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Abstract: The ability to reason about events and their temporal relations is a key aspect in Natural Language Under-
standing. In this paper, we investigate the ability of Large Language Models to resolve temporal references
with respect to longer event sets. Given that events rarely occur in isolation, it is crucial to determine the extent
to which Large Language Models can reason about longer sets of events. Towards this goal, we introduce a
novel synthetic benchmark dataset comprising of 2,200 questions to test the abilities of LLMs to reason about
events using a Question Answering task as proxy. We compare the performance of 4 state of the art LLMs
on the benchmark, analyzing their performance in dependence of the length of the event set considered as
well as of the explicitness of the temporal reference. Our results show that, while the benchmarked LLMs
can answer questions over event sets with a handful of events and explicit temporal references successfully,
performance clearly deteriorates with larger event set length and when temporal references get less explicit.
The Benchmark is available at https://gitlab.ub.uni-bielefeld.de/s.kenneweg/bamer.

1 INTRODUCTION

Events are pervasive in our lives and as such we fre-
quently refer to events when we speak. In fact, the
ability to reason about events is an important aspect in
understanding natural language (van Lambalgen and
Hamm, 2006).

Take as example the following questions:
(i) Did Mary watch TV on the 13th of January

2023?
(ii) Who prepared Risotto on Christmas?

(iii) When was the last time that Peter prepared a
Risotto?

Such and other questions require to reason with
respect to a chain or set of events that have happened
in the past. The last question, for instance, requires
retrieving all the times that Peter prepared Risotto
vs. all the other times he cooked something different
and finding the instance that is closest to the speaking
time.

Motivated by the recent success of Large Lan-
guage Models (LLMs) on reasoning tasks in general
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(Wei et al., 2022), we ask the question whether Large
Language Models are capable of reasoning on the ba-
sis of a set of events to answer temporal questions.
Towards this goal we compile a new English synthetic
benchmark dataset comprising of temporal questions
over sets of events, and experimentally validate the
ability of different LLMs to answer such questions.
Our focus lies on two crucial dimensions. On the one
hand, we quantify the impact of varying the degree of
explicitness of a temporal reference. As an example,
the temporal reference in question (i) is maximally
specific, referring to a concrete day. The reference to
Christmas in (ii) is less explicit, as knowledge about
Christmas is needed to infer a specific day. The ex-
pression ‘last time that Peter prepared risotto’ in (iii)
requires temporal reasoning to infer a date, being thus
a very implicit reference. On the other hand, our goal
is to analyze the ability of large models to cope with
longer event sets, so that we analyze the performance
on the task by systematically varying the length of the
set to be considered. We consider in particular event
sets consisting of between 5 and 100 events. Con-
sidering that LLMs currently lack explicit memory
and explicit temporal reasoning abilities, we formu-
late two hypotheses:

• H1: The performance of LLMs will degrade with
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increasing level of implicitness of temporal refer-
ences.

• H2: The performance of LLMs will degrade the
longer the event sets to be considered are.
Starting from these two hypotheses, we construct

our synthetic benchmark dataset and define our exper-
iments such that one can measure the performance of
LLMs along these two dimensions: event set length
and degree of explicitness of the temporal reference.
Our benchmark consists of 2,200 questions in the do-
main of activities carried out at home.

Our contributions are the following:
• We propose a new task, that is, temporal reason-

ing over event sets. We propose to investigate the
ability of systems to reason about such sets in a
QA setting in which the set of events is encoded
by a LLM which is then asked to answer a specific
temporal question.

• We present a synthetically generated benchmark
comprising 2,200 questions over common house-
hold events as a domain.

• We systematically test different prompt engineer-
ing methods to find an effective prompt for the
task.

• We compare four LLMs (Gemma-7b-it,
Llama3-8B-Instruct, Llama3-70B-Instruct,
GPT-4-0125) on the task, reporting results
for different event set lengths and levels of
explicitness.
Overall, our findings corroborate our two hy-

potheses, e.g. that LLMs have more difficulties with a
higher volume of events in the event set and that they
struggle with questions involving more implicit tem-
poral references. Our results show that performance
indeed deteriorates with increasing size of event sets
for all benchmarked LLMs. Further, the performance
on questions involving implicit temporal references is
roughly a third worse compared to the performance
on questions with explicit references. In addition, we
observe that LLM size clearly correlates with perfor-
mance on the task.

2 RELATED WORK

Events can ontologically be regarded as things that
happen in time in which participants play different
roles, e.g. agent, patient, beneficiary, etc. In his early
foundational work, Davidson (Davidson, 2001) has
argued that action sentences can be formalized as re-
ferring to an event as an ontologically reified object to
which further roles can be attached. Further work has
attempted to distinguish different types of events and
unveiling their internal structure. Vendler (Vendler,

1957) introduced the important distinctions between
subtypes of events, including activities, achievements
and accomplishments. Moens and Steedman (Moens
and Steedman, 1988) have proposed that an event
consists of a nucleus with an associated preparatory
phase, a culmination and a consequent phase. The
ability to reason about events when interpreting natu-
ral language is key, and there has been work defining
how events can be formalized and treated ’properly’
(van Lambalgen and Hamm, 2006). Further, specific
markup languages have been proposed to allow for
annotating temporal expressions in corpora and doc-
uments, with TimeML (Pustejovsky, 2005) being the
most prominent representative. Other markup Lan-
guages are TIE-ML (Cavar et al., 2021) and ISO-
TimeML (Pustejovsky et al., 2010). ISO-TimeML is a
revised and interoperable version of TimeML and the
ISO/TC37 standard for time and event markup and
annotation.

2.1 Categories of Temporal Questions

Temporal questions are often categorized depend-
ing on the explicitness by which temporal expres-
sions contained therein refer to a particular date. In
our discussion we follow previous categorisations as
proposed by ((Huang, 2018); (Alonso et al., 2007);
(Strötgen, 2015)).
We distinguish on the one hand temporally explicit
questions, in which the temporal expression unam-
biguously and explicitly refers to a certain point in
time in a way that is context-independent, e.g. ‘25th
of December 2023’. Other questions refer to a time
point in a more implicit way, thus requiring additional
knowledge to resolve the temporal expression, such as
for ‘Christmas 2023’, ‘yesterday’ and ’Tom’s Birth-
day’. The category of temporally implicit questions
can be further subdivided into four subcategories: i)
questions requiring common sense knowledge, ii) ref-
erential relative to speech time, iii) referential rela-
tive to an arbitrary time point, and iv) referring to
personal knowledge. Questions requiring common
sense knowledge involve expressions such as ‘Christ-
mas 2023’ that can be resolved to a particular date
using common sense knowledge, e.g. that Christmas
is on the 25th of December of each year. Temporal
questions that are referential relative to speech time
require interpreting a certain temporal expression rel-
ative to the point in time in which the question is spo-
ken or written. Such questions contain temporal ex-
pressions such as ‘today’, ‘yesterday’, ‘two days ago’,
etc. Temporal questions that are referential relative to
an arbitrary time point involve expressions such as
‘two days before Christmas 2022’ that need to be re-
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solved in relation to some other event. Finally, there
are temporal questions requiring personal or private
knowledge such as in the question: ‘Who watched TV
on Tom’s birthday?’. In our benchmark, we consider
two types of questions, explicit and implicit questions
of subtype referential relative to speech time.

2.2 Benchmarks for Temporal
Questions

Several benchmarks for temporal question answering
(QA) have been proposed so far. TempQuestions (Jia
et al., 2018) and TimeQuestions (Jia et al., 2021) are
two related datasets comprising 12k and 16k ques-
tions, respectively. The questions pertain to histori-
cal events such as Obama’s presidency and Brad Pitt’s
2001 award. Event knowledge is stored in a Knowl-
edge Graph (KG), so that answers are retrieved by
mapping questions to a KG query.

The Test of Time (ToT) Benchmark (Fatemi et al.,
2024) is designed to evaluate two fundamental aspects
of temporal cognition independently: ToT Semantic
assesses comprehension of temporal semantics and
logic without dependence on prior knowledge, while
ToT Arithmetic evaluates the ability to perform calcu-
lations involving time points and durations. Two QA
sets (Date Understanding and Temporal Sequences)
in the ’Beyond the Imitation Game Benchmark’ (Sri-
vastava and et al., 2023) rely on textually encoded
contexts on the basis of which to answer questions.
However, these benchmarks are not suited for our re-
search questions. Date Understanding, Temporal Se-
quences and ToT do not allow to benchmark models
with respect to their ability to consider longer sets of
events with different participants as we do.

Another notable benchmark with over 100 mil-
lion question answer pairs that addresses questions
about historical events is COMPLEXTEMPQA (Gru-
ber et al., 2024). This benchmarks similarly fails
to evaluate LLMs on their performance with increas-
ingly length of event sets.

2.3 Large Language Models for
Reasoning

Large Language Models have been successfully ap-
plied to multiple reasoning tasks (see (Huang and
Chang, 2023) for a recent overview). Examples
of these tasks include symbolic manipulation, such
as concatenating the last letter of words (Last Let-
ter Concatenation (1), mathematical reasoning, and

1https://huggingface.co/datasets/ChilleD/
LastLetterConcat

arithmetic tasks like algebraic problems (AQuA,
(Ling et al., 2017)), Math World Problems (MWP),
(SVAMP (Patel et al., 2021)), or Graduate School
Math Word Problems (GSM8K, (Cobbe et al., 2021)).
In general, the performance on reasoning tasks seems
to increase with the size of the model ((Wei et al.,
2022), (Saparov and He, 2023)). It has further been
shown that Chain-of-Thought prompting enhances
LLMs performance ((Suzgun et al., 2022)). So far,
however, LLMs have not been evaluated on the task of
resolving temporal references in the context of longer
event sets, a gap we close in this paper.

On the other hand, LLMs struggle with reason-
ing tasks that more closely resemble real-world sit-
uations, such as commonsense planning domains
((Valmeekam et al., 2023), (Joublin et al., 2023)).
(Parmar et al., 2024) also demonstrate that LLMs of-
ten overlook contextual information when engaged in
logical reasoning over natural Language text. Accord-
ing to (Saparov and He, 2023), while LLMs are capa-
ble of handling reasoning tasks that involve single de-
ductive steps, they encounter difficulties when deal-
ing with tasks that require multiple deductive steps.
Thus, it is an interesting research question to examine
the ability of LLMs to resolve explicit and implicit
temporal expression in settings where multiple events
take place and several steps might be involved in an-
swering a temporal question involving such a refer-
ence.

3 METHODS

In this section, we describe the methodology for con-
structing the dataset consisting of event sets of vary-
ing length (Section 3.1) with corresponding questions
(Section 3.2). In addition, we describe the prompting
strategies we use for the LLMs (Section 3.3).

3.1 Generation of Synthetic Event Sets

We generate event sets automatically by randomly
sampling from a set of action predicates, agents which
can carry out the action, objects on which the action
is carried out and the location of the event. For this,
we consider events that might typically take place in
a home environment. Events are described in terms of
five variables (with their potential fillers in brackets):
i) Action (Watch, Eat, Read, Dance, Store, Drink,
Chat) ii) Object (Film, Risotto, Book, Salsa, Wine
Bootle, Juice, Friend), iii) Agent (Mary, Tom, Ria),
iv) Location (Living Room, Kitchen), and v) Times-
tamp. Timestamps are provided as a Unix timestamp
ranging from 2023-01-01 to 2023-09-29.
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For instance, our procedure would generate events
such as the following:

• Action:watch, Object:film, Location:living room,
Subject:mary, Timestamp:1695948843

• Action:eat, Object:risotto, Location:kitchen, Sub-
ject:tom, Timestamp:1695852168

• ...
We randomly generate event sets, with a length of

5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. Given
the many possibilities and timestamps in particular,
the probability of generating the same event twice is
negligible.

Table 1: Temporal Expressions for the 2 categories of tem-
poral questions. yyyy is the year with four digits, mm the
month of the year with two digits, and dd the day of the
month with two digits.

Question Category Temporal Expression

Temporally
Explicit

on yyyy-mm-dd
in yyyy-mm
in the year yyyy

Referential relative
to speech time

today
yesterday
this year
this month
last month

3.2 Question Generation

For each event set, we automatically generate a set of
questions together with a ground truth answer that is
computed on the basis of a symbolic representation of
the event sets. In order to generate questions, we rely
on the question templates shown in Table 2. As an
example, we would generate questions such as: Who
washed a mug in the kitchen today?

For each event instance in a generated event set,
we instantiate each of the 4 question templates in
Table 2 with each of the temporal expression in Ta-
ble 1, whereby the fourth pattern (‘When was the last
time...?´) is instantiated only for the category referen-
tial relative to speech time without a temporal expres-
sion. This yields 25 questions for each event instance
(8∗3+1 = 25).

Given the event instance: Action:wash, Ob-
ject:mug, Location:kitchen, Subject:tom, Times-
tamp:1695852168, we would generate 25 questions
for all possible choices of temporal expressions, gen-
erating questions such as:

• Who washed a mug in the kitchen on 2023-08-16?
• When was the last time Tom washed a mug in the

kitchen?
• Did Tom wash a mug in the kitchen yesterday?

Overall, we generate 100 questions for each length

Today is the 2023-09-29 22:18. I will give you a list in-
dicating events and when they have taken place (event
set): {Action: watch, Object: film, Location: liv-
ing room, Subject: Mary, Date: 2023-09-29 08:01},
{Action: eat, Object: risotto, Location: kitchen, Sub-
ject: Tom, Date: 2023-09-28 14:27}, {Action: read,
Object: book, Location: living room, Subject: Ria,
Date: 2023-06-11 12:44}, {Action: dance, Object:
lively salsa, Location: kitchen, Subject: Mary, Date:
2023-08-11 10:57}, {Action: store, Object: wine bot-
tle, Location: living room, Subject: Tom, Date: 2023-
09-01 20:44}. Who watched a film in the living room
on 2023-09-29? Answer with the the name of the sub-
ject or say ’nobody’.

Figure 1: Exemplary zero-shot prompt for an event set
length of 5 events.

of event set and question category. This makes 100∗
2∗11 = 2200 questions in total.

3.3 Prompting Strategies

As baseline prompting strategy, we rely on a zero-
shot prompt, where we only define the expected an-
swer of the LLM corresponding to the question tem-
plates from Table 2. The basic prompt is given in Fig-
ure 1. Hereby, we experimentally vary the granularity
in which the temporal information is presented. We
distinguish two granularities: Date-Only and Date-
Extended. In the first case, Date-Only, the date and
its corresponding hour and minute is provided. In the
second case, Date-Extended, the date, corresponding
weekday and calendar week are included, as in the
following example

Date: 2023-08-11 10:57, Weekday: Friday, Cal-
endar Week: 32

Beyond varying the date granularity, we vary the
way in which the events and their dates are presented.
In the Json condition (see example in Figure 1), the
event is encoded in JSON format. In the Language
condition, the event and its corresponding date gran-
ularity is transformed into a natural Language sen-
tence. For Date-Only, this would look as follows:

On September 29, 2023 at 08:01, Mary watched a
film in the living room.

Beyond relying on a zero-shot prompting ap-
proach as proposed above, we also experiment with
an advanced prompting strategy relying on Chain of
Thought (CoT). We distinguish two different strate-
gies: CoT Review, and CoT Step-by-Step reasoning.
In the CoT Review case, the model receives instruc-
tions on how to approach the task. For a ”Who...?”
question this would be like this:

Review each event out of the event history sequen-
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Table 2: Templates for the Questions of the QA Set.

Template Return Type
Who <action><object><location><ref date>? String - Persons Name(s)
Did <subject><action><object><location><ref date>? Bool
How often did <subject><action><object>location><ref date>? Integer
When was the last time <subject><action><object><location>? Date

tially. If the action, object, location and date of an
event match the information in the question, record
the subject of that event. At the end return the sub-
jects of all matching events.

In the CoT Step-by-Step reasoning condition, we
extend the CoT Review prompt by the sentence ‘Let’s
think step by step.’

4 EXPERIMENTS

4.1 Experimental Plan

We consider state-of-the-art LLMs, selecting the
following models: Gemma-7b-it (Team et al., 2024),
Llama3-8B-Instruct, Llama3-70B-Instruct
(Lla, 2024) and GPT-4-0125 (OpenAI, 2023). We
proceed as follows: we first carry out experiments
with all possible different prompting strategies and
event set lengths of 5 and 50 for GPT-4. On the
basis of this initial experiment, we identify the top
four best performing prompting strategies and test
these for all Language models and event set lengths
of between 5 and 50 events to determine the best
prompting strategy for all models. We then present
results showing how performance differs depending
on question type, question category and event set
length for the top performing prompting strategy.

4.2 Experimental Settings

The individual experiments are conducted on GPU
(Llama3, Gemma) and over API (GPT-4). We used the
Llama32 in the 8B and 70B instruction variant and
Gemma3 in the 7B instruction variant without further
fine-tuning from HuggingFace. We evaluate the per-
formance of the models using accuracy. For all mod-
els we use a temperature of 0 or corresponding set-
tings so that the responses are deterministic.

2https://huggingface.co/collections/meta-llama/
meta-llama-3-66214712577ca38149ebb2b6

3https://huggingface.co/google/gemma-7b-it

Review each event out of the event history sequentially.
If the action, object, location and date of an event match
the information in the question, record the subject of
that event. At the end return the subjects of all matched
events. Today’s date is September 29, 2023, and the
time is 22:18. I have a list of events (event set) that have
occurred in the past, including who did what, where
and when: On September 29, 2023 at 08:01, Mary
watched a film in the living room. On September 28,
2023 at 14:27, Tom ate a risotto in the kitchen. On June
11, 2023 at 12:44, Ria read a book in the living room.
On August 11, 2023 at 10:57, Mary danced a lively
salsa in the kitchen. On September 01, 2023 at 20:44,
Tom stored a wine bottle in the living room. Now, I
want to know: Who watched a film in the living room
on September 29, 2023?

Figure 2: Exemplary final prompt for an event set length of
5 events.

4.3 Results

We report our results by analysing first the impact of
all possible prompting strategies for GPT-4 in Sec-
tion 4.3.1. In the following Section 4.3.2 we fur-
ther present the results of all models for the four best
performing prompting strategies identified in Sec-
tion 4.3.1. Then we present the difference in perfor-
mance of the benchmarked LLMs depending on ques-
tion type in Section 4.3.3. Finally, we investigate the
relation between length of the event set and perfor-
mance in Section 4.3.4.

4.3.1 Prompting Strategies

Given the variability of our prompting strategies (3
Prompt types: zero-shot, CoT Review, CoT Step-
by-Step; 2 date representations: Date-Only, Date-
extended; 2 event presentations: Json, Language), we
have 12 possible prompt types that we evaluate us-
ing GPT-4 and event set lengths of 5 and 50 events.
The accuracy scores for the different configurations
are given in Table 3. We observe that for all prompt-
ing strategies, performance is higher for 5 compared
to 50 events. Generally, the impact of CoT seems to
be positive as results are generally better compared to
the baseline Zero-Shot prompt. Extended date encod-
ing (Date-extended) does not seem to have any pos-
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itive impact beyond the simple date encoding (Date-
Only). The top performing prompting strategies rely
on CoT prompting and Date-only date in combination
with either of the two event presentation approaches.

4.3.2 Model Impact

Table 4 shows the accuracy for the 4 best prompt-
ing strategies for all models with respect to event sets
of 5 and 50 events. We see that the models with
the most parameters (GPT-4, Llama3-70B) have the
top performance with accuracies between 83%-84%
(GPT-4) and 84%-90% (Llama3-70B) across the dif-
ferent configurations. Llama3-70B seems thus to be
slightly ahead of GPT-4. The other models (Gemma,
Llama3-8B) have lower results of between 63%-86%
(Gemma) and 68%-74% (Llama3-8B).

For our further experiments, we select the config-
uration with highest average performance across all
models: CoT Review, Date-Only, Language.

4.3.3 Type of Questions

Table 5 shows the results for the two question cate-
gories Temporally Explicit and Referential relative to
speech time as well as the different question templates
from Table 2.

Impact of Degree of Explicitness. The perfor-
mance across models for temporally explicit ques-
tions ranges between 75% (Llama3-8B) and 92%
(Llama3-70B). We observe a significant performance
drop when considering questions with expressions
that need to be resolved with respect to speech
time. Here results range between 34% (Gemma) and
74% (Llama3-70B). The performance is reduced by
around 17%-50% when shifting from explicit to im-
plicit temporal references.

Results by Template Type. Regarding the perfor-
mance by template type, we see that the investigated
models have the best performance on questions fol-
lowing the template Did ...? with accuracies rang-
ing between 78% (Gemma) and 92% (GPT-4). The
question template with the worst performance is the
When was the last time ...? template, yielding results
of 34% for Gemma, 53% for Llama3-8B and 66% for
Llama3-70B. GPT-4 has the lowest accuracy for Who
...? with 59%.

4.3.4 Set Length

The results for the two question categories Referen-
tial relative to speech time and Temporally Explicit
for different event set lengths (5, 10, 20, 30, 40, 50 ,

60, 70, 80, 90, 100) are shown in Figures 3 and 4, re-
spectively. From these plots we see that performance
of the models decreases substantially with increasing
set length. For the Temporally explicit question cat-
egory, the decrease from 5 to 100 events ranges be-
tween 18% (Gemma) and 10% (Llama3-70B). Over-
all. the performance decreases by between 1,0%
(Llama3-70B) and 3,6% (Llama3-8B) at each step.

For the Referential relative to speech time, the
performance decreases are even more pronounced,
ranging between 39% (GPT-4 and Llama3-8B) and
29% (Llama3-70B). The performance decreases step-
wise by between 2,9% (Llama3-70B) and 4,9%
(Llama3-8B) from 5 to 100 events considered.

Figure 3: Accuracy for the Temporally Explicit question
category depending on set length.

Figure 4: Accuracy for the Referential relative to speech
time question category depending on set length.

5 DISCUSSION

Our results clearly corroborate our two hypotheses.
Regarding H1, our results show that the average per-
formance of all models is 26% lower for questions
involving implicit temporal references compared to
questions with explicit dates. This shows that it is a
challenge for LLMs to interpret temporal expressions
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Table 3: Accuracy of all possible prompts for GPT-4-0.125 averaged for the two question categories Temporally Explicit and
Referential relative to speech time over event set lengths of 5 and 50 events. The last column is the average of the accuracy
for 5 and 50 Events. The 4 highest results are marked in bold.

Prompting
Strategy

Date
Information

Event
Presentation

Events Average5 50
Zero-Shot Date-Only Json .97 .67 .82
Zero-Shot Date-Only Language .96 .67 .82
Zero-Shot Date-Extended Json .97 .64 .81
Zero-Shot Date-Extended Language .96 .68 .82
CoT Review Date-Only Json .97 .71 .84
CoT Review Date-Only Language .94 .71 .83
CoT Review Date-Extended Json .95 .68 .82
CoT Review Date-Extended Language .93 .71 .82
CoT Step-by-Step Date-Only Json .94 .71 .83
CoT Step-by-Step Date-Only Language .95 .71 .83
CoT Step-by-Step Date-Extended Json .94 .66 .80
CoT Step-by-Step Date-Extended Language .94 .70 .82

Table 4: Accuracy of the 4 best performing prompt configurations for GPT-4-0.125 on all evaluated LLMs averaged over
event set lengths of 5 and 50 events for both question categories. The highest result for each model and the highest average
result is marked in bold.

Prompting
Strategy

Date
Information

Event
Presentation

Gemma
-7b-it

Llama3
-8B-Instr.

Llama3
-70B-Instr.

GPT-4
-0125

Ave-
rage

CoT Review Date-Only Json .68 .68 .86 .84 .76
CoT Review Date-Only Language .68 .74 .88 .83 .78
CoT Step-by-Step Date-Only Json .63 .69 .84 .83 .75
CoT Step-by-Step Date-Only Language .65 .72 .90 .83 .77

beyond explicit dates. Given that in the case of tem-
porally explicit expressions the dates in the questions
match exactly a date in the event history, there might
be sufficient cues for the LLMs to perform well on
this.

Regarding H2, our results clearly convey a trend,
i.e. that performance deteriorates with increasing
length of event history. This is understandable, as
LLMs do not have an explicit memory and can not
’store’ events for later random access. The perfor-
mance decrease varies from model to model, with
the most pronounced drop of 39% being observed for
GPT-4 and Llama3-8B between the sets of 5 and 100
events and the question category Referential relative
to speech time.

Considering the different prompting strategies,
even if the performances only vary by up to 6%, we
can clearly see that using CoT always leads to better
performances. This has also been shown in other stud-
ies ((Wei et al., 2023), (Suzgun et al., 2022)). Repre-
senting the date information in the Date-Only format
is always better than Date-Extended. This may be
because we do not ask questions about information
in the Date-Extended format, such as questions about
the day of the week. Then the extended format would

just make the final prompt longer. Presenting events
in natural language outperforms the presentation by
way of JSON. This is likely due to the fact that mod-
els have been mainly trained with language as input
and might have seen JSON structures more rarely.

Considering the different question templates, it is
interesting to observe that the best performance across
models is reached for the question following the tem-
plate Did...?. The reason for this high performance
is likely due to the fact that a binary yes/no answer
is required and chances of getting it right are a priori
high.

The performance on the other question templates
(How often did...? and Who...?) are around 20%
worse than Did...?. Answering questions of type
Who...? requires extracting a list of agents that partic-
ipated in an event instance of the given type in the pe-
riod selected. This seems to be a challenging task for
all models. The questions of type How often did...?
require deeper reasoning ability to identify all events
that meet the criteria and counting them. The bench-
marked models do not seem to be capable of such an
advanced reasoning. Performance on questions When
was the last time...? are the worst for all models ex-
cept GPT-4.
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Table 5: Accuracy for the different question template types averaged over all evaluated event set lengths. The right column is
the average of all models. The highest results of each model for each question category and question template are marked in
bold.

Gemma
-7b-it

Llama3-8B
-Instruct

Llama3-70B
-Instruct

GPT-4
-0125

Ave-
rage

Question
Categories

Temporally Explicit .84 .75 .92 .84 .84
Referential relative
to speech time .34 .58 .74 .64 .58

Question
Templates

Who ...? .58 .58 .83 .59 .65
Did ...? .78 .80 .90 .92 .85
How often did ...? .44 .63 .78 .70 .64
When was the last time ...? .34 .53 .66 .75 .57

Our results clearly show that size matters in that
the two models with the largest parameters also per-
form best on the task. Interestingly Llama3-70B per-
forms slightly better than GPT-4 in spite of having less
parameters than GPT-4, that is 70 Bn. vs. 1760 Bn.
This could be an indication that model size is only
important up to a certain extent. Further research is
needed to find out which factors make Llama3-70B
so successful.

6 CONCLUSION & FUTURE
WORK

We have analysed the ability of Large Language Mod-
els to reason about event sets, proposing a benchmark
that relies on a question answering proxy task. Our
focus has been on analyzing the performance of four
state-of-the-art language models on the task depend-
ing on the size of the event sets and the explicitness
of temporal references included in the questions. The
two hypotheses have been validated on the basis of
our results. While LLMs can answer questions con-
taining explicit temporal expression with high accu-
racy, they struggle when the temporal expressions be-
come more implicit. Further, the performance deteri-
orates significantly with the size and length of event
sets to consider.

Future work could investigate how such models
can be extended with some explicit memory to store
events and access them explicitly. A further line of
work might explore how such models can be endowed
with explicit temporal reasoning abilities by extend-
ing them with logical temporal theories, e.g. by func-
tion calls such as supported by some recent LLMs.
One relevant work in this context is by (Xiong et al.,
2024), where they generated a temporal graph from a
prompt containing historical events and a correspond-
ing question to incorporate explicit memory. They
then applied Chain-of-Thought reasoning on this tem-

poral graph to improve the temporal reasoning capa-
bilities of LLMs.
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