
Searching for Idealized Prototype Learning for Interpreting
Multi-Layered Neural Networks

Ryotaro Kamimura
Tokai University, Kitanakame, Hiratsuka, Kanagawa, 259-1292, Kanagawa, Japan

Keywords: Prototype Learning, Non-Prototype Learning, Activation Function, Potentiality, Ratio Potentiality, Entropy,
Divergence, Interpretation.

Abstract: The present paper aims to show that neural learning consists of two fundamental phases: prototype and non-
prototype learning in an ideal state. The prototype refers to a network with the simplest configuration, ideally
determined without the influence of inputs. However, in actual learning, prototype and non-prototype learning
are mixed and entangled. To demonstrate the existence of these two phases in an ideal state, it is necessary
to explicitly distinguish between networks that are exclusively focused on acquiring the prototype and those
that target non-prototype properties. We use different activation functions, combined serially, to represent
the prototype and non-prototype learning phases. By combining multiple different activation functions, it is
possible to create networks that exhibit both prototype and non-prototype properties in an almost ideal state.
This method was applied to a business dataset that required improved generalization as well as interpretation.
The experimental results confirmed that the ReLU activation function could identify the prototype with diffi-
culty, while the hyperbolic tangent function could more easily detect the prototype. By combining these two
activation functions within one framework, generalization performance could be improved while maintaining
representations that are as close as possible to those obtained during prototype learning, thus facilitating easier
interpretation.

1 INTRODUCTION

1.1 Idealized Prototype Learning

The concept of prototype learning has received sig-
nificant attention over the years (Saralajew et al.,
2018). If an informative exemplar, or prototype, can
be identified, learning in neural networks becomes
much more efficient, enabling faster training and eval-
uation. This could address the problem of massive
data requirements for training multi-layered neural
networks. Furthermore, prototypes offer greater inter-
pretability, which is crucial, given the black-box na-
ture of neural networks, especially as these networks
become larger and more complex.

As mentioned above, conventional methods have
typically focused on prototypes as representative ex-
amples of input data sets. In contrast, the proto-
type discussed in this paper is intended to serve as
the foundation for constructing basic neural networks,
from which actual multi-layered neural networks can
be derived. For instance, we can imagine a prototype
that is self-organized, utilizing network resources as

minimally as possible. This prototype should be
extracted or constructed at the beginning of learn-
ing, followed by ordinary, non-prototype learning to
achieve faithful representations of the inputs.

To explain the prototype more concretely in the
context of neural networks as discussed in this paper,
we assume that any multi-layered neural network can
be generated from a corresponding prototype, hidden
within the network. This prototype is a network with-
out hidden layers, where all components, such as neu-
rons and weights, are connected independently and
separately. It is important to note that this proto-
type is not intended to faithfully represent the inputs
but rather to represent the given network resources as
minimally as possible.

However, the distinction between prototype and
non-prototype learning is not always clear in ac-
tual learning processes. In practice, these two types
of learning are often intertwined, making it difficult
to distinguish between them. To address this, we
first attempt to differentiate between networks dedi-
cated to prototype learning and those focused on non-
prototype learning. Subsequently, we aim to combine

Kamimura, R.
Searching for Idealized Prototype Learning for Interpreting Multi-Layered Neural Networks.
DOI: 10.5220/0013047600003837
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Computational Intelligence (IJCCI 2024), pages 475-487
ISBN: 978-989-758-721-4; ISSN: 2184-3236
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

475

these networks within a single framework to achieve
and examine the ideal learning process that incorpo-
rates both prototype and non-prototype learning.

Then, we need to identify a network where the
prototype is easily recognizable and another where
the prototype is not as easily identified. There are
various ways to create different configurations, and
in this context, we propose using multiple activation
functions within a single framework to realize differ-
ent properties. If our hypothesis of prototype and
non-prototype learning holds true, one of the major
challenges in selecting appropriate activation func-
tions lies in the pursuit of finding the best possible
function or an idealized activation function that works
across all scenarios, including both prototype and
non-prototype learning (Ramachandran et al., 2017).
Given that the properties of these two phases are
likely to be strongly interwoven, it may be impossi-
ble to find a single appropriate activation function for
all situations.

In this paper, we attempt to generate networks
with different properties to enhance interpretation and
generalization by using different activation functions.
We then combine these activation functions to pro-
duce an idealized prototype for network configura-
tion. The primary objective of this paper is to examine
how the combination of different activation functions
can influence the performance of the corresponding
network, based on the assumption that every learning
process comprises both prototype learning and non-
prototype learning.

1.2 Main Contributions

The main contributions of this paper can be summa-
rized as follows.

• This paper shows that a prototype exists behind
complex multi-layered neural networks. The pro-
totype is assumed to be a network without hidden
layers, with components that are independently
and separately connected. Consequently, the
learning process of neural networks should con-
sist of both prototype and non-prototype learning.
Prototype learning aims to identify the simplest
possible network, while non-prototype learning
focuses on processing detailed information in the
inputs.

• Because pure prototype and non-prototype learn-
ing cannot be easily achieved, we attempt to pro-
duce networks that are relatively better at detect-
ing the prototype, and others that are not as profi-
cient at doing so. To create these different net-
works, we introduce a method to vary the acti-
vation function and attempt to incorporate mul-

tiple activation functions within one framework.
We aim to demonstrate the effectiveness of this
method in improving generalization while main-
taining network configurations as close as possi-
ble to their simplest form. This can enhance inter-
pretability, which is the main objective of proto-
type learning.

1.3 Paper Organization

In Section 2, we present some related studies on the
activation function, few-shot learning, and U-shaped
learning, emphasizing the differences between our
method and conventional methods. In Section 3, we
show multiple activation functions, combining the
tangent and ReLU activation functions, correspond-
ing to prototype and non-prototype learning. In par-
ticular, we explain why prototype and non-prototype
learning correspond to the tangent and ReLU func-
tions. Then, after briefly explaining the difference be-
tween prototype and non-prototype learning, the po-
tentiality is introduced, based on the absolute values
of connection weights. For comparing the prototype
and compressed networks, we introduce the ratio po-
tentiality of the compressed to the supposed prototype
network. In Section 4, we present results using a sim-
ple business dataset. The results confirmed that the
combination of tangent and ReLU functions could de-
tect higher ratio potentiality in prototype learning and
higher generalization in non-prototype learning.

2 RELATED WORK

We explain three main related works: activation
functions, few-shot learning, and U-shaped learning
briefly.

First, the activation function plays an important
role in creating prototype learning. According to
our hypothesis, prototype learning aims to extract
the prototype for network configurations, while non-
prototype learning focuses on processing detailed in-
formation from inputs and their relations to out-
puts. Therefore, it is natural that the activation func-
tion should change depending on the learning objec-
tive. There are numerous activation functions that
address computational issues such as vanishing gra-
dients, computational load, and sparsity (Ramachan-
dran et al., 2017; Nwankpa et al., 2018; Jagtap and
Karniadakis, 2023; Emanuel et al., 2024). Addition-
ally, activation functions have become adaptive with
parameters, and ensemble and combined activation
functions have been found to perform well (Sütfeld
et al., 2020; Apicella et al., 2021; Jagtap and Karni-

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

476

adakis, 2023).
Our method of idealized prototype learning is

based on the combination of different activation func-
tions. At present, the activation functions are fixed-
type, but if trainable activation functions could be
used (Sütfeld et al., 2020), the method might ap-
proach idealized prototype learning. However, one
of the major differences is that, unlike most con-
ventional methods aimed at improving generalization,
our method seeks to interpret the inner workings of
neural networks by positing the existence of a proto-
type, which should exist for all neural networks. The
prototype is not obtained by training neural networks
but is assumed to exist behind any multi-layered neu-
ral network.

Second, the prototype learning proposed here dif-
fers from conventional methods. Prototype learn-
ing has received considerable attention recently, as
complex datasets require equally complex neural net-
works for learning. If many inputs are classified un-
der one prototype, learning can be significantly eas-
ier (Kim et al., 2019; Song et al., 2023). Addition-
ally, in so-called “zero-shot” learning (Chao et al.,
2016; Pourpanah et al., 2022), the concept of a pro-
totype becomes more abstract, eventually leading to
no actual prototypes being used. Instead, semantic
features are introduced to relate seen and unseen in-
puts. Although the concept becomes more abstract to
improve generalization, these methods still focus on
input properties. The prototype in this paper becomes
increasingly abstract, minimizing or even excluding
semantic information about inputs as much as pos-
sible. The prototype is not for coming inputs but is
solely for the network configuration itself. Within the
given network resources, neural networks attempt to
self-organize as simply and economically as possible.
Only after this prototype learning process should ac-
tual non-prototype learning begin. This suggests the
possibility of extending the concept of a prototype to
different areas.

Third, prototype learning can be viewed as an ex-
tended version of the well-known U-shaped learning.
Prototype learning is strongly related to U-shaped
learning, particularly in the context of language ac-
quisition problems (Westermann, 2022). This prob-
lem was initially associated with the attempt to unify
regular and irregular forms in natural language us-
ing neural networks or connectionist models (Rumel-
hart and McClelland, 1986; Pinker and Prince, 1988;
Kirov and Cotterell, 2018; Corkery et al., 2019). Chil-
dren initially use language rules correctly, then en-
ter a period of overgeneralization, where irregular
verbs are treated as regular ones. Eventually, they
learn to use both regular and irregular forms correctly.

U-shaped learning has been actively discussed not
only in cognitive development but also in many other
fields, particularly in computational learning (Car-
lucci and Case, 2013; Case and Kötzing, 2016; Vier-
ing and Loog, 2022).

In our framework, the phase of overgeneraliza-
tion corresponds to the phase of prototype learning.
Children do not initially try to extract abstract rules
of language but rather explore the permissible con-
ditions within given physical and mental constraints.
Within these constraints, they then attempt to simplify
and clarify these physical and mental components as
much as possible. We can say that rule acquisition
in language learning occurs during the phase of non-
prototype learning, which corresponds to the final
phase of learning. This may explain why U-shaped
learning is observed in so many different fields.

3 THEORY AND
COMPUTATIONAL METHODS

3.1 Prototype and Non-Prototype
Learning

The idealized prototype learning is illustrated in Fig-
ure 1(a), where, at the beginning, a network attempts
to acquire its prototype, which is the minimal possible
network configuration. After completing this proto-
type learning, non-prototype learning begins, aiming
to acquire as much detailed information about the in-
puts as possible. However, in actual situations, proto-
type learning is mixed or entangled with correspond-
ing non-prototype learning, making it sometimes im-
possible to separate them, as shown in Figure 1(b).
It is important to note that even in this entangled and
mixed case, prototype learning is assumed to exist at
the deepest level of learning. When it is almost im-
possible to extract the prototype, we attempt to train
several networks independently to search for candi-
date networks for prototype or non-prototype learn-
ing, as depicted in Figure 1(c). Finally, these indepen-
dently trained networks are serially arranged to esti-
mate the ideal prototype learning, as shown in Figure
1(d).

3.2 Multiple Activation Functions

We use different activation functions for different
learning schemes within one framework (Sütfeld
et al., 2020). Let us compute the input u jk to the neu-
ron from the nth layer to the n + 1th layer, labeled
(n, n+1), using an idealized activation function. In an
ideal state, it is assumed that two distinct activation

Searching for Idealized Prototype Learning for Interpreting Multi-Layered Neural Networks

477

functions are used for the two types of learning:

v(n,n+1)
jk = α Proto(u(n,n+1)

jk)+(1−α) NProto(u(n,n+1)
jk),

(1)
where “Proto” and “NProto” represent the activation
functions for the prototype and non-prototype learn-
ing, respectively, and the parameter α is set to one for
prototype learning and zero for non-prototype learn-
ing.

This idealized prototype learning cannot be easily
realized because it is impossible to know which acti-
vation function is appropriate for the specific learning
phase. Therefore, as shown in Figure 1(c), we inde-
pendently train different networks with different ac-
tivation functions, searching for the appropriate ones
for the specific learning phase. For example, in the
experiments below, it is experimentally shown that
the hyperbolic tangent function can clearly extract the
prototype, while the ReLU activation function can-
not extract the prototype as effectively. However, this
may be specific to our experiments. We then combine
two conventional activation functions as follows:

v(n,n+1)
jk =α Tanh(u(n,n+1)

jk)+(1−α)ReLU(u(n,n+1)
jk). (2)

In the actual learning process, as shown in Figure
1(d), the hyperbolic tangent function is used at the be-
ginning, followed by the ReLU activation function in
subsequent steps. In the actual learning, for the first
fixed number of learning steps, α is set to one, mean-
ing the hyperbolic tangent function is used initially.

Prototype learning

Prototype learning

Prototype learning

Prototype learning

Non-prototype learning

Non-prototype learning

Non-prototype learning

Non-prototype learning

(a) Idealized prototype learning

(b) Mixed prototype learning

(c) Independent training

(d) Estimated idealized prototype training

Figure 1: Concept of idealized prototype learning and its
actualization learning.

Afterward, the parameter is set to zero, meaning the
ReLU activation function is used for the remaining
learning steps.

Compression

Estimated

Supposed

Estimated

prototype

prototype

prototype

Prototype learning (tangent)

Non-prototype learning (ReLU)

Compression

Correlation coefficient

(1) i
(2) j (3) k (4) l

(1) i
(2) j (3) k (4) l

(5) m

(5) m

(6)

(6)

(1)

(1)

(1)

(2)

(2)

(2)

Figure 2: Concept of supposed and estimated prototype
with prototype and non-prototype learning.

3.3 Prototype Network

We here show how to compute the prototype and mea-
sure the similarity between the estimated and sup-
posed prototypes. Figure 2 illustrates the concept
of the actual prototype and the supposed prototype.
The supposed prototype is composed of connection
weights, calculated as the normalized correlation co-
efficients between inputs and outputs. This weight
configuration does not aim to faithfully represent the
relationships between inputs and outputs but rather to
represent those relationships as minimally as possible.

The actual prototype can be obtained by com-
pressing the original network. In the figure, a multi-
layered neural network with a hyperbolic tangent acti-
vation function is trained and compressed into an esti-
mated prototype. In the later stage of learning, we use
the ReLU activation function. The multi-layered neu-
ral network with the ReLU activation function is then
compressed into another prototype. These estimated
prototypes are compared with the supposed one.

In evaluating the learning processes, we use po-
tentiality and ratio potentiality. Potentiality represents
the degree of organization of connection weights and
is akin to conventional entropy, while ratio poten-
tiality measures the similarity between estimated and
supposed prototypes. Specifically, ratio potentiality
aims to identify which input is more important than
others in terms of the strength of connection weights.
Thus, it is not necessary to estimate the similarity
of actual connection weights, but rather the similar-
ity of individual potentiality. For the computation
of entropy, divergence, and compression from multi-
layered neural networks to the prototypes, see Ap-
pendix.

The potentiality of a neural network is based on

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

478

the strength of connection weights. This simplifi-
cation helps clarify the properties of the prototype.
Here, we show how to compute potentiality only for a
prototype network configuration, i.e., a network with-
out hidden layers, as shown in Figure 2. The individ-
ual potentiality or absolute connection weight for the
estimated prototype is given by:

ui =| wi |, (3)

where w denotes the connection weights from the ith
neuron to the output neuron. For simplicity, we as-
sume that all individual potentialities are greater than
zero. Then, the relative individual potentiality is com-
puted for the estimated and compressed prototype, la-
beled (1,6):

g(1,6)i =
u(1,6)i

maxi′ u
(1,6)
i′

. (4)

Next, the potentiality is computed by summing all
individual ones:

G = ∑
i

g(1,6)i . (5)

The potentiality is bounded and can be normalized
for easier interpretation in the explanation of experi-
mental results. Additionally, we compute the relative
individual potentiality for the supposed prototype:

z(1,2)i =
ci
(1,2)

maxi′ c
(1,2)
i′

, (6)

where c denotes the individual potentiality, namely
the correlation coefficients between inputs and the tar-
get in the training data set. We can also compute the
potentiality for the supposed prototype:

Z = ∑
i

z(1,2)i . (7)

The potentiality is similar to the entropy function,
and it is developed to simplify the computation of en-
tropy. As with entropy, when all the relative poten-
tialities are the same, the potentiality reaches its max-
imum. On the other hand, if only one potentiality is
larger than any of the others, the potentiality becomes
smaller.

In addition to this standard potentiality, we intro-
duce the ratio potentiality for comparison between the
estimated and supposed prototypes. The ratio of com-
pressed individual potentiality to supposed individual
potentiality can be computed by:

r(1,6)i =
g(1,6)i

z(1,2)i

. (8)

For this ratio ri, we compute the ratio potentiality:

R(1,6) = ∑
i

r(1,6)i

maxi′ r
(1,6)
i′

. (9)

When all the ratio potentialities are equal, the ra-
tio potentiality becomes larger. On the other hand, if
only one ratio potentiality is larger than the others, the
ratio potentiality becomes smaller. We should note
here that ratio potentiality is introduced primarily to
detect which input is more important than others in
terms of the corresponding potentialities. When used
as a measure of similarity, the corresponding connec-
tion weights should be carefully examined for actual
interpretation.

4 RESULTS AND DISCUSSION

4.1 Experimental Outline

The preliminary experiments used the bankruptcy
data (Shimizu, 2009). In this section, first, we ex-
plain the experimental results using the tangent and
ReLU activation functions separately. The results
confirmed that the tangent activation function could
more explicitly extract the prototype network than the
ReLU function. Then, by combining the tangent and
ReLU functions, we demonstrate how this combina-
tion could be used to improve generalization. Finally,
by examining individual connection weights as well
as the corresponding ratio potentialities, we show how
the combination of the two functions could extract
both prototype and non-prototype features.

The data was composed of 1,040 input patterns
and six input variables, augmented from the original
130 inputs. The data augmentation was only for sta-
bilizing our final results. Without this data augmen-
tation, we could achieve similar results with some
instability in the final outcomes. To facilitate easy
reproduction of these results, we used the Pytorch
neural network package with default parameter val-
ues, except for the activation function (hyperbolic tan-
gent and ReLU). These default parameters and stan-
dard activation functions were used to ensure that the
present results could be reproduced as easily as pos-
sible. Finally, all the values were averaged over ten
runs and normalized for easy interpretation.

Before delving into the details, we should summa-
rize the main results as follows:

• The networks with the tangent activation function
could clearly detect the prototype at the very be-
ginning of learning in Figure 3. On the other hand,

Searching for Idealized Prototype Learning for Interpreting Multi-Layered Neural Networks

479

Figure 3: The actual prototype with signed individual po-
tentialities (weights). The weights were actually normal-
ized correlation coefficients between inputs and targets in
the training data set.

the ReLU activation function detected the proto-
type less clearly than the tangent activation func-
tion. This can be explained by the loss of infor-
mation on negative weights that occurred during
learning with the ReLU activation function.

• By combining the tangent and ReLU activation
functions in one framework, generalization could
be improved to an almost maximum level. This
demonstrates the utility of combining prototype
learning with non-prototype learning, which is
ideally supposed to exist behind any learning in
neural networks. Though our method did not aim
to improve generalization, we reported better gen-
eralization results because many methods similar
to our present method in multiple activation learn-
ing strive hard to improve generalization perfor-
mance.

• Because the non-prototype learning of the ReLU
activation was naturally influenced by the proto-
type learning with the tangent activation function,
the final connection weights tended to be simi-
lar to those of the prototype obtained at the be-
ginning. This means that even though improved
generalization performance could be achieved by
considering detailed information of inputs in the
non-prototype learning with the ReLU activa-
tion function, the final internal representation was
based on the prototype, making interpretation
much easier.

4.2 Single and Independent Activation
Learning

We used two different activation functions to improve
generalization performance, namely, the hyperbolic
tangent and ReLU activation functions. The experi-
ment confirmed that the hyperbolic tangent function
showed better generalization performance. On the
other hand, the ReLU activation function produced
lower generalization performance. This is because the
potentiality decreased more rapidly than it did with
the hyperbolic tangent activation function. A decrease

in potentiality means that the number of effective con-
nection weights decreases.

Figure 4 shows the potentiality (left), divergence
(middle), and generalization accuracy (right) of net-
works with no hidden layers (a), with ten hidden
layers and the hyperbolic tangent activation func-
tion (b), and the ReLU activation function (c). As
shown in Figure 4(a), without hidden layers, the ac-
curacy (right) increased very gradually and could not
reach a high level of generalization. The potentiality
(left) and divergence (middle) increased and then de-
creased, indicating that connection weights were not
well-organized for improved generalization. When
the hyperbolic tangent activation function was used,
as shown in Figure 4(b), the potentiality decreased
slowly and consistently, while the divergence (mid-
dle) remained unchanged. Since the generalization
(right) showed higher values in the end, the decrease
in potentiality, corresponding to the organization of
connection weights, is one of the main reasons for
this improvement. Figure 4(c) shows the results of
using the ReLU activation function. The potential-
ity decreased more rapidly than with the hyperbolic
tangent activation function, indicating that connec-
tion weights were more organized than with the hy-
perbolic tangent activation. The divergence (middle)
decreased slightly but remained almost unchanged
throughout the entire learning process. The general-
ization accuracy (right) was slightly lower than that of
the hyperbolic tangent activation function.

The results show that the hyperbolic tangent ac-
tivation function could improve generalization better
than the ReLU activation function. This is due to
the more rapid decrease in potentiality and the corre-
spondingly overly organized connection weights pro-
duced by the ReLU function in terms of the number
of connection weights.

For the ratio potentiality, the hyperbolic tangent
function could detect it immediately at the beginning,
but the ReLU activation function failed to do so. Fig-
ure 5 shows the ratio (left), divergence (middle), and
correlation coefficients between estimated and sup-
posed prototypes (right). One of the main results is
that the ratio potentiality (left) of the hyperbolic tan-
gent activation function produced much higher values
at the very beginning, as shown in Figure 5(b). In fact,
the highest value was 0.841, close to the maximum
value, and it was achieved in only 73 steps, as shown
in Table 1. The correlation coefficient (right) also pro-
duced higher values at the beginning, but they were
not as explicit as the ratio potentiality. The divergence
(middle) did not show the lowest and optimal values
at the beginning. On the other hand, the networks
without hidden layers in Figure 5(a) and those with

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

480

(a)

(b)

(c)

Figure 4: Potentiality (left), entropy (middle) and general-
ization accuracy (right) as a function of the number of learn-
ing steps (epochs) by networks with no hidden layers (a), 10
hidden layers with the hyperbolic tangent function (b), with
the ReLU function (c).

the ReLU activation function in Figure 5(c) showed
higher values for the ratio potentiality and lower val-
ues for the divergence at the beginning, but they were
not as explicit as those produced by the hyperbolic
tangent activation function. The correlation coeffi-
cients (right) showed higher values at the beginning,
but they were less clear than those produced by the
hyperbolic tangent activation function. This means
that the hyperbolic tangent activation function with
multi-layered neural networks could clearly detect the
prototype in terms of ratio potentiality.

4.3 Prototype and Prototype Learning

By using multiple activations with the hyperbolic tan-
gent and ReLU activation functions, the properties of
the tangent activation function seemed to be preserved
during learning with the ReLU activation function.
This combination effect should result in better gen-
eralization and, in particular, easier interpretation.

Figure 6 shows the results of using multiple acti-
vations with the hyperbolic tangent and ReLU activa-
tion functions when the number of prototype learning
steps increased from 500 (a) to 1500 (c). The poten-
tiality on the left decreased naturally, similar to that
of the hyperbolic tangent function, as shown in Figure
6(b). However, the entropy remained unchanged and
was not effective in describing the learning and orga-
nization processes. The generalization performance
on the right shows a rapid increase when the activa-

(a)

(b)

0.841(73 steps)

(c)

Figure 5: Ratio potentiality (left), divergence (middle) and
correlation coefficient (right) as a function of the number of
learning steps (epochs) by networks with no hidden layers
(a), 10 hidden layers with the tangent hyperbolic function
(b), with the ReLU function (c).

tion function was switched to the ReLU function after
a sharp decline in generalization. In particular, when
the number of learning steps for the prototype learn-
ing with the tangent activation function was 1000, as
shown in Figure 6(b), the generalization accuracy was
close to the maximum value.

Figure 7 shows the ratio (left), divergence (mid-
dle), and correlation coefficients (right) when the
number of learning steps increased from 500 (a) to
1500 (c). Naturally, at the beginning, higher ratio po-
tentiality and correlation coefficient values were ob-
served due to the tangent activation function. When
the activation function was switched to the ReLU ac-
tivation function, the ratio and, less clearly, the cor-
relation coefficient became slightly higher, while the
divergence remained small. The ratio potentiality
tended to increase when the activation was switched
to the ReLU function. In particular, when the number
of learning steps for prototype learning was 500, as
shown in Figure 7(a), the increase in ratio potential-
ity was more explicitly observed. This is expected, as
the effect of higher ratio potentiality persisted at the
beginning of learning. The ratio potentiality clearly
detected the effect of prototype learning at the begin-
ning, while the divergence and correlation coefficient
detected this effect less clearly.

Searching for Idealized Prototype Learning for Interpreting Multi-Layered Neural Networks

481

(a)

(b)

(c)

Figure 6: Potentiality (left), entropy (middle) and gener-
alization accuracy (right) as a function of the number of
learning steps (epochs) by the multi-activation with 500 (d),
1000 (e) and 1500 (f) learning steps for the first learning
steps with the hyperbolic tangent and the remaining ones
with the ReLU function.

(a)

(b)

(c)

Figure 7: Ratio potentiality (left), divergence (middle) and
correlation coefficient (right) as a function of the number of
learning steps (epochs) by the multiple activations with 500
(d), 1000 (e) and 1500 (f) learning steps for the first learning
steps with the hyperbolic tangent and the remaining ones
with the ReLU function.

4.4 Individual Potentialities

The hyperbolic tangent activation function could de-
tect the prototype around the 100th learning step. At

(a) Signed potentiality

(b) Ratio potentiality

Figure 8: Signed ratio potentialities when the tangent fic-
tion was used with the best generalization in the single acti-
vation.

this point, input No.5 was detected as important in a
linear manner, while input No.1 was detected as im-
portant in a non-linear manner.

Figure 8(a) shows the signed individual potential-
ities or connection weights when the number of learn-
ing steps increased from 10 to 5000 using only the hy-
perbolic tangent activation function. As can be seen
in the figure, the potentialities became most similar
to the prototype shown in Figure 3 around the 100th
learning step, where input No.2 had the largest po-
tentiality. Gradually, input No.5 surpassed input No.2
in potentiality. Figure 8(b) shows the individual ra-
tio potentialities as the number of learning steps in-
creased from 10 to 5000. Over time, input No.5, as
well as input No. 1, became more significant than the
other inputs. Input No.5 had a higher correlation coef-
ficient in the prototype, while input No.1 had a lower
correlation coefficient. This indicates that the hyper-
bolic tangent activation function initially detected lin-
ear correlations most strongly, and later also identified
non-linear correlations for input No.1 as important.

The ReLU activation function produced outputs
based on inputs No.4 and No.6, which were not con-
sidered important in the supposed prototype. Figure
9(a) shows the signed individual potentialities or con-

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

482

(a) Signed potentiality

(b) Ratio potentiality

Figure 9: Signed ratio potentialities when the ReLU func-
tion was used in the single activation.

nection weights with the ReLU activation function.
The potentialities became relatively similar to the
supposed prototype around the 100th learning step,
but the similarity was not very high. Gradually, in-
put No.5 became more prominent in the learning pro-
cess. Figure 9(b) shows the individual ratio poten-
tialities. One important point to note is that inputs
No.4 and No.6 had larger values by the end of the
learning process. However, these inputs did not have
large weights or correlation coefficients in the proto-
type, indicating that they were not strongly linearly
connected to the outputs. This suggests that the ReLU
activation function learned the input patterns in a non-
linear manner.

The results from the multiple activations show that
combining two different activation functions allows
for the simultaneous use of linear and non-linear re-
lations, improving generalization while retaining the
simple properties of the prototype for easier interpre-
tation. Figure 10(a) shows the results of signed indi-
vidual potentialities or connection weights from mul-
tiple activation learning using tangent and ReLU ac-
tivation functions, achieving the best generalization.
Because the tangent activation function was used for
the first 1000 learning steps, the signed potentialities
became naturally similar to those from the hyperbolic

(a) Signed potentiality

(b) Ratio potentiality

Figure 10: Signed ratio potentialities when the tangent
(1000 steps) and ReLU fuction were used with the best gen-
eralization.

tangent activation function. Moreover, in the remain-
ing learning steps, the individual potentialities were
close to those from the tangent activation function in
Figure 8.

Figure 10(b) shows the ratio potentialities when
multiple activation learning was used. Using the ratio
potentiality, different results were obtained. For ex-
ample, one key characteristic is that the ratio poten-
tiality increased with the input number. In particular,
the final three inputs, namely inputs No.4 to No.6, had
larger potentialities. As explained in Figure 9, inputs
No.4 and No.6 had larger potentialities with the sin-
gle ReLU activation function. On the other hand, in-
put No.5 had relatively larger potentiality in the proto-
type, as shown in Figure 3. This indicates that multi-
ple activation learning aimed to strengthen both linear
and non-linear relations between inputs and outputs.

The results demonstrate that the tangent activation
function strongly detected linear and non-linear rela-
tions, while the ReLU function focused on non-linear
ones. By combining them in multi-activation, both
linear and non-linear relations could be detected. This
multiple activation learning approach improved gen-
eralization more effectively, with prototype learning
by the tangent activation function and non-prototype

Searching for Idealized Prototype Learning for Interpreting Multi-Layered Neural Networks

483

(a) Single activation (tangent)

(b) Multiple activations (tangent+ReLU)

Figure 11: Loss (error) and accuracy by the single activation
(tangent) and multiple activation learning (tangent+ReLU).

learning by the ReLU function contributing to the en-
hanced generalization. Additionally, because the fi-
nal connection weights retain the characteristics of
the supposed prototype from the prototype learning,
it is much easier to understand the inner workings of
the neural network. The estimated idealized proto-
type learning, achieved by combining the tangent and
ReLU activation functions, clearly demonstrates the
existence and utility of the concept of idealized pro-
totype learning for interpreting multi-layered neural
networks.

4.5 Smaller Variation of Generalization

The reason why better generalization was achieved
can be explained by examining the error (loss) and ac-
curacy values computed over ten different runs. This
indicates that multiple activation learning can reduce
variations in accuracy.

Figure 11 shows the error (left) and accuracy
(right) for single activation and multiple activation
learning, with the number of steps for prototype learn-
ing set to 1000 for optimal generalization perfor-
mance. As seen in Figure 11(a), when only the hy-
perbolic tangent activation function was used, dis-
crepancies between validation (green) and testing val-
ues (red) increased from the beginning. In contrast,
when multiple activation learning was employed in
Figure 11(b), the discrepancy decreased immediately
after introducing the non-prototype learning with the
ReLU activation function, following the sharp de-
cline associated with the change in activation func-
tion. This reduction in the variation of generaliza-
tion errors and accuracies is clearly related to the im-
proved generalization.

Table 1: Summary of experimental results on average ra-
tio, divergency, correlation, and generalization accuracy by
networks without hidden layers, tangent, ReLU activation
function and three types of multiple activations(changing
the number of steps in the prototype learning from 500 to
1500). Bold type letters indicate optimal values. The up-
per and lower number represent the actual values and the
corresponding number of learning steps.

Activ Ratio Diverg Correl General
0.624 0.074 0.855 0.824
1460 5000 3710 4901

Tangent 0.841 0.024 0.973 0.941
73 96 103 3470

ReLU 0.729 0.035 0.945 0.917
492 165 87 4185

500 0.841 0.024 0.973 0.985
73 96 103 4514

1000 0.841 0.024 0.973 0.992
73 96 103 3047

1500 0.841 0.024 0.973 0.984
73 96 103 4253

4.6 Numerical Summary

Numerical results show that detecting the prototype
at the beginning of learning can contribute to im-
proved generalization. This implies that ideal learn-
ing with both prototype and non-prototype compo-
nents can enhance generalization. Additionally, non-
prototype learning is performed while maintaining the
trace of prototype learning. The interpretation of the
inner mechanism is much easier because the proto-
type represents the simplest network within the given
network resources.

Table 1 summarizes the numerical analysis. The
network without hidden layers produced the low-
est ratio potentiality (0.624), the largest divergence
(0.074), the lowest correlation coefficient (0.855), and
the lowest generalization (0.824). This indicates that
without hidden layers, it is difficult to disentangle the
relations between inputs and outputs, making it dif-
ficult to extract the prototype. The tangent activa-
tion function produced the highest ratio potentiality
(0.841) and the highest correlation coefficient (0.973),
along with the smallest divergence (0.024), except for
the generalization performance (0.941). The ReLU
activation function resulted in the second lowest ra-
tio potentiality (0.729), the second lowest correlation
coefficient (0.945), and the second highest divergence
(0.035). Additionally, the generalization (0.917) was
the second lowest. When multiple activation learning
was introduced, the ratio potentiality, divergence, and
correlation coefficient were similar to those obtained
with the tangent activation function. However, the

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

484

generalization performance reached the highest value
(0.992) when the number of learning steps in proto-
type learning was 1000. Even in other multiple activa-
tion learning cases, generalization (0.984 and 0.985)
was significantly better than that of the single activa-
tion models (0.941 and 0.917).

The results confirm that detecting and combining
prototype and non-prototype learning can contribute
to improved generalization and interpretation. In par-
ticular, interpretation is greatly facilitated because the
prototype, with its minimal network configuration,
has a considerable effect on learning.

5 CONCLUSION

The present paper aimed to demonstrate that neural
learning should begin with the extraction of the pro-
totype, the simplest network within the given network
resources, followed by non-prototype learning on de-
tailed input information. The prototype is intended to
be determined as independently as possible from any
inputs, though ideally. The importance of the pro-
totype can be demonstrated by comparing a network
that easily acquires the prototype with one that does
not, using multi-activation techniques. By changing
the activation function from the hyperbolic tangent
at the beginning to the ReLU function in later learn-
ing steps, we observed a significant improvement in
generalization performance. Additionally, the final
weights retain the trace of the prototype learning from
the beginning and are easily understood. The extrac-
tion of the prototype should play a critical role in
training neural networks, making their internal repre-
sentations more comprehensible and enhancing gen-
eralization.

Finally, we should address several future direc-
tions. First, we need to resolve issues inherent to po-
tentiality and ratio potentiality. Due to its simplicity
and stability, potentiality is limited to the absolute val-
ues of connection weights. The ratio potentiality at-
tempts to estimate how much the estimated individual
potentiality exceeds the supposed potentiality. This
simplification is used to highlight the importance of
inputs for easier interpretation, as larger weights are
considered more important. However, in actual sce-
narios discussed in this paper, negative weights ap-
pear to play significant roles in some cases. Thus, it is
necessary to incorporate the negative effect or “nega-
tive potentiality” to make the potentiality framework
more general. Second, exploring different types of
activation functions for prototype extraction is pos-
sible. In the multiple activation learning, only two
standard activation functions were used for ease of

reproduction, but many other activation functions ex-
ist. It would be interesting to use them for extracting
the ideal prototype. Additionally, it may be possible
to identify a single activation function or an idealized
activation function that captures the properties of both
prototype and non-prototype learning. Finally, apply-
ing the method to larger and more practical datasets is
crucial to determine if our approach can address prac-
tical problems that require not only improved general-
ization but also enhanced interpretation. Understand-
ing the inner workings of neural networks is consid-
ered more important than merely improving general-
ization.

REFERENCES

Apicella, A., Donnarumma, F., Isgrò, F., and Prevete, R.
(2021). A survey on modern trainable activation func-
tions. Neural Networks, 138:14–32.

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006).
Model compression. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 535–541. ACM.

Carlucci, L. and Case, J. (2013). On the necessity of u-
shaped learning. Topics in cognitive Science, 5(1):56–
88.

Case, J. and Kötzing, T. (2016). Strongly non-u-shaped lan-
guage learning results by general techniques. Informa-
tion and Computation, 251:1–15.

Chao, W.-L., Changpinyo, S., Gong, B., and Sha, F. (2016).
An empirical study and analysis of generalized zero-
shot learning for object recognition in the wild. In
Computer Vision–ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part II 14, pages 52–68. Springer.

Corkery, M., Matusevych, Y., and Goldwater, S. (2019).
Are we there yet? encoder-decoder neural networks
as cognitive models of english past tense inflection.
arXiv preprint arXiv:1906.01280.

Emanuel, R. H., Docherty, P. D., Lunt, H., and Möller, K.
(2024). The effect of activation functions on accu-
racy, convergence speed, and misclassification confi-
dence in cnn text classification: a comprehensive ex-
ploration. The Journal of Supercomputing, 80(1):292–
312.

Jagtap, A. D. and Karniadakis, G. E. (2023). How impor-
tant are activation functions in regression and classifi-
cation? a survey, performance comparison, and future
directions. Journal of Machine Learning for Modeling
and Computing, 4(1).

Kim, J., Oh, T.-H., Lee, S., Pan, F., and Kweon, I. S.
(2019). Variational prototyping-encoder: One-shot
learning with prototypical images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9462–9470.

Kirov, C. and Cotterell, R. (2018). Recurrent neural net-
works in linguistic theory: Revisiting pinker and

Searching for Idealized Prototype Learning for Interpreting Multi-Layered Neural Networks

485

prince (1988) and the past tense debate. Transac-
tions of the Association for Computational Linguis-
tics, 6:651–665.

Neill, J. O. (2020). An overview of neural network com-
pression. arXiv preprint arXiv:2006.03669.

Nwankpa, C., Ijomah, W., Gachagan, A., and Marshall, S.
(2018). Activation functions: Comparison of trends in
practice and research for deep learning. arXiv preprint
arXiv:1811.03378.

Pinker, S. and Prince, A. (1988). On language and con-
nectionism: Analysis of a parallel distributed process-
ing model of language acquisition. Cognition, 28(1-
2):73–193.

Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R.,
Lim, C. P., Wang, X.-Z., and Wu, Q. J. (2022). A re-
view of generalized zero-shot learning methods. IEEE
transactions on pattern analysis and machine intelli-
gence, 45(4):4051–4070.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017).
Searching for activation functions. arXiv preprint
arXiv:1710.05941.

Rumelhart, D. E. and McClelland, J. L. (1986). On learn-
ing the past tenses of English verbs. In Rumelhart,
D. E., Hinton, G. E., and Williams, R. J., editors, Par-
allel Distributed Processing, volume 2, pages 216–
271. MIT Press, Cambrige.

Saralajew, S., Holdijk, L., Rees, M., and Villmann,
T. (2018). Prototype-based neural network layers:
incorporating vector quantization. arXiv preprint
arXiv:1812.01214.

Shimizu, K. (2009). Multivariate analysis (in Japanese).
Nikkan Kogyo Shinbun.

Song, Y., Wang, T., Cai, P., Mondal, S. K., and Sahoo, J. P.
(2023). A comprehensive survey of few-shot learn-
ing: Evolution, applications, challenges, and opportu-
nities. ACM Computing Surveys, 55(13s):1–40.

Sütfeld, L. R., Brieger, F., Finger, H., Füllhase, S., and Pipa,
G. (2020). Adaptive blending units: Trainable activa-
tion functions for deep neural networks. In Intelligent
Computing: Proceedings of the 2020 Computing Con-
ference, Volume 3, pages 37–50. Springer.

Viering, T. and Loog, M. (2022). The shape of learning
curves: a review. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence.

Westermann, G. (2022). Emergent modularity and u-shaped
learning in a constructivist neural network learning the
english past tense. In Proceedings of the Twentieth
Annual Conference of the Cognitive Science Society,
pages 1130–1135. Routledge.

APPENDIX

Entropy and Divergence

As mentioned above, potentiality is computed to sim-
plify entropy and its corresponding divergence. We

(1) i
(2) j (3) k (4) l (5) m

(6)

1st compression

2nd compression 3rd compression Estimated prototype

(5) m

(5) m (5) m

(4) l

(4) l

(3) k
(1) i

(1) i (1) i
(1)i

(6)

(6) (6)

Figure 12: Concept of compression prototype.

introduce the entropy and its related divergence mea-
sure here. The relative potentiality for the supposed
prototype network is computed by

q(1,2)i =
c(1,2)i

∑i′ c
(1,2)
i′

. (10)

Next, the relative potentiality for the compressed
and estimated prototype network is computed by

p(1,6)i =
u(1,6)i

∑i′ u
(1,6)
i′

. (11)

Entropy can be defined by

H(1,6) =−∑
i

p(1,6)i log p(1,6)i . (12)

Divergence, being the reverse type, is computed
by

D(1,6) = ∑
i

p(1,6)i log
p(1,6)i

q(1,2)i

. (13)

This divergence decreases when the potentialities
of the two networks become more similar to each
other.

Compression

In the first compression, the weights from the input
layer to the third layer, labeled (1,3), are compressed
as follows:

w(1,3)
ik = ∑

j
w(1,2)

i j w(2,3)
jk . (14)

By repeating these processes, we obtain the com-
pressed weights connecting the first and fifth layers,
denoted as w(1,5)

iq . Using these connection weights, we
finally obtain the fully compressed weights for (1,6):

w(1,6)
i = ∑

q
w(1,5)

iq w(5,6)
q . (15)

In the context of large multi-layered neural net-
works, there are many different types of compres-
sion methods. This compression method differs from

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

486

conventional and popular compression methods (Bu-
ciluǎ et al., 2006; Neill, 2020). The majority of these
conventional methods attempt to compress the orig-
inal multi-layered neural networks without consider-
ing internal configurations, focusing instead on gen-
eralization performance. This paper aims to under-
stand the inner workings of neural networks, and thus
it is necessary to preserve the internal configurations
of the original multi-layered neural networks as much
as possible.

Searching for Idealized Prototype Learning for Interpreting Multi-Layered Neural Networks

487

