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Abstract: The Internet of Things (IoT) involves billions of interconnected devices, making IoT networks vulnerable to 

cyber threats. To enhance security, deep learning (DL) techniques are increasingly used in intrusion detection 

systems (IDS). However, centralized DL-based IDSs raise privacy concerns, prompting interest in Federated 

Learning (FL). This research evaluates FL configurations using dense neural networks (DNN) and 

convolutional neural networks (CNN) with two optimizers, stochastic gradient descent (SGD) and Adam, 

across 20% and 60% feature thresholds. Two cost-sensitive learning techniques were applied: undersampling 

with binary cross-entropy and weighted classes using weighted binary cross-entropy. Using the NF-ToN-IoT-

v2 dataset, 16 FL configurations were analyzed. Results indicate that SGD, combined with CNN and the 

Undersampling technique applied to the top 7 features, outperformed other configurations. 

1 INTRODUCTION 

In the current digital landscape, the volume of data 

generated and stored has surged dramatically, driven 

by the decreasing cost of storage and increasing 

tendency to record every digital interaction. This data 

proliferation is further exacerbated by the growing 

adoption of Internet of Things (IoT) devices, 

including smart home technologies, the expansion of 

smart cities, and advancements associated with 

Industry 4.0. For big data companies, insights derived 

from IoT devices are invaluable, rendering data a 

critical asset that requires robust protection (Atharvan 

et al., 2022). 

Intrusion detection systems (IDS) are essential in 

securing IoT environments. The integration of 

machine learning (ML) into an IDS enhances threat 

detection capabilities, but ML models often encounter 

challenges when dealing with imbalanced data, 

leading to complications in model design and an 

increased risk of overfitting (de Zarzà et al., 2023; 

Thakkar & Lohiya, 2023). Several strategies have 

been investigated to address these challenges: (1) 

cost-sensitive learning, which includes techniques 

such as cost-sensitive resampling (oversampling and 

undersampling (Luengo et al., 2011)) to adjust data 
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distribution; (2) cost-sensitive algorithms, where ML 

algorithms are modified to incorporate a cost matrix, 

although this approach is time-consuming (Lomax & 

Vadera, 2013); (3) cost-sensitive ensembles, which 

combine predictions from traditional ML models 

while accounting for misclassification costs 

(Krawczyk et al., 2014; Tao et al., 2019); and (4) cost-

sensitive learning in deep learning (DL), where model 

training involves adjusting weights using standard 

loss functions such as weighted binary cross entropy 

(WBCE) (Ho & Wookey, 2020), specifically 

developed to address the challenges posed by 

imbalanced data (Dina et al., 2023; Kerkhof et al., 

2022). 

However, early IDS systems were hindered by 

their lack of adaptability and slow response times to 

emerging threats, leaving them exposed for prolonged 

periods (Murphy, 2018). To address these limitations, 

more advanced IDS systems have begun to employ 

basic ML models to autonomously learn and identify 

new threats. Although the incorporation of ML has 

improved the accuracy of attack detection, most ML-

based IDS systems remain centralized. This 

centralization involves a single organization 

collecting and processing data from multiple devices 

to train its ML models, raising significant privacy 
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concerns. This is particularly relevant in IoT 

environments such as smart wearables and healthcare 

devices, where sensitive and large volumes of data are 

at stake. Consequently, there is a growing demand for 

decentralized approaches to data management 

(McMahan et al., 2017). 

To address the privacy concerns inherent in 

centralized ML approaches, federated learning (FL) 

(McMahan et al., 2017) was introduced in 2016. FL 

allows multiple devices, often referred to as clients or 

parties, to collaboratively train a model without 

sharing their data directly. Instead, these devices send 

model updates to a central entity known as an 

aggregator or coordinator, where the updates are 

combined to refine a global model. This approach is 

designed to enhance privacy by ensuring that the data 

remains local to the devices, thereby reducing the risk 

of exposure. FL achieves this by transmitting only the 

gradients instead of the raw data itself. The local 

training occurs on each device using its own dataset, 

and only the computed model parameters are sent to 

the central server. As a result, sensitive information 

never leaves the device, significantly reducing the 

risk of interception or unauthorized access during 

transmission.  

Recent efforts have focused on developing FL-

based IDS for IoT environments (Hei et al., 2020; 

Nguyen et al., 2019; Thu Huong et al., 2020). Despite 

this progress, many proposed approaches do not 

adequately address the challenges of imbalanced data, 

leading to models that are prone to overfitting. 

Additionally, these methods often fail to evaluate the 

effectiveness of different FL optimizers and DL base 

learners, or consider the impact of varying feature 

sets. Furthermore, the review (Agrawal et al., 2021) 

highlighted the challenges of implementing FL in IoT 

settings, but failed to provide concrete 

recommendations for enhancing IDS with FL or 

critically assessing the proposed solutions. This gap 

in detailed analysis poses challenges for 

cybersecurity experts in identifying the key issues 

associated with integrating FL into an IDS for IoT. 

To address the existing research gap, this study 

investigates 16 FL configurations for IDS in IoT 

contexts, specifically employing deep learning (DL) 

through dense neural networks (DNN) and 

convolutional neural networks (CNN). These 

configurations (16 = 2 optimizers for the FL server × 

2 DL architectures × 2 cost-sensitive configurations × 

2 feature thresholds) explore the impact of different 

cost-sensitive learning approaches (resampling based 

on undersampling and weighted classes based on 

WBCE) along with the selection of FL optimizers and 

the number of features. The study utilized the NF-

ToN-IoT-v2 dataset to evaluate the effectiveness of 

FL with various cost-sensitive setups, feature 

numbers, and FL optimizers. We conduct 16 

experiments: eight with the dataset's original 

distribution using WBCE, and eight with 

undersampled data to balance attack and non-attack 

instances among participants using binary cross 

entropy (BCE). The study assesses the results using 

two FL optimizers: stochastic gradient descent (SGD) 

(Amari, 1993) and Adam (Zhang, 2019), with two 

feature thresholds (20% and 60%). The performance 

of the FL models was evaluated in binary 

classification tasks over 100 optimization rounds 

using four performance criteria: accuracy, AUC, 

precision, and recall. The Scott–Knott (SK) statistical 

test (Scott & Knott, 1974) and the Borda count (BC) 

voting system (Saari, 2001) were employed to 

compare and rank the models. 

This study addresses the following research 

questions (RQs): 

▪ (RQ1). What is the optimal choice between 

SGD and Adam optimizers in the context of FL 

for attack detection? 

▪ (RQ2). What is the best FL configuration for 

detecting attacks across various settings? 

The key contributions of this study are as follows: 

1. Determining the best optimizer for FL in the 

context of intrusion detection using the NF-

ToN-IoT-v2 dataset. 

2. Identifying optimal FL setup for different 

configurations. 

3. Developing a generalized FL model for IDS 

applicable to various IoT datasets. 

The remainder of this paper is organized as 

follows. Section 2 provides a review of related 

literature. Section 3 presents the data used in this 

study. Section 4 outlines the research methodology. 

Section 5 presents the results and discussion of the 

experiments. Finally, Section 6 presents the 

conclusions and suggests directions for future 

research. 

2 RELATED WORK 

Several significant studies have explored anomaly 

detection across various domains, with a particular 

emphasis on IoT, utilizing different FL 

methodologies. This section provides an overview of 

key research efforts that have employed FL for 

intrusion detection within IoT environments. 

Friha et al. (Friha et al., 2022) proposed an FL-

based IDS (FELIDS) aimed at securing agricultural 

IoT infrastructure by ensuring data privacy through 
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localized learning. To defend against attacks on 

Agricultural IoT systems, FELIDS leverages three 

DL classifiers: DNN, CNN, and recurrent neural 

networks (RNN). The effectiveness of the system was 

evaluated using three datasets: CSE-CIC-IDS2018, 

MQTTset, and InSDN. The findings indicate that 

FELIDS outperforms traditional centralized machine 

learning (non-FL) methods by offering enhanced data 

privacy for IoT devices and achieving an accuracy of 

99.71% with the CNN classifier on the InSDN 

dataset, 89.56% with the RNN classifier on the 

MQTTset dataset, and 94.15% with the RNN 

classifier on the CSE-CIC-IDS2018 dataset. 

Mothukuri et al. (Mothukuri et al., 2022) proposed a 

novel approach that leverages FL to train gated 

recurrent units (GRUs) models while ensuring that 

data remains on local IoT devices. Only the learned 

weights of the model are shared with the central 

server of the FL. In addition, the method incorporates 

an ensemble technique to aggregate updates from 

multiple sources, thereby improving the accuracy of 

the global ML model. The results demonstrated that 

this approach not only outperforms traditional 

centralized ML methods in safeguarding data privacy 

but also achieves an overall average accuracy of 

90.255% in attack detection. Idrissi et al. (Idrissi et 

al., 2023) introduced Fed-ANIDS, a Network IDS 

that combines ML-based anomaly detection (AD) 

with FL to address privacy concerns inherent in 

centralized models. The system detects intrusions by 

calculating an intrusion score based on the 

reconstruction error of normal traffic using various 

AD models, including simple autoencoders, 

variational autoencoders, and adversarial 

autoencoders. The method was evaluated using three 

datasets: USTC-TFC2016, CIC-IDS2017, and CSE-

CIC-IDS2018. The results indicated that 

autoencoder-based models outperformed other 

generative adversarial network-based models, and 

that the FedProx aggregation framework was more 

effective than FedAVG. The proposed method 

achieved peak accuracies of 99.95%, 93.54%, and 

94.48% for the USTC-TFC2016, CIC-IDS2017, and 

CSE-CIC-IDS2018 datasets, respectively. 

3 EXPERIMENTAL DESIGN 

This section describes the datasets, performance 

metrics, and methodology employed in the empirical 

evaluations conducted in this study. 

 

 

3.1 Dataset Description 

In this study, 43 NetFlow features conforming to 

version 9 standard were extracted and labeled from 

the ToN-IoT (Alsaedi et al., 2020) dataset using the 

nProbe tool by Ntop. The resulting dataset, 

designated as NF-ToN-IoT-V2 (Sarhan et al., 2021), 

comprises 16,940,469 instances labeled as either 

attack or no-attack, reflecting a significant class 

imbalance, with 36% labeled as no-attack and 64% as 

attack. This data was chosen because it consists of 

real IoT traffic with simulated attacks. Furthermore, 

the “Pcap” files are labeled and available as open 

source, providing a foundation for developing a 

generalized model applicable to all NetFlow V9 data 

types. 

3.2 Performance Measures 

To evaluate the effectiveness of the proposed binary 

classification models, we employed accuracy, recall, 

precision, and area under the receiver operating 

characteristic curve (AUC) as evaluation metrics 

(Naidu et al., 2023). These metrics were selected 

owing to their widespread use and acceptance in the 

field. 

3.3 Statistical Test and Borda Count  

▪ Scott Knott (SK) is a clustering algorithm 

commonly used to compare multiple groups in 

analysis of variance studies. It addresses the 

issue of overlapping groups by starting with all 

observed mean effects grouped together and 

iteratively dividing these groups into smaller 

subgroups, ensuring that no two subgroups 

share any common members (Scott & Knott, 

1974). 

▪ Borda Count (BC) is a voting method in 

which voters rank candidates according to their 

preferences. Each candidate receives points 

based on their rank, with the lower ranks 

earning fewer points. The points are then 

aggregated, and the candidate with the highest 

total is declared as the winner. In this study, the 

Borda count method was used to identify the 

top-performing model, treating all performance 

measures equally (Saari, 2001). 

3.4 Methodology 

Figure 1 illustrates the methodology employed to 

assess and compare the effects of different FL 

optimizers, DL architectures, cost-sensitive learning 
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setups, and feature thresholds on the detection 

capabilities of FL-based IDS. We evaluated the 

performance of two FL optimizers, SGD and Adam, 

with two different feature thresholds (20% and 60%) 

and two cost-sensitive learning setups 

(undersampling and WBCE) over 100 rounds using 

SK and BC voting systems. The experimental 

procedure included the following steps: 

 

Figure 1: Experimental process. 

▪ Step 1. Prepare the raw data by removing 

missing values, duplicate rows, and 

unnecessary attributes. This process includes 

reclassifying categorical features and 

standardizing numerical features. 

▪ Step 2. involves the application of two FS 

techniques: mRMR for categorical features and 

ANOVA for numerical features. These 

methods were selected based on a comparative 

analysis of FS and ML techniques on IDS 

datasets (Amiri et al., 2011; Shakeela et al., 

2021; Tao et al., 2019; Zouhri et al., 2023). 

Additionally, two feature thresholds (20% and 

100%) were implemented, as recommended in 

previous studies (Dhaliwal et al., 2018; 

Kurniabudi et al., 2020; Nakashima et al., 

2018). This process resulted in the creation of 

two dataset variations. 

▪ Step 3. Set up a simulated IoT network by 

creating virtual instances using TFF based on 

the DNN and CNN architectures. We utilized 

10 devices, each referred to as Devicei, and 

configured two optimizers for the central 

FedAVG server instance. This instance 

facilitates the exchange of DL model 

parameters between the mobile IoT devices and 

the central FL server. Cost-sensitive learning 

was implemented using two approaches: one 

using raw data with WBCE, respecting the 

original dataset distribution, and the other 

using undersampling to balance the dataset 

with equal numbers of attacks and BCE. Each 

local dataset i was assigned to the 

corresponding virtual Devicei. 

▪ Step 4. Construct and evaluate the performance 

of the 16 FL configurations (16 = 2 optimizers 

for the FL server × 2 DL architectures × 2 cost-

sensitive configurations × 2 feature thresholds) 

in terms of accuracy, recall, precision, and 

AUC over 100 rounds. Additionally, the SK 

test and BC system were used to rank the FL 

configurations for each cost-sensitive learning 

setup, feature threshold, and FL optimizer. 

▪ Step 5. Compare the performances of Adam 

and SGD optimizers for each cost-sensitive 

learning setup and feature threshold using the 

NF-ToN-IoT-v2 dataset. Ultimately, identify 

the optimal FL configuration for cyber-

detection within the NetFlow IoT dataset 

framework. 

3.5 Abbreviation 

To enhance readability and simplify model names, 

this study adopts the following specific naming 

conventions: 

DLArchitecture_Optimizer_CostSensitiveSetup_Feat

ureThreshold 

The abbreviations for DL architectures are DN for 

DNN and CN for CNN. The FL optimizers are 

abbreviated as S for SGD and A for Adam. The cost-

sensitive setups are abbreviated as U for 

undersampling and W for weighted classes. For 

instance, DNSW20 represents a configuration 

utilizing the DNN architecture with the SGD 

optimizer, WBCE with weighted classes, and 20% of 

the features. 

4 RESULTS AND DISCUSSION 

This section analyzes the outcomes of using the FL 

technique with the DNN and CNN architectures. The 

evaluation includes two optimizers (Adam and SGD), 

two feature thresholds (20% and 60%), and two cost-

sensitive setups (undersampling and WBCE) over 

100 rounds on the NF-ToN-IoT-v2 dataset for binary 

classification. The results of the empirical study are 

discussed in relation to the RQs introduced in section 

1. 
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4.1 Optimal Choice Between SGD and 
Adam Optimizers in FL for Attack 
Detection (RQ1) 

 

Figure 2: Accuracy progression across rounds for 10 

devices using SGD with 20% of features: (a) DNN with 

weighted classes and (b) DNN with undersampling. 

This subsection investigates the impact of SGD and 

Adam optimizers on the performance of FL 

configurations, with an emphasis on identifying the 

optimizer that enhances the accuracy of an FL-based 

IDS in IoT contexts. We analyze the average model 

accuracy across different feature thresholds for each 

cost-sensitive learning setup using DNN and CNN 

architectures, utilizing the SGD and Adam optimizers 

over 100 rounds to determine the optimal FL 

optimizer. For instance, when evaluating the accuracy 

of cost-sensitive setups (undersampling and weighted 

classes) with SGD and Adam using DNN and 20% of 

features across 10 devices: (1) Figures 2.a and 2.b 

display the accuracy values of DNN using the SGD 

optimizer with weighted classes and undersampling, 

respectively, allowing us to assess the models' 

accuracy for each device over 100 rounds; and (2) we 

calculate the average accuracy values for the 10 

devices for different FL configurations in each round, 

as illustrated in Figure 3. For example, as shown in 

Figure 3. a, the average accuracy of the FL 

architecture across 10 devices, deploying a DNN with 

weighted classes and utilizing 20% of features with 

SGD as the FL optimizer, is referred to as DNSW20, 

whereas the average accuracy of the FL architecture 

across 10 devices, deploying a DNN with 

undersampling and using 20% of features with SGD 

as the FL optimizer, is indicated as DNSU20. 

Figure 3.a shows the average accuracy values 

obtained using the DNN with 20% of the features. We 

observe the following: 

 

Figure 3: Average accuracy of FL based on DNN 

architecture using: (a) 20% of features and (b) 60% of 

features. 

▪ For DNSU20, variability is present in the first 

5 rounds, followed by stabilization, achieving a 

high accuracy of approximately 95%. 

▪ For DNSW20, variability is present in the first 

3 rounds, followed by stabilization, resulting in 

a high accuracy of approximately 94%. 

▪ For DNAW20, an increase is observed in the 

first 3 rounds, followed by stabilization with 

very slight variations, leading to a consistent 

accuracy of approximately 91%. 

▪ For DNAU20, an increase is observed in the 

first 5 rounds, followed by stabilization with 

very slight variations, resulting in a consistent 

accuracy of approximately 89%. 

Figure 3.b shows the average accuracy values 

obtained using the DNN with 60% of the features. We 

observe the following: 
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▪ For DNSW60, stability is maintained 

throughout all rounds, achieving a high 

accuracy of approximately 98%. 

▪ For DNSU60, stability is maintained in all 

rounds except for a slight variation in the 

second round, leading to a high accuracy of 

approximately 98%. 

▪ For DNAW60, an increase is observed in the 

first 6 rounds, followed by stabilization, 

resulting in a consistent accuracy of 

approximately 91%. 

▪ For DNAU60, the highest variation is observed 

across all rounds, with an initial increase in the 

first 5 rounds, some stability between rounds 5 

and 15, followed by a decrease at round 36, and 

high variation at round 80, resulting in a 

maximum accuracy of 87%. 

When using DNN as the base learner, the SGD 

optimizer proved to be the most effective FL 

optimizer, securing the top two positions for both the 

20% and 60% feature thresholds. Specifically, 

DNSU20 for 20% of features and DNSW60 for 60% 

of features achieved the highest accuracies of 95% 

and 98%, respectively. In contrast, the Adam 

optimizer ranked lowest, with DNAU20 for 20% of 

features and DNAU60 for 60% of features, recording 

the lowest accuracies of 89% and 87%, respectively. 

Figure 4.a illustrates the average accuracy values 

obtained using CNN with 20% of features. We 

observe the following: 

▪ For CNSU20, a slight increase is observed 

during the first 5 rounds, followed by 

stabilization over the next 10 rounds. 

Variability occurs in the subsequent 3 rounds, 

after which stabilization occurs in the 

remaining rounds, achieving a high accuracy of 

approximately 95%. 

▪ For CNSW20, a slight increase is observed 

during the first 5 rounds, followed by 

stabilization, ultimately leading to a high 

accuracy of approximately 94%. 

▪ For CNAW20, a significant increase is 

observed during the first 3 rounds, followed by 

stabilization, resulting in a high accuracy of 

approximately 91%. 

▪ For CNAU20, stabilization is observed 

throughout all rounds, resulting in a consistent 

accuracy of approximately 50%. 

Figure 4.b shows the average accuracy values 

obtained using the CNN with 60% of the features. We 

observe the following: 

▪ For CNSW60, a slight increase is observed 

during the first 5 rounds, followed by 

stabilization, ultimately achieving a high 

accuracy of approximately 98%. 

▪ For CNSU60, a significant increase is observed 

during the first 5 rounds, followed by 

stabilization, ultimately resulting in a high 

accuracy of approximately 98%. 

▪ For CNAW60, a significant increase is 

observed during the first 10 rounds, followed 

by stabilization over the next 10 rounds. 

Significant variability is present in the 

remaining rounds, with accuracies ranging 

between 70% and 92%. 

▪ For CNAU60, stabilization is observed 

throughout all rounds, resulting in a consistent 

accuracy of approximately 50%. 

 

Figure 4: Average accuracy of FL based on CNN 

architecture using: (a) 20% of features and (b) 60% of 

features. 

When using the CNN as the base learner, the SGD 

optimizer proved to be the most effective FL 

optimizer, securing the top two positions for both the 

20% and 60% feature thresholds. Specifically, 

CNSU20 for 20% of features and CNSW60 for 60% 

of features achieved the highest accuracies of 95% 

and 98%, respectively. Conversely, the Adam 

optimizer ranked lowest, with CNAU20 stabilizing at 

an accuracy of 50% for 20% of the features and 
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CNAU60 showing variability with accuracy ranging 

between 70% and 92% for 60% of the features. 

In summary, SGD outperformed Adam as an FL 

optimizer across DL architectures used as the base 

learners. Additionally, when utilizing SGD, 

employing weighted classes, particularly WBCE, as a 

cost-sensitive learning method yielded better 

performance with 60% of the features, while 

undersampling performed more effectively with 20% 

of the features across different DL architectures. On 

the other hand, when using Adam, the weighted 

classes (WBCE) consistently achieved better 

performance than the undersampling technique. 

4.2 Optimal FL Configuration for 
Attack Detection Across Varied 
Settings (RQ2) 

 

Figure 5: SK test results of FL configurations using (a) 20% 

of features and (b) 60% of features. 

In this section, we compare various FL 

configurations, including FL optimizers, DL base 

learners, and cost-sensitive setups, for each feature 

threshold. The SK test was employed to focus on 

accuracy, grouping models, and identifying the most 

effective SK clusters, as illustrated in Figure 5. 

Additionally, the BC method was used to prioritize 

the models within the top SK clusters based on 

metrics such as accuracy, AUC, recall, and precision, 

as shown in Table 2. The SK test results are displayed 

in a graph, where the x-axis categorizes the FL 

classifier variants by cluster, arranging the best 

clusters from left to right, and the y-axis shows the 

accuracy scores. The central dots on each vertical line 

represent the mean accuracy, with the lines 

illustrating the outcomes of 100 rounds for each FL 

classifier. This analysis involved calculating the 

average accuracy for each round 𝑖  across the 10 

devices, denoted as 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑖 , using Equation (1). 

For example, DNSW20 represents the average 

accuracy of the DNN architecture with the SGD 

optimizer, WBCE with weighted classes, and 20% of 

the features across 10 over 100 rounds 

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒1, … , 𝐴𝑣𝑒𝑟𝑎𝑔𝑒100). 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑖 = ∑
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑗
#𝐷𝑒𝑣𝑖𝑐𝑒𝑠

#𝐷𝑒𝑣𝑖𝑐𝑒

𝑗

 
(1) 

From Figure 5.a, we observe the following: 

▪ For the 20% feature threshold, the SK 

distribution results in four distinct clusters. The 

first cluster comprises all models utilizing the 

SGD optimizer, including CNSU20, DNSU20, 

CNSW20, and DNSW20. The second cluster 

consists of CNAW20 and DNAW20. The third 

cluster includes only DNAU20, while the 

fourth cluster contains only CNAU20. 

▪ For the 60% feature threshold, the SK 

distribution forms five distinct clusters. The 

first cluster includes all models using the SGD 

optimizer, specifically DNSW60, CNSU60, 

DNSU60, and CNSW60. The second, third, 

fourth, and fifth clusters contain CNAW60, 

DNAW60, DNAU60, and CNAU60, 

respectively. 

Table 1: BC ranking of the FL variants belong to the best 

SK cluster. 

TS #F Model Accuracy AUC Recall Precision BC 

20% 7 

CNSU20 95.19% 0.9874 92.41% 97.85% 9 

CNSW20 94.89% 0.9872 97.33% 94.81% 8 

DNSU20 95.18% 0.9859 92.61% 97.62% 7 

DNSW20 94.78% 0.9859 97.26% 94.73% 6 

60% 20 

DNSW60 98.34% 0.9984 99.03% 98.38% 11 

DNSU60 98.17% 0.9984 98.52% 97.84% 7 

CNSU60 98.31% 0.9987 98.23% 98.39% 7 

CNSW60 98.07% 0.9943 98.48% 98.49% 5 

TS: Feature threshold  #F: Number of features 

The findings indicate that the optimal FL 

configuration is achieved using the SGD optimizer 

and varies based on the feature threshold. 

Specifically, (1) with 20% of the features, the CNN 

base learner combined with the SGD optimizer 

outperforms the DNN, securing the top two positions 
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according to the BC voting system. Conversely, (2) 

with 60% of the features, the DNN occupies the top 

two positions. Specifically, the best model for the 

20% feature threshold is CNSU20, which achieved 

the highest BC score of 9 with an accuracy of 95.19%, 

an AUC of 0.9874, a recall of 92.41%, and a precision 

of 97.85% using 7 features. For the 60% feature 

threshold, DNSW60 achieved the best BC score of 11 

with an accuracy of 98.34%, an AUC of 0.9984, a 

recall of 99.03%, and a precision of 98.38% using 20 

features. Although CNSU20 and DNSW60 

demonstrated comparable performance across 

various metrics, CNSU20 was selected as the 

preferred model due to its effectiveness with a 

minimal number of features (7 features). 

5 CONCLUSION AND FURTHER 

WORKS 

The research evaluated and compared 16 FL 

configurations for the binary classification of network 

intrusions, employing DNN and CNN as base 

learning models. The study explored the performance 

of two FL optimizers, SGD and Adam, in 

combination with two feature thresholds (20% and 

60%) and two cost-sensitive learning approaches 

(Undersampling with BCE and weighted classes with 

WBCE) using the NF-ToN-IoT-v2 dataset. 

Evaluation metrics included accuracy, AUC, recall, 

and precision, further supported by the SK statistical 

test and the BC ranking system. The results 

demonstrated that SGD is a more reliable optimizer 

for attack detection in FL frameworks. The most 

effective model configuration was achieved using 

SGD as the FL optimizer, combined with CNN as the 

base learner and the Undersampling technique over 

the top 7 features. 

The findings underscore the significance of 

employing FL in the development of decentralized 

IDSs specifically tailored for IoT networks to 

enhance attack detection. Future research should 

extend empirical evaluations to further validate or 

refine these results, potentially by utilizing a variety 

of datasets to assess the robustness and adaptability 

of FL-based IDS across diverse IoT environments. 

Additionally, investigating alternative models within 

FL frameworks could offer valuable insights into 

optimizing both performance and efficiency. 

Furthermore, deploying these models on embedded 

devices using TinyML and FL methodologies 

represents a promising direction for continued 

exploration. 
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