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Abstract: Understanding the complex dynamics of high-dimensional, contingent, and strongly nonlinear economic data,
often shaped by multiplicative processes, poses significant challenges for traditional regression methods as
such methods offer limited capacity to capture the structural changes they feature. To address this, we propose
leveraging the potential of knowledge graph embeddings for economic trade data, in particular, to predict
international trade relationships. We implement KonecoKG, a knowledge graph representation of economic
trade data with multidimensional relationships using SDM-RDFizer and transform the relationships into a
knowledge graph embedding using AmpliGraph.

1 INTRODUCTION

Knowledge graphs (KG) are repositories for factual
information in triple form and have been increas-
ingly prevalent across various domains. Exploring
knowledge graph embedding models has emerged as
a novel approach for exploiting knowledge graphs.
These graphs have been useful, promoting numer-
ous downstream tasks (Kun et al., 2023; Abu-Salih,
2021). These embeddings represent nodes and, in
some cases, edges as continuous vectors, providing
several advantages over traditional graph structures
(Cai et al., 2018; Goyal and Ferrara, 2018; Wang
et al., 2017). Beyond this, graph-based method-
ologies offer a promising avenue for capturing and
quantifying narratives, particularly through knowl-
edge graphs (KGs) which map interactions between
concepts or events relevant to the research subjects
(Wang et al., 2017; Chen et al., 2020b). Numerous
applications of these methods have demonstrated the
efficacy of graph modelling and quantitative graph
analysis in capturing complex economic relationships
(Xia et al., 2021; Chen et al., 2020a).

Therefore, this study applies KG translational em-
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bedding techniques (Bordes et al., 2013) to solve
inherent problems in empirical economic research.
Economic research typically transforms the network
of economic interactions into a format usable for (of-
ten even linear) inferential statistics or theoretical al-
gebraic reasoning. However, this transformation can
cause strong information and complexity compres-
sion, limiting the representativeness since the interac-
tion and the underlying network structure have been
almost completely ignored (Wolfram, 2002). Addi-
tionally, economic data has suffered from the prob-
lems of high-dimensionality, contingency and strong
non-linearity, which originate from multiplicative dy-
namics (Donoho et al., 2000; Bolón-Canedo et al.,
2016; Raudenbush and Bryk, 2002). This paper dis-
cusses these issues when further analysing economic
data in Section 2.

To address these problems, we propose that every
economic interaction can be represented within a net-
work structure. In the latter, we establish the concept
of an economic trade network as a system of intercon-
necting countries based on their trade relations. Our
primary aim is to explore the predictive capabilities
inherent within such a network, specifically focus-
ing on forecasting flows between country pairs. To
do this, we introduce KonecoKG, a downstream KG
embedding model featuring multidimensional trans-
lational relationships for the international economic
bilateral data. A multidimensional relationship in the
context of KGs is one between entities encompass-
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ing multiple attributes or interactions simultaneously.
Such a relationship offers various advantages because
it facilitates capturing the combined effect of multiple
attributes rather than one single entity-attribute rela-
tion. For example, a simple binary relationship might
indicate only a single type of link, e.g., “country A
trades with country B”, On the other hand, a multidi-
mensional relationship captures a richer set of associ-
ations, such as fixed effects, and contextual informa-
tion like trade volumes, geographical proximity and
economic indicators. The latter include gross domes-
tic product (GDP) and population size. By incorporat-
ing these diverse dimensions into the relationships, a
KG can provide a more nuanced, comprehensive rep-
resentation of the data, enabling more accurate and
insightful analysis using the embedding model. By
leveraging a trade network dataset, we anticipate fu-
ture trade opportunities by integrating historical trade
patterns with insights into the trading behaviours of
neighbouring countries within the network. Addition-
ally, multi-attributes such as trade agreements, ge-
ographic proximity and economic similarities act as
network features to refine the accuracy of our predic-
tions. The main contributions of this work are as fol-
lows:

• Establish a trade network as a graph represen-
tation of countries with relationships indicating
trade flows, eliminating the problems of non-
linearity and non-hierarchical representations in
international economic bilateral trade data.

• Introduce the KonecoTradeFlow ontology, which
represents the concepts of the international eco-
nomic bilateral trade data.

• Introduce KonecoKG, a downstream graph em-
bedding model that applies translational tech-
niques to forecast trade flows.

To the best of our knowledge, our study is one of
the few pioneering efforts in utilising a large-scale
economic trade network to predict trade flows be-
tween countries. The implications of accurately fore-
casting trade dynamics are significant, offering valu-
able insights for policymakers, businesses and in-
vestors to optimise international trade strategies. Ad-
ditionally, the study identifies emerging market trends
and encourages economic growth (Anand et al.,
2021).

The rest of the paper is organised as follows:
First, Section 2 gives an overview of the literature
on conventional econometric approaches and graph-
based methods and underlines the key challenges in
economic research, establishing the significance of
the current study’s contribution. Having outlined the
challenges, Section 3 focuses on the approach we

are using and describes our process to construct the
TradeFlow ontology, the embedding methods used,
and the learning strategy. Section 4 focuses on the
experimental setup and the evaluation metrics used.
Section 5 provides insights into the results obtained
and discusses their implications. Lastly, we highlight
the findings of the research and conclude in Section
6, whereby we also layout ideas for future research in
this field.

2 STATE OF THE ART

In this section, we discuss the challenges associated
with the economic data comprising the foundation of
this research. Additionally, this section reviews cur-
rent methods used to address these challenges and
identifies gaps in these methods, including those in-
volving KGs, to underscore the necessity of the pro-
posed approach.
Challenges of Economic Data. Many formal,
data-driven efforts do not adequately address the
unique characteristics of economic data (Schumpeter,
1933). Economic exchanges are shaped by subjec-
tivity (Menger, 1871), creating context dependence
and contingency, sometimes called localised knowl-
edge (Hayek, 1945). Together, these characteris-
tics hinder people from gathering reliable insights
from economic data. Multi- or high-dimensionality
requires incorporating many variables into models,
which must be capable of untangling all the non-
linear interactions between these variables. Beyond
this, many economic variables of interest exhibit
strong power law behaviour, also called heavy- or fat-
tailed behaviour (Gabaix, 2009; Di Giovanni et al.,
2011; Axtell, 2001; Hinloopen and van Marrewijk,
2006). This process produces a slow convergence
speed, leaving one in a world of pre-asymptotics with
estimates which have not yet reached stable, reliable
values. Even if such a value is reached, it is often
unrepresentative of individual observations due to the
large difference in magnitude (Taleb, 2020).

Figure 1 exemplifies this characteristic. Looking
at all the bilateral trade flows grouped by year shows
that the data has much heavier tails than a Gaussian
distribution, also called the normal distribution. This
can be seen by the mass of probability in the tails, as
opposed to that in the body of the distribution. No-
tably, the distributions in Figure 1 are on a logarith-
mic scale, making the problem exponentially more
pronounced. The distribution has a tail index α ≈ 1,
leading to slow convergence and imprecise estimates.

All these phenomena are expressed to the highest
degree when dealing with international trade flows, as
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they necessarily aggregate all the individual choices
to the highest possible level (Blöthner and Larch,
2022).
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Figure 1: Log density of bilateral trade flows across time.

Methods for Economic Data Analysis. The standard
empirical approach in economic data analysis, a field
referred to as econometrics, is a regression model.
To explain variations in bilateral international trade
flows, the workhorse model is to estimate the theory-
founded gravity equation using the Poisson pseudo-
maximum likelihood (PPML) estimator (Santos Silva
and Tenreyro, 2006; Head and Mayer, 2014; Yotov
et al., 2016). Generally, these approaches rely on a
large set of fixed effects to control for unobservable
effects in various dimensions. This process includes
dummy variables for every country, and sometimes
for every country pair, as well as exporter-year and
importer-year observations (Fally, 2015; Egger and
Staub, 2016). We will also rely on this specifica-
tion when comparing it to our KG model in section
5. Another approach is the descriptive analysis of
networks such as in (De Benedictis and Tajoli, 2011;
Basile et al., 2018). However, such work does not fa-
cilitate inference or the understanding of factors that
drive certain characteristics within the network. Re-
cent advances in informatics, especially the combi-
nation of machine learning models with graph struc-
tures, can provide new insights into the field of eco-
nomics. However, due to their focus on causal expla-
nation, traditional economic analysis methods have
predominantly relied on linear models and supervised
learning techniques.
Knowledge Graph for Economic Trade Flow Data.
Relevant recent advances have been made in the field
of neural networks and KG networks. (Sellami et al.,
2024) used a Graph Convolution Network for predict-
ing the trade relation between countries. Elsewhere,
(Rincon-Yanez et al., 2023a) used a synthetic triple-
generation algorithm for enhancing downstream tasks
in KG embeddings based on the graph complement.
(Rincon-Yanez et al., 2023b) leveraged KG embed-
dings for modelling international trade, focusing on

link prediction using embeddings, and explored the
integration of traditional machine learning methods
with KG embeddings. (Meng, 2022) used an en-
terprise KG to predict China’s Free Trade Zone.
(Gastinger et al., 2023) used a KG to explain trade
patterns among various countries. Other approaches
to this process have been in the economic trade
flow data analysis including economic planning (Shao
et al., 2017), and industrial economic status (Quan,
2022).

3 METHODOLOGY

This section explains the creation of KonecoKG, ap-
plying embedding techniques, and predicting trade
values. KonecoKG takes triples in the form of Subject
(s), Predicate (p) and Object (o) as inputs for mul-
tiple relationships, and then forms embedding vec-
tors for each relation. Next, the embedding vectors
are combined as an average embedding vector to pre-
dict trade flows between countries as the final output.
Figure 2 shows a diagrammatic representation of the
methodology. The subsections here provide an exten-
sive overview of the methodology followed.

Figure 2: Trade flow prediction and analysis pipeline.

3.1 International Economic Trade Flow
Data

The initial step entails identifying relevant aspects of
the dataset. Using trade data from (Borchert et al.,
2021), spanning 1986 to 2016, and encompassing
170 countries, we tackle the questions of economic
drivers of trade flows. To determine this, we added
explanatory data from (Gurevich and Herman, 2018)
for GDP and population data, and (Mayer and Zig-
nago, 2011) for information on geographic distances
between countries. Lastly, we employed data about
trade agreements from (Egger and Larch, 2008), a
strong predictor of international trade flows. We ag-
gregated this data into a tabular format, leaving us
with over 2.5 million observations over the whole
time frame.

Multidimensional Knowledge Graph Embeddings for International Trade Flow Analysis

65



3.2 Data Processing and Feature
Selection

A detailed explanation of selected features is given
in Table 1, comprising the key determinants of inter-
national trade. Economic theory predicts that larger
countries, measured using population or economic
size (GDP), are more able than smaller countries
to trade with each other. Specifically, country size
affects a country’s division of labour and thus the
‘roundaboutness’ of production or how many inter-
mediary capital goods for production are employed.
As this number grows, countries develop greater po-
tential to trade. In contrast, countries facing high trade
costs will trade less. In contrast, countries facing high
trade costs trade less. These costs can be either direct
because they are far apart (distance, geographic posi-
tion) or indirect due to other trade barriers which in-
crease the transaction cost (triangulation, trust, trans-
fer).

3.3 Data Modelling as
KonecoTradeFlow Ontology

The subsequent step in the construction of the model
involved creating a formal semantic representation of
the dataset to serve as a structured framework for or-
ganising and categorising concepts, entities and re-
lationships. The advantage to this method is that it
captures the hierarchical structure and dependencies
among these features, allowing for a nuanced under-
standing of their interplay in shaping trade dynam-
ics (Chandrasekaran et al., 1999; Fensel and Fensel,
2001; Uschold and Gruninger, 1996). Figure 3 repre-
sents the hierarchical structure of our data as a class
diagram. From the figure, we identify ‘trade relation’
as our main class. A complete list of data properties
(Uschold and Gruninger, 1996; Chandrasekaran et al.,
1999) and object properties (Uschold and Gruninger,
1996; Chandrasekaran et al., 1999) is provided in Ta-
ble 1.

3.4 Knowledge Graph Construction

In the next step, we use the KonecoTradeFlow ontol-
ogy formulated in the above step to a structured rep-
resentation in a KG, producing a set of triples.

To this end, we converted our dataset into
KonecoKG using

SDM-RDFizer, an open-source tool and in-
terpreter of the W3C Recommendations Standard

Country

trade relation

distancetrade trade agreement

GDP (WDI)

GDP (PWT)

population

latitude

longitude

has GDP (WDI)

has GDP (PWT)

has population

has latitude

has longitude

Figure 3: KonecoKG data model diagram.

R2RML1 and its RDF Mapping Language (RML)2

extension used for the semantification process and
used in KG creation in prior research (Shahi, 2023).
The RDF is a standardised data model used to de-
scribe resources on the web using subject-predicate-
object statements, known as triples. Each triple com-
prises three components: subject, predicate, and ob-
ject. The following are the detailed steps used to con-
vert data into KonecoKG:

• Entity Identification: we identified the entities or
resources that we wanted to represent in RDF. For
our use case, the entities were countries, specif-
ically the exporters and the importers, their as-
sociated data properties, and their relationships
among them.

• Ontology: We used the KonecoTradeFlow ontol-
ogy as vocabulary to model trade data. For in-
stance, the data property trade represents trade (in
millions of US Dollars).

• Mapping Rule: Following the steps of SDM-
RDFizer, mapping rules were created using
R2RML. We assigned the base URL as
www.koneco.de, and mapping rules assigned
the data values to the corresponding subjects,
predicates, and objects in the RDF triples and as-
sign the appropriate Uniform Resource Identifier
(URI) for the entities and properties and linked
them to represent the relationships. For instance,
the trade column of the dataset is mapped as
tradeValue. A snapshot of the data properties
from the KonecoTradeFlow ontology is given
below.

rr:predicateObjectMap [

1https://www.w3.org/TR/r2rml/
2https://rml.io/specs/rml/
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Table 1: Data & object properties and their description.

Data Property Description
trade volume of bilateral trade
distance geodesic distance between the exporter and importer
trade agreement whether a trade agreement exists between two countries
GDP (WDI) GDP of a country as measured by the World Development Indicators
GDP (PWT) GDP of a country as measured by the Penn World Tables
population population of a country
latitude geographical latitude of a country
longitude geographical longitude of a country
Object Property Description
tradesWith indicates whether a trade relation exists between two countries

rr:predicate kg:tradeValue;
rr:objectMap [

rml:reference "trade"
]

]

• Serialising as RDF: We serialised the RDF
triples into a specific RDF serialisation format.
We used the Turtle format to store and exchange
RDF data while preserving the structure and se-
mantics of the triples.

We represented Facts in a KG as relationships be-
tween entities — for instance, <ARB_NZL hasTrade-
Value n>, means Aruba exports, goods and services
of value n to New Zealand. We build a series of
such statements derived from the raw data collection
to represent them as a graph.

3.5 Knowledge Graph Embeddings

After KonecoKG is created, we employed KG embed-
dings, generating embedding scores for each triple,
thus encoding entities and relationships into numer-
ical vectors. In this way, the model processes in-
tricate patterns and semantic information as a con-
tinuous vector space, facilitating enhanced effective
analysis and inference. Next, we trained the triples,
derived from the KG, using three embedding mod-
els. Specifically, we employed TransE (Bordes et al.,
2013), ComplEx (Trouillon et al., 2016), and Dist-
Mult (Dettmers et al., 2018).

The TransE is a deterministic approach which re-
gards the relation as a translation operation from the
head entity to the tail entity and utilises a distance-
based scoring function to measure the plausibility of
triples. Each of the latter offers unique advantages
and facilitates different perspectives on capturing the
semantics of the underlying data. On the other hand,
the ComplEx and DistMult utilise tensor factorisation
and model the interaction of entities and relations by

vector-matrix product to obtain the expressive power
of the data.

3.6 Prediction Model

This section explains this study’s approach to finding
trade relations using link prediction in KonecoKG.
Link prediction is the process of exploiting the ex-
isting facts in a KG to infer missing ones. For triples
<s,p,o> in KonecoKG, where <s> refers to a country
pair, <p> represents countries’ trade relation, and <o>
represents the monetary value of the trade occurring
between two countries. Then we used tail prediction
to predict the values of o.

Subsequently, we adopted a corruption-based
learning strategy (Bordes et al., 2013) to make pre-
dictions. This strategy entailed intentionally introduc-
ing corruptions or perturbations to the input data dur-
ing the training process to enhance the model’s abil-
ity to generalise and make accurate predictions. The
rationale behind this approach is its ability to encour-
age the model to learn robust representations of the
data resilient to noise and variations. Exposing the
model to a diverse range of corrupted inputs during
training caused it to become more adept at discerning
meaningful patterns and relationships from the data,
thus improving its predictive performance on unseen
or noisy data.

Practically, the corruption strategy can be imple-
mented by augmenting the training dataset with arti-
ficially corrupted samples or by introducing random
perturbations to the input data during each training it-
eration. The degree and type of corruption introduced
can be tailored based on the specific characteristics of
the dataset and the desired robustness of the model.
We have expanded on the use of the corruption model,
adopted by us, in Section 4.
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3.7 Evaluation

We evaluated the quality of the embedding model by
measuring how well the model could complete facts.
The prediction model predicted the tail of all the pos-
sible facts of KonecoKG.

We evaluated the embedding model using the
Mean Reciprocal Rank (MRR) and Hits@N. Once the
best embedding model was determined, we applied
the Mean Squared Error (MSE) metric to calculate the
error in the predicted values.

• MRR measures how well the model ranks the cor-
rect entity or relation among the candidates in the
predicted list by measuring the average of the re-
ciprocal ranks of the correct tail entities across all
test triples. If the correct tail entity is ranked first,
the reciprocal rank is 1; if it is ranked second, the
reciprocal rank is 1/2, and so on. MRR is defined
as:

MRR =
1

|Test Triples|

|Test Triples|

∑
i=1

1
Ranki

• Hits@N measures the proportion of test triples
where the correct answer appears within the top
N predictions. Similar to MRR, we have a set of
test triples and a ranked list of candidate tail en-
tities for each test triple. This metric calculates
the percentage of test triples for which the correct
tail entity appears within the top N ranks in the
predicted list. Hits@N is defined as follows:

HITS@N =
Number of Hits at Rank ≤ N

|Test Triples|

• MSE is used to measure the error in the prediction
model by computing the average squared differ-
ence between estimated trade values (ŷi) and ac-
tual trade values (yi). MSE is defined as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

4 EXPERIMENTAL SETUP

To begin with, we utilised Protégé3, a widely used on-
tology editor and followed ontology design approach
(Dutta et al., 2015b; Dutta et al., 2015a), to build and
visualise the KonecoTradeFlow ontology. The im-
portance of this initial step before any other experi-
mental setup was to provide insights into formalising

3https://protege.stanford.edu/

Figure 4: Sample trade network in KonecoKG.

the concept for mapping the trade flow data to create
KonecoKG. This initial step was crucial to provide a
visual representation of the relationships between dif-
ferent entities, helping to clarify how various types
are connected and ensuring consistent data structure.
They also served to define the formal relationships be-
tween concepts and offered a shared understanding of
the domain enabling reasoning over the data.

In the second step, to simplify the start of the ex-
perimental process, we first filtered out data for each
year from the entire dataset collection since the data
comprises of trade information over a span of time.
We did not deal with the temporal aspect of the data,
rather we created a separate Kg for each year.

The third step was the conversion of trade flow
data into a format suitable for KG embedding. To
perform this, we employed the SDM-RDFizer. We
started by formulating the required R2RML mapping
rules in Turtle4. In the rules, we specified the classes,
properties, and relationships we aim to necessitate in
the graph. We used the mapping rules to generate
<s,p,o> triples, also in the Turtle format. The result of
all the triples (subdivisions of Classes, and Relation-
ships) is the KonecoKG, which is also in the Turtle
format.

In the fourth step, we used the generated Turtle
output to parse the graph using the RDFLib5 graph
package in our model. Figure 4 shows a simplified
glimpse of the trade network. In the figure, the nodes
represent the countries and the edges represent a bi-
lateral trade relationship between two countries. The
labels of the edges represent the value of the monetary
trade exchange in millions of US Dollar. A value of
0.0 indicates that there is no trade relation at all. The
origin of the edge represents the export country, and
the direction represents the import country.

In the fifth step, we employed the AmpliGraph
(Costabello et al., 2019) Python library6 to process

4https://www.w3.org/TR/turtle/
5https://rdflib.readthedocs.io/en/stable/apidocs/rdflib.

html
6https://github.com/Accenture/AmpliGraph
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the graph and to transform it into a vectorised mul-
tidimensional representation of the statements it con-
tained. Several potential embedding model architec-
tures were available through the AmpliGraph pack-
age with a variety of parameters. As mentioned in
Section 3, to evaluate the performance of KG em-
bedding models, we experimented with three algo-
rithms: TransE, CompleX, and DistMult. To optimise
the model parameters, we employed a grid search
methodology, systematically exploring various com-
binations to identify the most effective settings. Table
4 presents the metric performance scores of the mod-
els obtained rounded off to the third decimal place.

Notably, our experiments revealed that the TransE
model consistently outperformed the alternatives by
10%, for our data. Although ComplEx outperformed
the other models for Hits@1 and Hits@10, however,
upon further experiments, we found that when the N
in Hits@N increased, the model’s performance con-
sistently decreased. On the other hand, with an in-
crease in N, the Hits@N score for TransE consistently
increased. Therefore, we decided to go ahead with the
TransE model for further experimentation. We used
the TransE to predict the trade values and evaluate the
performance metrics.

In general, the model trains by comparing state-
ments (s,p,o) known to be true against statements
likely to be false based on local closed-world assump-
tions. This strategy measured the distances between
different statements and aimed to minimise the said
distance. An essential component of this experimen-
tal strategy is the corruption algorithm. The corrup-
tion algorithm creates negative triples by corrupting a
true triple either by replacing the head or the tail entity
with a random incorrect entity. This forces the model
to distinguish between true and false facts, thereby en-
hancing model robustness.

Initially, we utilised the default corruption method
provided by TransE. However, recognising the poten-
tial benefits of introducing controlled noise into the
training process, we subsequently modified this strat-
egy by corrupting trade values by a relative value of
20% of their true values. Through experimentation
(20%, 50%, 70%, 100%, 120%), we determined that
a corruption level of about 20% optimally enhanced
the results. This adjustment appeared to simulate real-
world variations and uncertainties in trade dynamics,
thereby improving the model’s ability to generalise to
unseen data.

Subsequently, we trained our model for 1000
epochs, with an embedding size of 150 dimensions.
These settings were chosen based on preliminary ex-
periments and empirical observations to strike a bal-
ance between model performance and computational

efficiency, ensuring timely convergence and effective
learning. Tables 2 and 3 provides a full overview of
the parameter values.

However, in our analysis, we noticed that we had
to change the hyperparameters for a comparable pre-
diction for the in-sample and out-of-sample methods,
most notably in the epoch and batch size. The in-
sample method required fewer epochs and lower neg-
ative sampling for predicting trade flows. Table 3 pro-
vides a full overview of the parameter values for in-
sampling.

The trained model works by generalising relation-
ships not yet seen by the neural network to predict the
likelihood of a relationship being true with a given
confidence.

Table 2: Out-of-sample embedding parameters

Parameter Value
Epochs 1500
Embedding size 150
Corruptions 30
Batch size 30
Loss function Pairwise
Initialiser Xavier
Regulariser LP, ’lambda’: 0.01, ’p’: 2
Optimiser Adam
Learning rate 0.001

Table 3: In-sample embedding parameters.

Parameter Value
Epochs 1000
Embedding size 150
Corruptions 10
Batch size 50
Loss function Pairwise
Initialiser Xavier
Regulariser LP, ’lambda’: 0.01,’p’: 2
Optimiser Adam
Learning rate 0.001

5 RESULTS AND DISCUSSION

To evaluate the effectiveness of our model on unseen
data, we applied the leave-one-out cross-validation.
We iterated over each country relation as the test set
and used the rest of the chunk as the training set.
Thus, we reported the average scores of the runs, each
consisting of 1000 epochs. Then, we used the per-
formance metrics MRR (Costabello et al., 2019), and
Hits@N (Costabello et al., 2019) to evaluate the pre-
dictions generated by the model. As described in Sec-
tion 3 we experimented with hyperparameters of three
KG embedding models, namely, ComplEx, TransE
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Table 4: Results of trade flow prediction.
(a) ComplEx

Metric Score
MRR 0.483
Hits@1 0.428
Hits@10 0.513
Hits@100 0.512
Hits@1000 0.592

(b) TransE

Metric Score
MRR 0.587
Hits@1 0.298
Hits@10 0.459
Hits@100 0.576
Hits@1000 0.719

(c) DistMult

Metric Score
MRR 0.376
Hits@1 0.311
Hits@10 0.404
Hits@100 0.491
Hits@1000 0.504

and DistMult.
Furthermore, we also compared our results with

a baseline regression model using the Mean Squared
Error(MSE) metrics. We enlist the Mean Squared Er-
ror (MSE) (in millions) comparison in Table 5.

Table 5: Mean Squared Error by model.

Model Mean Squared Error (in million)
PPML 2256.65
ComplEx 256.65
DistMult 196.26
TransE 14.493564

Lastly, we applied the traditional approach, for
instance, PPML for predicting the trade value along
with the proposed approach. This model vastly out-
performed the conventional models in out-of-sample
prediction tasks. Relying on the MSE, it is up to 155
times better than a comparable estimate using PPML
with fixed effects, as seen from Table 5. In this vein,
Figure 5a shows that the machine learning approach
predicts values at every scale quite accurately. No-
tably the 45◦ line represents a perfect fit. Even in the
in-sample case, KonecoKG outperforms PPML by a
factor of 50. PPML is biased towards large values,
which is a commonly observed result. Furthermore,
our model predicts all the 0 trade flows correctly, a
feature which is impossible for PPML.

Generally, conventional regression-based ap-
proaches aim to ascertain the average response of a
variable of interest to a change, usually in policy. In
our case, this process could involve signing a trade
agreement between one or multiple countries. As mo-
tivated in Section 2 and reinforced by our results, the
influence of certain factors is mediated by a plethora
of contingent factors. Even if such an average re-
sponse could be achieved, a complex interplay of de-
pendencies could make the individual experience of
an economic agent, such as a country, to differ wildly
from the estimated average. This phenomenon has
recently been addressed in economics (Peters, 2019).
For this reason, we see great potential for graph-based
learning algorithms to untangle the complexities at
the heart of economic processes and to deepen our
understanding of economic relationships.
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Figure 5: Comparison of predictions (on log-log scale).

6 CONCLUSION AND FUTURE
WORK

In this work, we applied KG embedding techniques
to predict trade flows in the international bilateral
trade flow data by formulating KonecoKG, a down-
stream model. A significant advantage of introduc-
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ing graph structure is that it alleviates the problems of
non-linearity and hierarchical high-dimensional data.
The proposed approach outperforms the state-of-the-
art model in predicting trade values from 50, for in-
sample tasks, to 155 times, for out-of-sample tasks.
Currently, this approach has been applied for a lim-
ited number of properties.

Additionally, this approach can be extended by
combining KGs built from other data sources which
are nearly impossible to include in standard ap-
proaches, due to their unstructured nature. These
sources could include text-based agreements, news,
exchange and auction-based data, and market phe-
nomena such as decentralised finance.

An alternate and immediate subsequent extension
of the work would be explaining the embedding and
the prediction model to identify the key determinants
of the model. Additionally, post-hoc explainability
models could be used to explore the results obtained.

Another possible step could be the use of the time
dimension. As time is the medium through which any
economic process is realised, this would offer a much
more realistic picture. That is, much of recent econo-
metric research has used this feature, facilitating the
path dependence of multiplicative processes.

SUPPLEMENTAL MATERIAL

The raw data can be viewed and downloaded
from Mario Larch’s Regional Trade Agreements
Database7, Dynamic Gravity Dataset8, International
Trade and Production Database for Estimation (ITPD-
E)9. In particular, we will release the ontology model,
mapping rules for creating the KonecoTradeFlow on-
tology, code to tune hyperparameters for the Com-
plEx, TransE, and DistMult, code to train, and predict
model using TransE.

The project, data, and the Python Code can also be
found at the link Multidimensional Knowledge Graph
Embeddings for International Trade Flow Analysis.
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