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Abstract: A body of knowledge (BoK) can be defined as the comprehensive set of concepts, terminology, standards, and
activities that facilitate the dissemination of knowledge about a specific field, providing guidance for practice
or work. This paper presents a methodology for the construction of a body of knowledge (BoK) based on
knowledge-based artificial intelligence. The process begins with the identification of relevant documents and
data, which are then used to capture concepts, standards, best practices, and state-of-the-art. These knowledge
items are then fused into a knowledge graph, and finally, query capacities are provided. The overall process
of knowledge collection, storage, and retrieval is implemented with the objective of supporting a trustworthy
machine learning (ML) end-to-end engineering methodology, through the ML Engineering BoK.

1 RATIONALE

Systems and products are developed in competitive,
volatile, uncertain, complex and ambiguous contexts,
influenced by external factors such as regulations
and societal expectations. Artificial Intelligence (AI)
technologies, in particular Machine Learning (ML)
approaches, improve product quality and production
efficiency (Li et al., 2017). Reliability is crucial for
critical systems to remain reliable throughout their
lifecycle and to evolve cost-effectively. However,
the rapid adoption of AI technologies is leading to
a specialization of engineers and a dispersion of the
required skills. Current demographics are making
highly skilled and experienced engineers scarce, lead-
ing to a lack of project support and mentorship. In ad-
dition, the complexity of AI-based solutions and past
trends in each component require the management of
AI engineering knowledge and general engineering
practices. This highlights the need for effective man-
agement of AI engineering knowledge and practices.
Knowledge management and knowledge engineering
(KE) are often used interchangeably, with ”manage”
referring to executive leadership and ”engineer” to
planning, construction, or design activities. The main
difference is that the knowledge manager sets the
process direction, while the knowledge engineer de-

velops the means to achieve it. The Confiance.ai1

program’s end-to-end methodology serves as a foun-
dational framework for knowledge management in
trustworthy AI engineering (Awadid et al., 2024). It
addresses non-functional requirements for successful
implementation of ML-based components in critical
systems (Adedjouma et al., 2022). The methodol-
ogy covers various process levels and aligns with in-
dustrial best practices. It is essential to define the
scope and position of the methodology in relation to
other engineering disciplines. KE is a sub-field of AI
that focuses on understanding, designing, and imple-
menting methods for representing information effec-
tively (Shapiro, 2006). It facilitates the management
of all types of knowledge based on labelled graphs
and provides guidance for resolving ML engineering-
related issues. In order to address these issues, Confi-
ance.ai program put forth the argument that there is a
need to consolidate the AI engineering field’s largely
fragmented body of knowledge (Mattioli et al., 2024),
which encompasses data engineering, algorithm engi-
neering, software and system engineering, safety and
cyber-security, similar to the SWEBOK definition of
software engineering (Robert et al., 2002).

1www.confiance.ai/en
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Figure 1: AI/ML deployment induces some (engineering) challenges.

2 KNOWLEDGE ENGINEERING

From this perspective, Knowledge Engineering (KE)
represents a sub-field of AI that is concerned with the
understanding, design and implementation of meth-
ods for representing information in a manner that
enables computers to utilize it effectively. In other
words, the objective of KE is the understanding and
subsequent representation of human knowledge in the
form of data structures, semantic models (conceptual
graph of the data in relation to the real world) and
heuristics (or rules). The induced process comprises
three principal elements: a) knowledge acquisition,
representation, and validation; b) inference; and c)
explanation and justification. It is evident that ap-
proaches to knowledge representation, such as on-
tologies, taxonomies, thesauri, and vocabularies, can
be employed to support a diverse array of activities.
Techniques that could be used for such purpose in-
clude:

• Using a taxonomy that is well-known and ac-
cepted by the organization in work-products;

• Using patterns to help a computer “understand”
the content of work-products;

• Encoding the breakdown structures that represent
well-established knowledge within the organiza-
tion;

• Using inference rules to reason about the quality
of the content of different work-products.

An organization must manage knowledge about its
systems and engineering practices, known as a Body
of Knowledge (BoK). The BoK provides a compre-
hensive description of ML system engineering con-
tents and practices, establishing a foundation for cur-
riculum development and creating a coherent curricu-

lum for qualification towards certification.

3 ML ENGINEERING BoK

A body of knowledge (BoK) is”structured knowl-
edge that is employed by members of a discipline to
inform their practice or work” (Ören, 2005). It is used
to define concepts and activities, such as accuracy
in data engineering, machine learning models and
system-level applications. The core components of a
BoK include concepts, knowledge, skills, standards,
terminology, guidelines, practices and activities. It
serves as the ”ground truth” for ML engineering ac-
tivities, covering various domains such as data engi-
neering, algorithm engineering, software engineering,
systems engineering, cyber-security, safety, and cog-
nitive engineering.

3.1 The BoK Design

The BoK design is an iterative process involv-
ing knowledge acquisition, fusion, storage, and re-
trieval. Knowledge is acquired from structured, semi-
structured, and unstructured data, with extraction fo-
cusing on entities, attributes, and relations. Knowl-
edge fusion requires ongoing ontology construction
and quality evaluation. Currently, knowledge is typ-
ically stored in KG databases. Confiance.ai BoK
(fig 2) is a comprehensive guide for engineers on
the lifecycle of AI-based critical systems. It offers
guidance and support throughout the development,
maintenance, and evolution of these systems. The
guide defines trustworthy ML engineering concepts
and provides an outline of essential knowledge, skills,
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Figure 2: Trustworthy ML engineering Body-of-Knowledge - https://bok.confiance.ai/.

and practices, covering all fundamental competencies
required by professionals in the field. The initial step
of the ML Engineering BoK design is to identify the
domain of application and compile a list of relevant
knowledge sources. Secondly, a conceptual model
will be devised with the objective of gathering to-
gether the entities of interest, their inter-relationships
and the categories. A valuable resource for concep-
tual modeling is Capela©, which is a model-based en-
gineering solution that has proven effective in numer-
ous industrial contexts. Thirdly, the logical and phys-
ical models will provide a logical representation and
assertions for the entities and relationships that have
been collected. Fourthly, the technical development
and implementation must take into account the cod-
ing language to be employed (for example, RDF and
OWL), as well as the serialization formats (such as
RDF/XML, Turtle and JSON-LD). The final stage is
the deployment of the BoK as a service, thereby facil-
itating reuse and enabling the engineering community
to provide feedback. In essence, this process entails
the transformation of knowledge held by engineering
experts and end-users into a machine-readable format.
Designing a ML Engineering BoK induces some gen-
eral issues:

• Raw Data Acquisition. How to select the rele-
vant data and information to be fed into the BoK?

• Knowledge Extraction, Representation and
Validation. How do we represent human knowl-
edge as it currently exists in state of the art reports,
scientific articles, standards and norms, Engineer-
ing best practices, and the minds of the experts in
terms of data structures that can be processed by

a computer? How to determine the best represen-
tation for any given engineering problem?

• Knowledge Integration and Fusion. How do we
use these knowledge item to generate useful infor-
mation in the context of a ML engineering?

• KG Design. How to manipulate the knowledge to
provide explanations to the engineer/user?

• Knowledge Query. How do we use these abstract
knowledge structures to generate useful informa-
tion in the context of a specific case?

3.2 Step 1: Raw Data Acquisition

BoK developers create knowledge bases from scratch,
dealing with diversity and heterogeneity of knowl-
edge representation formalisms and mismatch of dif-
ferent knowledge items. Knowledge engineers focus
on modeling structural use cases and expert knowl-
edge concepts. The first step is to define a taxonomy
of the ML engineering domain aligned with ISO/IEC
DIS 5338 standard for AI systems and safety and reli-
ability standards. This taxonomy is the classification
of concepts induced by Trustworthy ML Engineering
activities. The operational definition of trustworthy
AI includes a taxonomy and keywords that define core
domains such as AI Engineering, Data Engineering,
and Safety Engineering, covering the entire life cycle
of AI-based critical systems. This framework aids in
harmonizing design and support activities, including
monitoring and maintenance, and serves as a founda-
tion for the Confiance.ai methodology, which outlines
requirements and recommendations. The initial stage
is devoted to the identification of data sources, as this
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has a significant impact on the entire knowledge graph
(KG) development process, as well as on the selection
of knowledge extraction techniques. Definitions have
been collated from various sources, including Euro-
pean and worldwide standardization bodies (ISO/IEC
5338, Aerospace Standard 6983, IEEE 7000...), Na-
tional and European projects (Confiance.ai, DEEL
project2, JRC Flagship on AI3), scientific publica-
tions and working groups (e.g. the HLEG or the AI
Safety Landscape initiative4), as well as other relevant
sources. The working group responsible for the state
of the art sourced definitions from external literature
in most cases. Sometimes the existing literature did
not match the scope of ML Engineering. We created
a new definition. This phase was also based on data
about making AI reliable. This includes making AI
reliable through design, data engineering for trusted
AI, IVVQ Strategy (Integration, Verification, Valida-
tion and Qualification), and targeted embedded AI.

3.3 Step 2: Knowledge Extraction,
Representation and Validation

The extraction of knowledge from semi-structured
sources is easier than from unstructured sources,
which hold more information. The second phase fo-
cuses on extracting knowledge from unstructured data
to create and enhance knowledge graphs, identify-
ing entities and relationships. This process involves
natural language processing (NLP) and knowledge
representation technologies to automatically extract
structured information from various data types, fa-
cilitating the effective use of external data. An en-
tity represents the most fundamental unit of a knowl-
edge graph. It represents a concept. Furthermore,
the quality of knowledge graph construction is contin-
gent upon the accuracy and integrity of its extraction.
Subsequently, relationship extraction entails the iden-
tification of associations between entities, thereby es-
tablishing semantic relations and forming a knowl-
edge network. These types of graphs embed a struc-
tured representation of facts, consisting of entities,
relationships, and semantic descriptions, which are
modeled with an RDF (Resource Description Frame-
work) structure. An RDF model is a flexible data rep-
resentation model comprising three-element tuples,
with no fixed schema requirements. It is a graph-
based model for the description of entities and their
relationships on the Web. Many researchers prefer

2https://www.deel.ai/
3https://joint-research-centre.ec.europa.eu/jrc-mission-

statement-work-programme/facts4eufuture/artificial-
intelligence-european-perspective/future-ai en

4https://www.aisafetyw.org/ai-safety-landscape

to conceptualize RDF as a set of triples, although
it is commonly described as a directed and labelled
graph, each consisting of a subject, predicate and ob-
ject in the form of < sub ject, predicate,ob ject >. In
this context, the predicate represents the relationship
between the subject and the object. For example:
< Data Engineering, is an activity,MLOps >. The
triples are stored in a triple store and can be queried
using the SPARQL query language. In comparison
to both inverted indices and plain text files, triple
stores and the SPARQL query language facilitate the
formulation of sophisticated queries, enabling users
to satisfy complex information needs. Although a
model is required for representing data in triples (sim-
ilar to relational databases), RDF enables the expres-
sion of rich semantics and supports knowledge infer-
ence (Hertz et al., 2019). Like any model, such a
BoK is only an approximation of reality. New ob-
servations based on ML engineering use-cases can
guide the further acquisition of knowledge. There-
fore, an evaluation of the represented knowledge with
respect to reality is indispensable for the creation of
an adequate model. These limitations relate to the
so-called symbol grounding problem (Harnad, 1990),
and concern the extent to which representational ele-
ments are hand-crafted rather than learned from data.
The most common methods employed include pat-
tern matching, machine learning, and semantic rule
extraction. Furthermore, generative models such as
large language models (LLMs) can play a pivotal
role in the construction of knowledge graphs by ex-
tracting entities, relationships, and attributes from un-
structured text data (Meyer et al., 2023). They can
be pre-trained through the structurally consistent lin-
earization of text, which facilitates the transition from
traditional understanding to structured understanding
and increases knowledge sharing (Wang et al., 2022).
In contexts with Named Entity Recognition (NER),
as demonstrated by (Straková et al., 2019), the pro-
posed generative method implicitly models the struc-
ture between named entities. This approach effec-
tively avoids the complexity inherent to multi-label
mapping. Similarly, extracting overlapping triples in
relation extraction is also challenging to address for
traditional discriminating models (Zeng et al., 2018),
introducing a new perspective for addressing this is-
sue through a general generative framework. More-
over, several features must be taken into account when
developing a BoK:

• Redundancy: Are there identical or equivalent
knowledge items that is a special case of another
(subsumed)?

• Consistency: Are there ambiguous or conflict-
ing knowledge, is there indeterminacy in its ap-

KMIS 2024 - 16th International Conference on Knowledge Management and Information Systems

334



plication? Is it intended? Are several outcomes
possible, for example, depending on the strategy
(the order in which the knowledge models are or-
dered)?

• Minimality: Can the knowledge set be reduced
and simplified? Is the reduced form logically
equivalent to the first one?

• Completeness: Are all possible entries covered by
the knowledge of the set?

Thus, a good BoK must have properties such as:
• Representational Accuracy: It should represent all

kinds of required knowledge.
• Inferential Adequacy: It should be able to ma-

nipulate the representational structures to pro-
duce new knowledge corresponding to the exist-
ing structure.

• Inferential Efficiency: The ability to direct the in-
ferential knowledge mechanism into the most pro-
ductive directions by storing appropriate guides.

• Acquisitional Efficiency: The ability to complete
with new knowledge easily using automatic meth-
ods.

Peer reviews with various stakeholders (data scien-
tists, software and system engineers, safety and cyber-
security engineers...) were carried out to assess the
appropriateness and quality of the acquired knowl-
edge in relation to the ML engineering end-to-end
methodology (Adedjouma et al., 2022).

3.4 Step 3: Knowledge Integration and
Fusion

For (Sowa, 2000), “Knowledge Representation is the
application of logic and ontology to the task of con-
structing software models for some domain”. There-
fore, the way a knowledge representation is con-
ceived reflects a particular insight or understanding
of how people reason. The selection of any of the
currently available representation technologies (such
as logic, knowledge bases, ontology, semantic net-
works...) commits one to fundamental views on the
nature of intelligent reasoning and consequently very
different goals and definitions of success. As we ma-
nipulate concepts with words, all ontologies use hu-
man language to ”represent” the world. Thus, ontol-
ogy is expressed as a formal representation of knowl-
edge by a set of concepts within a domain and the
relationships between these concepts. Nevertheless,
the ”fidelity” of the representation depends on what
the knowledge-based system captures from the real
thing and what it omits. If such system has an im-
perfect model of its universe, knowledge exchange
or sharing may increase or compound errors during

the ML Engineering process. As such, a fundamen-
tal step is to establish effective knowledge represen-
tation (symbolic representation) that can be used for
query. The sheer complexity, variety and volume of
data available today presents a significant challenge
to achieving efficient and accurate knowledge graph
fusion. The process of integrating disparate sources
of knowledge, also known as knowledge fusion, en-
tails the elimination of redundancies, inconsistencies,
and ambiguities from the integrated corpus. The field
of engineering is one in which knowledge is typically
subject to updates. In the majority of cases, users
will have the capacity to supplement existing exter-
nal knowledge graphs with external knowledge. Thus,
the objective of knowledge fusion is to merge seman-
tically equivalent elements, for example, the concepts
of ”accuracy” and ”machine learning accuracy”, with
the intention of integrating novel forms of knowledge
within existing conceptual frameworks or factual as-
sertions. The sub-tasks of knowledge fusion include
the alignment of attributes, the matching of entities
with small-scale incoming triples, and the alignment
of entities with a complete knowledge graph. This
stage is beneficial for both the generation and com-
pletion of knowledge graphs. We employ the knowl-
edge graph representation for knowledge fusion, as
proposed by (Laudy et al., 2007), which is based on
the conceptual graph model. This representation is
used to store and combine knowledge. The approach
is to examine observations with domain knowledge
and graph operators. This removes any bias from
translating data from one format to another with dif-
ferent models. We suggest using it for a high-level in-
formation fusion approach based on the Maximal Join
operator, which is an aggregation operator on concep-
tual graphs (Laudy, 2011).

3.5 Step 4: Knowledge Graph

At worst, the effort involved in specifying the rele-
vant knowledge forces us to think more deeply about
the relevant ways of characterizing the ML engineer-
ing models that we as researchers implicitly construct
anyway. The use of Knowledge Graphs (KG) as
a means of representing knowledge is becoming in-
creasingly prevalent. Their versatility in terms of rep-
resentation allows for the integration of diverse data
sources, both within and across engineering bound-
aries. Therefore, our primary strategy to support
this step in practice was the creation of a knowledge
graph, which collects information about each ML de-
velopment activity, the artifacts and processes used
in the entire ML-based system lifecycle, the end-to-
end methodology, and the motivation behind the key
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design decisions. Several replications have been car-
ried out in this way, contributing to a growing body
of knowledge about ML engineering techniques. By
employing the graph architecture, KGs are capable of
modeling a range of relationship types (edges) and
entities (nodes) (Chen et al., 2020). KGs comprise
an additional embedded layer, designated a reasoner
(or inference engine), which enables them to extract
implicit information from existing explicit concepts,
in contrast to plain graph or non-relational databases.
The most well-known examples of knowledge graphs
(KGs) – DBpedia, Freebase, Wikidata, YAGO, and so
forth – encompass a diverse array of domains and are
either derived from Wikipedia or created by volunteer
communities (Heist et al., 2020). The Google Knowl-
edge Graph is one of the largest and most comprehen-
sive KGs in existence, aiming to model and link all
structured information found on the internet, includ-
ing persons, organizations, skills, events, products,
and more. This is one of the reasons why the Google
search engine is so effective. A graph-based knowl-
edge representation and reasoning formalism derived
from conceptual graphs has been formalized as finite
bipartite graphs, as outlined in (Mugnier and Chein,
1992). In this formalism, the set of nodes is divided
into concept and conceptual relation nodes. In such
a graph, concept nodes represent classes of individu-
als, and conceptual relation nodes illustrate the rela-
tionships between the aforementioned concept nodes.
This is in accordance with the findings of (Sowa,
1976). As outlined in (Ehrlinger and Wöß, 2016),
a KG acquires information and integrates it into an
ontology, subsequently applying a reasoner to derive
new knowledge. Furthermore, in accordance with
the definition provided by (Ji et al., 2021), KGs are
”structured representations of a fact, consisting of en-
tities, relations, and semantics.” Entities may be either
real-world objects or abstract concepts. Relationships
represent the relationship between entities, and se-
mantic descriptions of entities and their relationships
contain types and properties with defined semantics.
Property graphs, in which nodes and relations possess
properties or attributes, or attribute graphs, are exten-
sively employed. All of these facets rely on a knowl-
edge inference over knowledge graphs, which repre-
sents one of the core technologies in the design of our
ML engineering BoK. The Semantic Web community
has reached a consensus on the use of RDF to repre-
sent a knowledge graph. Then, RDF model also al-
lows for a more expressive semantics of the modeled
data that can be used for knowledge inference. As a
result, a KG is a set of interconnected information on
a specific set of facts that includes characteristics of
many data management paradigms:

• Database: Structured queries can be used to ex-
plore data in a database.

• Graph: KGs can be analyzed in the same way that
any other network data structure can be.

• Knowledge Base: Formal semantics are encoded
in KGs, which can be used to understand data and
infer new facts.

3.6 Step 5: Knowledge Query

In this context, a body of knowledge (BoK) is con-
ceptualized as a graph of knowledge, as proposed
by (Mattioli et al., 2022). Ultimately, the utility of the
ingested, transformed, integrated and stored knowl-
edge is contingent upon the efficiency with which an-
swers can be retrieved by users in an intuitive man-
ner. At the present time, keyword queries and spe-
cialized query languages (e.g. SQL and SPARQL)
represent the prevailing approaches to information re-
trieval. However, in order to facilitate the search for
a specific ML engineering knowledge by querying
the KG and selecting the set of relevant engineering
views to perform specific ML engineering activities,
it is necessary to enable the identification of simi-
larities between Confiance.ai documents by search-
ing for isomorphisms between the graphs represent-
ing the knowledge extracted from the text. A num-
ber of algorithms have been defined which implement
subgraph isomorphism; however, the subgraph iso-
morphic problem is an NP-complete problem. The
initial component is a generic sub-graph matching
mechanism that functions in conjunction with fusion
schemes. This component is responsible for ensur-
ing the structural consistency of the merged informa-
tion with respect to the structures of the initial docu-
ments throughout the fusion process. The fusion ap-
proach is constituted by the similarity and compatibil-
ity functions applied to the members of the graphs to
be fused. The generic fusion algorithm can be adapted
to suit the context in which it is used by adopting these
strategies. The knowledge graph fusion method offers
two additional operations, contingent upon the fusion
strategies employed. Information synthesis is the col-
lection and organization of data on a subject. Infor-
mation is then put together into a network through
information synthesis, where any repetitions are re-
moved. Fusing techniques are used to combine in-
formation about the same thing, even though it is in
different forms. When different sources of informa-
tion are used to create a representation of something,
inconsistencies may appear. This function finds all
the information in a network that follows a specific
pattern. The structure of the query graph must match
that of the data graph. To find the information query
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function, look for a one-to-one mapping between the
query graph and the data graph.

4 ILLUSTRATION ON ML
ROBUSTNESS EVALUATION

The utilization of keyword-based queries has become
a prevalent methodology for enabling non-technical
users to access expansive RDF data sets. At the
present time, the user is able to select an engineering
activity within the graph that utilizes the end-to-end
methodology, and the underlying knowledge will then
be presented to them. The ML Engineering BoK is a
trustworthy ML end-to-end engineering guideline that
engineers should follow throughout their activities. It
is based on a comprehensive set of descriptions, en-
gineering knowledge, metrics, and key performance
indicators, which are capitalized in the BoK. These
elements enable engineers to assess both functional
and non-functional properties. For example, an engi-
neer is seeking information on the assessment of ML
model robustness in the context of the activity of eval-
uating an ML model in order to analyze and charac-
terize the system’s sensitivity to changes in the input,
with a view to determining its overall resilience. For
this engineering activity, the BoK suggests a strategy
made of two successive phases: 1) Robustness test by
sampling and perturbation (empirical evaluation) and
2) Formal verification of robustness (formal evalua-
tion). Each step is described by a Capela model and
a textual content. It consists in selecting the most ap-
propriate tool for this robustness test. To make this se-
lection, the key criteria are: the ML Model Algorithm,
the type of data (images, time series, and language),
the type of perturbation and its intensity (examples
of perturbation include image luminance, image blur-
ring, geometric transformation of plane position), and
the target level of robustness. There may be differ-
ent tools for data perturbation and for execution of
the test., or it can be the same tool. With the selected
tool, the specified perturbation is applied on the Test
Dataset and the ML Model is executed on this per-
turbed dataset and the resulting behavior of the ML
Model is captured.

5 CONCLUSIONS

The objective of building a Trustworthy ML Engi-
neering Knowledge Graph is to facilitate more ef-
fective specification, design, comprehension, mon-
itoring, and maintenance of ML-based systems for

system design engineers and ML-based system op-
erations personnel. Ultimately, this should enhance
safety, cyber security, reliability, and performance,
while also improving availability. The construc-
tion of a reliable ML engineering framework en-
tails the utilization of an array of data sources and
artificial intelligence methodologies, encompassing
knowledge representation, knowledge graphs, seman-
tic networks, high-level information fusion, graph
theory, and numerous other techniques. Confi-
ance.ai’s methodological contributions span the entire
development process of an ML-based system, from
initial specification and design through to the com-
missioning and subsequent supervision of operational
deployment, and even to the embedding of the latter
in other systems. These contributions are manifold
and include:

• A taxonomy used in trustworthy AI;
• A complete documentation of the process, in-

cluding modeling of activities and roles, with
elements enabling corporate engineering depart-
ments to implement it;

• A first development of a Trustworthy AI ontology,
linking the main concepts of the process and the
taxonomy;

• And a “Body-of-Knowledge” which brings to-
gether all these elements and makes them accessi-
ble on the website of the same name.

Furthermore, the ML-engineering BoK provides sup-
port to stakeholders across the ML value chain, of-
fering invaluable assistance in the elicitation, valida-
tion, and verification of safety and cyber-security rel-
evant quality attributes. Based on the Confiance.ai
end-to-end methodology, it is able to guarantee that
the heterogeneous requirements of stakeholders are
met, thereby further consolidating its status as a fun-
damental element in the field of safety within the con-
text of Machine Learning. While the deployment of
these methodological instruments does not inherently
guarantee the compliance of ML-based systems with
regulatory requirements, it may serve as a basis for
justifying such compliance, particularly in light of the
prevailing standards set by the notified bodies respon-
sible for verification. Furthermore, this ML Engineer-
ing BoK serves as a valuable resource in addressing
the following key challenges:

• How to design AI models, so that, by construc-
tion, they satisfy trustworthy properties (accuracy,
robustness, etc.)?

• How to characterize these AI models, for exam-
ple, to understand and explain their behavior and
their adequacy to the operational domain?

• How to implement and embed those AI models on
hardware, by making them fit for the target with-
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out losing their trustworthy properties.
• What are the data engineering method to apply in

order to manage important volumes of data, ac-
count for the evolution of the operational domain,
etc.?

• What are the appropriate verification, validation,
and certification processes to consider for AI-
based systems?
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