf triples into high-quality natural languages via
optimizing an inverse kl divergence. In Proceedings
of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR’19, page 455-464, New York, NY, USA. As-
sociation for Computing Machinery.

Zhu



