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Abstract: This paper tackles the challenge of achieving robust leader-following consensus in multi-agent systems fac-
ing actuator faults and asynchronous network-dependent controllers. Specifically, it establishes sufficient
conditions for ensuring reliable consensus, including: i) integration of actuator faults and network topology
asynchronism into the control synthesis for each follower, ii) solutions to convex problems arising from the
multiplication between time-varying transition rates and conditional probabilities, and iii) development of an
innovative relaxation technique that reformulates H∞ stabilization conditions into linear matrix inequalities.

1 INTRODUCTION

In recent years, multi-agent systems (MASs) have
drawn attention in various applications such as
unmanned vehicles, rendezvous, distributed sensor
networks, formation control, flocking control, and
swarming control. The most interesting issue in
the control problem of MASs is consensus control,
which empowers a team of agents to achieve a uni-
fied agreement. Consensus control is typically clas-
sified into two categories: leader-following consen-
sus and leaderless consensus. The main advantage of
the leader-following consensus control is that it en-
hances communication efficiency, conserves energy,
and reduces control costs. In leader-following con-
sensus, the leader functions independently of other
agents, while the remaining agents track the leader’s
state trajectories. However, the network topology of
MASs in practical network environments can be in-
fluenced and continuously fluctuating over time due
to various factors such as connectivity disturbances,
bandwidth limitations, and random packet dropout.
To alleviate the concerns raised by the drawback of
fixed network topology of MASs, the concept of time-
varying network topology has been recently focused.
Especially, Markov process has been emerged as an
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effective modeling approach for representing the ran-
dom abrupt variation of variables in controlled sys-
tems. Therefore, one of the effective way to cap-
ture the sudden random shifts in network topology in
MASs is embedding the framework of Markov pro-
cess in the considered MASs. In particular, to deter-
mine the network topology in MASs under Markov
network topology, it is essential to obtain the values of
transition rates. However, measuring the exact value
of transition rates is challenging due to high equip-
ment costs, complexities in sensor interface, and lim-
ited sensor precision. Therefore, the concept of a non-
homogeneous Markov process is ideal for represent-
ing network topology in leader-following consensus
of MASs, where the transition rates are either partially
known or entirely unknown.

Concurrently, the phenomenon of actuator faults
can occur in many control systems due to various rea-
sons, including the inherent physical limitations of
actuators, electrical or mechanical failures, and en-
vironmental factors. In this context, reliable control
has become an inevitable trend in the state-of-the-art
control engineering, aiming to ensure that control sys-
tems operate satisfactorily even in the presence of ac-
tuator faults. At the same time, packet dropout and
time delay can frequently happen during the analysis
of network topology modes and the transmission of
that information to each follower’s controller. Thus,
this makes it challenging for the controller to identify
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control topology that stays in synchronization with
the dynamic network topology. Based on these ob-
servations, it is comprehensively necessary to investi-
gate the impact of asynchronous control and actuator
faults on the leader-following consensus of MASs un-
der nonhomogeneous Markov network topology. The
concept of Markov switching network topologies for
MASs has been firstly applied in (Li et al., 2015);
however, the network topologies were assumed to be
completely fixed and constant. Later, (Sakthivel et al.,
2018) studied the leader-following exponential con-
sensus of MASs by investigating a set of Lyapunov
function candidates containing integral terms. How-
ever, the network topology was also assumed to be
characterized by a constant Markov network topol-
ogy. Most recently, (Yang et al., 2023) addressed
the leader-following consensus control problem for
discrete-time MASs with actuator faults. To han-
dle the uncertain semi-Markov network topology, the
transition rates in (Yang et al., 2023) were assumed to
be bounded and confined to a polytope. Based on the
above discussion, the leader-following consensus for
MASs, considering actuator faults and asynchronous
control topology, should be given greater focus, espe-
cially when analyzing the transitions in the nonhomo-
geneous Markov network topology.

This paper tackles the challenge of achieving re-
liable asynchronous leader-following consensus for
MASs under a nonhomogeneous Markov network
topology with H∞ performance. The main contribu-
tion of this paper can be summarized as follows:

• Unlike (Li et al., 2015; Sakthivel et al., 2018;
Wang et al., 2019), the network topology is char-
acterized by a nonhomogeneous Markov process,
which includes a more general and practical for-
mulation of transition rates. Since obtaining
transition rates that provide valuable information
about the network topology in real-time is chal-
lenging, considering partially known or entirely
unknown transition rates can result in a less con-
servative stabilization condition.

• As mentioned above, the controller at each fol-
lower must detect the network topology to de-
termine important network-dependent matrices,
such as the Laplacian matrices and the leader ad-
jacency matrices, and use them to construct the
control signals. However, it is practically difficult
to detect the exact network topology and fully uti-
lize these matrices at each follower’s control side.
As a result, asynchronous reliable controllers with
actuator faults have been designed using an asyn-
chronous control-topology-dependent Lyapunov
function and a linear matrix inequalities (LMIs)
approach.

• To manage the parameterized linear matrix in-
equalities (PLMIs) influenced by both time-
varying transition rates and conditional probabili-
ties, the relaxation technique is necessary to con-
vert PLMIs-based stabilization conditions in solv-
able ones. Compared to (Yang et al., 2023), the
continuous-time nonhomogeneous Markov net-
work topology we are considering is more com-
plex due to the presence of both negative and pos-
itive transition rates, whereas only positive rates
are considered in the discrete-time case in (Yang
et al., 2023). The differing signs of transition rates
are crucial in relaxation techniques, as they make
the relaxation technique more intricate. Further-
more, unlike (Nguyen and Kim, 2019; Nguyen
and Kim, 2021), the relaxation technique is based
on an augmented matrix formed from both the
partly known transition rates and the entirely un-
known transition rates, allowing the inclusion of a
broader scope of transition rates in the relaxation
technique.

Notations. The term (∗) is utilized to express sym-
metrical terms in symmetric matrices; E{·} represents
for the mathematical expectation; He{Q }= Q +Q T

where Q T is the transpose matrix of Q ; ⊗ denotes
the Kronecker product. Moreover, for scalar or vector
ai, col(a1,a2, · · · ,an) = [aT

1 aT
2 · · · aT

n ]
T and diag(·)

is a diagonal matrix. Correspondingly, some useful
augmented matrices are utilized as follows: For A =
{a1,a2, · · · ,an},

[
Qai

]
ai∈A = col(Qa1 ,Qa2 , · · · ,Qan)

and
[
Qai

]d
ai∈A = diag(Qa1 ,Qa2 , · · · ,Qan), where Qai

denotes real sub-matrices with appropriate dimen-
sions.

2 PROBLEM STATEMENT

2.1 Markov Network Topology

Multi-agent systems under the network topology are
established as time-varying directed graph Gφt =(
S,Eφt ,Aφt

)
, where S = {ni} denotes the nodes set

or agents set where i ∈ N = {1,2, . . . ,N}; φt ∈
Nφ = {1,2, · · · ,nφ} denotes the network topology
mode; Eφt ⊆ {(n j,ni) | ni,n j ∈ S, j ̸= i} denotes
the edge set with the ordered pairs (n j,ni) mean-
ing the information flow from node n j to node ni;
and Aφt =

[
ai j,φt

]
i, j∈N denotes the adjacency ma-

trix with ai j,φt = 0 if and only if the pair (n j,ni) /∈
Eφt and ai j,φt > 0, otherwise. The leader depends
on an extended directed graph G0

φt
= (S0,E0

φt
) with

S0 = S
⋃
{n0} and E0

φt
⊆ {(n0,ni) | ni ∈ S}. In addi-
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tion, the network-topology-dependent Laplacian ma-
trix of Gφt is constructed by Lφt =

[
li j,φt

]
i, j∈N =Dφt −

Aφt , where Dφt =
[
di,φt

]d
i∈N and di,φt = ∑ j∈N ai j,φt .

Furthermore, the network-topology-dependent leader
adjacency matrix of G0

φt
is established by Mφt =[

mi,φt

]d
i∈N, where mi,φt > 0 if and only if the leader n0

transmits information to the follower ni and mi,φt = 0,
otherwise.

Notably, the network topology is defined by a
continuous-time nonhomogeneous Markov process
{φt , t ≥ 0} subject to the following time-varying tran-
sition probabilities:

Pr
(
φt+θ = h

∣∣φt = g
)

=

{
πgh(t)θ+o(θ) if h ̸= g
1+πgg(t)θ+o(θ) if h = g

where θ > 0, limθ→0(o(θ)/θ) = 0; and πgh(t) stands
for the transition rates (TRs) from topology mode g at
time t to topology mode h at time t +θ, satisfying

πgh(t)≥ 0 and πgg(t) =− ∑
h∈Nφ\{g}

πgh(t). (1)

Moreover, based on the precision and availability of
πgh(t), the network topology mode set can be com-
posed of three subsets such that Nφ = N⋆

φ
+ Ñφ +N×

φ

N⋆
φ =

{
h | πgh is known and constant

}
Ñφ =

{
h | πgh(t) is time-varying and bounded by

πgh(t) ∈ [πgh,πgh]
}

N×
φ
=
{

h | πgh(t) is entirely unknown
}
. (2)

From the characteristics of each topology set (2), one
can conclude the two main formulations related to the
transition rates πgh(t):

• πgh(t) ∈ [πgh,πgh] for h ∈ Ñφ (3)

• 0 = πgg + ∑
h∈N⋆

φ
\{g}

πgh

+ ∑
h∈Ñφ\{g}

πgh(t)+ ∑
h∈N×

φ
\{g}

πgh(t), if g ∈ N⋆
φ. (4)

2.2 Multi-Agent Systems

Let us consider the following continuous-time dy-
namics of the ith follower and the leader with non-
homogeneous Markov network topology:

ẋi
t = Axi

t +BΓtui
t +D f (xi

t)+Ewi
t

ẋ0
t = Ax0

t +D f (x0
t )

zi
t =C

(
xi

t − x0
t
) (5)

where xi
t ∈ Rnx , ui

t ∈ Rnu , wi
t ∈ Rnw , f (xi

t) ∈ Rn f , x0
t ∈

Rnx , f (x0
t ) ∈ Rn f , and zi

t ∈ Rnz denote the state of the
ith follower, the control input of the ith follower, the
external disturbance of the ith follower satisfying wi

t ∈
L2[0,∞), the nonlinear function of the ith follower,
the state of the leader, the nonlinear function of the
leader, and the performance output of the ith follower,
respectively. Furthermore, Γt =

[
Γℓ

t
]d
ℓ∈{1,2,...,nu} is

employed to represent the actuator fault model, where
the ℓth element Γℓ

t satisfies 0 < Γ
ℓ ≤ Γℓ

t ≤ Γ
ℓ ≤

1. Thus, Γt can be represented by Γt = R + ∆tS,
where R =

[
(Γℓ + Γℓ)/2

]d
ℓ∈{1,2,...,nu}, S =

[
(Γℓ −

Γℓ)/2
]d
ℓ∈{1,2,...,nu}, ∆t =

[
∆ℓ

t
]d
ℓ∈{1,2,...,nu} with |∆ℓ

t | ≤
1.

Continuously, let us consider the following con-
trol protocol with asynchronous network topology:

ui
t = Fρt

(
x̃i

t +mi,φt

(
xi

t − x0
t
))

(6)

where x̃i
t = ∑ j∈N li j,φt

(
x j

t − x0
t
)
. In (6), ρt ∈ Nρ =

{1,2, · · · ,nρ} represents the control network topol-
ogy, which is asynchronous to the multi-agent sys-
tem’s network topology described in (5). Here, x̃i

t
denotes the synthesized signal, and Fρt refers to the
asynchronous control gain that will be designed later.
Especially, to demonstrate the relationship between
the nonhomogeneous Markov network topology and
asynchronous control network topology, we construct
the condition probability as follows:

Pr
(
ρt = p

∣∣ φt = g
)
= ϖgp (7)

where

ϖgp ∈ [0,1] and ∑
p∈Nρ

ϖgp = 1. (8)

In the next step, the error between the leader and
the ith follower are introduced by

x̄i
t = xi

t − x0
t and f̄ i

t = f (xi
t)− f (x0

t ).

Based on the brief representation of Og = O(φt = g)
and Op = O(ρt = p), the dynamics of the ith error
system can be formulated by:

˙̄xi
t = Ax̄i

t +BΓtFp

(
∑
j∈N

li j,gx̄ j
t +mi,gx̄i

t

)
+D f̄ i

t +Ewi
t . (9)

Subsequently, let us introduce some following aug-
mented vectors: x̄t =

[
x̄i

t
]

i∈N, f̄t =
[

f̄ i
t
]

i∈N, wt =[
wi

t
]

i∈N, and zt =
[
zi

t
]

i∈N. The resultant closed-loop
system is given by:

˙̄xt =
(
(IN ⊗A)+(Lg +Mg)⊗BΓtFp

)
x̄t

+(IN ⊗D) f̄t +(IN ⊗E)wt

zt = (IN ⊗C)x̄t .

(10)
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The following assumption and mathematical lem-
mas serve benefit platform for our future derivation:

Assumption 1. (Valentine, 1945) Given a constant
ε > 0, the nonlinear function f (x0

t ) and f (xi
t) satisfy

the following Lipschitz condition:∣∣∣∣ f (xi
t)− f (x0

t )
∣∣∣∣≤ ε

∣∣∣∣xi
t − x0

t
∣∣∣∣. (11)

Lemma 2.1. (Xie and de Souza, 1990) For any matri-
ces S ∈ Rn×m, T ∈ Rn×m, and 0 < P = P T ∈ Rn×n,
the following inequality holds:

He
{

S T T
}
≤ S T P S +T T P−1T . (12)

Lemma 2.2. (Takaba, 1998) Let Ξ, R1, ∆t , and R2
be real matrices with proper dimensions such that
∆T

t ∆t ≤ I and there exits a positive scalar α. Then,
the following condition holds 0 > Z +He

{
R1∆tR2

}
,

if the following condition is ensured:

0 >

[
Z +αR1R T

1 (∗)
R2 −αI

]
.

The target of this paper is to design a reliable asyn-
chronous controller such that the closed-loop system
(10) of the continuous-time multi-agent system (5) is
stochastically stable with H∞ performance level.

3 MAIN RESULTS

Let us choose the Lyapunov function candidate de-
pendent on the asynchronous control network topol-
ogy mode ρt = p:

V (t,ρt) = x̄T
t
(
IN ⊗Pp

)
x̄t (13)

where 0 < Pp = PT
p ∈ Rnx×nx and IN ⊗ Pp =

diag(Pp,Pp, · · · ,Pp︸ ︷︷ ︸
N

). Then, the weak infinitesimal op-

erator of V (t,ρt) is provided by

∇V (t,ρt)

= lim
θ→0

1
θ

E
{

V (t +θ,ρt+θ = q|φt = g)

−V (t,ρt = p|φt = g)
}

= x̄T
t He

{
(IN ⊗ P̃g)

(
(IN ⊗A)+(Lg +Mg)⊗BΓtFp

)}
x̄t

+He
{

x̄T
t (IN ⊗ P̃gD) f̄t

}
+ x̄T

t
(
IN ⊗P×

g
)
x̄t

+He
{

x̄T
t (IN ⊗ P̃gE)wt

}
(14)

where

P̃g = ∑
p∈Nρ

ϖgpPp, P×
g = ∑

h∈Nφ

∑
q∈Nρ

πgh(t)ϖhqPq.

In parallel, it follows from Assumption 1 that || f̄ i
t || ≤

ε||x̄i
t ||, which leads to

f̄ T
t f̄t ≤ x̄T

t (IN ⊗ ε
2Inx)x̄t . (15)

Then (15) and Lemma 2.1 allow

He
{

x̄T
t (IN ⊗ P̃gD) f̄t

}
≤ x̄T

t

(
IN ⊗ P̃gDDT P̃g

)
x̄t + f̄ T

t f̄t

≤ x̄T
t

(
IN ⊗ P̃gDDT P̃g

)
x̄t + x̄T

t (IN ⊗ ε
2Inx)x̄t

= x̄T
t

(
IN ⊗ ∑

p∈Nρ

ϖgpPpDDT Pp

)
x̄t + x̄T

t (IN ⊗ ε
2Inx)x̄t .

Next, let us define ηT
t =

[
x̄T

t | wT
t
]
, the H∞ leader-

following consensus condition of (10) is constructed
by

||zt ||2 − γ
2||wt ||2 +∇V (t,ρt)

≤ η
T
t Ξηt < 0 (16)

where

Ξ =

[
Ξ11 (∗)

(IN ⊗ET P̃g) −γ2IN·nw

]
Ξ11 = He

{
IN ⊗ P̃gA

}
+
(
IN⊗P×

g
)
+
(
IN ⊗ ε

2Inx

)
+He

{
(IN ⊗ P̃g)

(
(Lg +Mg)⊗BΓtFp

)}
+(IN ⊗CTC)

+

(
IN ⊗ ∑

p∈Nρ

ϖgpPpDDT Pp

)
.

To deal with the non-convexity of time-varying
transition rates πgh(t) in parameterized linear ma-
trix inequalities (PLMIs), the following theorem pro-
vides the relaxed reliable H∞ control synthesis condi-
tions, formulated in terms of linear matrix inequalities
(LMIs). 5

Theorem 3.1. For given scalars ε and β, there ex-
ists 0 < P̄p = P̄T

p ∈ Rnx×nx , Qpq = QT
pq ∈ Rnx×nx ,

F̄p ∈ Rnu×nx , Tgh = T T
gh ∈ Rnx×nx , Xg ∈ Rnx×nx , scalars

0 < γ, and 0 < αg, such that the following conditions
hold: for g ∈ Nφ and p ∈ Rρ

0 >

 Ω(1)+T(1)+X(1) (∗) (∗)
Ω(2)+T(2)+X(2) T(3) 0

Ω(3)+X(3) 0 0

 (17)

0 ≤
[

Qpq (∗)
P̄p P̄q

]
, ∀q ∈ Nρ (18)

where
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Ω(1) =


Ω⋆

11 (∗) (∗) (∗) (∗)
(IN ⊗ET ) −γ2IN·nw 0 0 0
(IN ⊗ εP̄p) 0 −IN·nx 0 0
(IN ⊗CP̄p) 0 0 −IN·nz 0
(IN ⊗SF̄p) 0 0 0 −αgIN·nu


Qq(β) = ∑

q∈Nρ

ϖhqQpq + ∑
q∈Nρ

ϖgqβ
2P̄q −2βP̄p

Ω
⋆
11 = IN ⊗

(
He{AP̄p}+DDT )

+He{(Lg +Mg)⊗BRF̄p}
+αg ((Lg +Mg)⊗B)((Lg +Mg)⊗B)T

+

IN ⊗ ∑
h∈N⋆

g\{g}
πghQq(β)


Ω(2) =

[(
IN ⊗ 1

2
Qq(β)

)
χ

]
h∈Ñg\{g}

Ω(3) =

[(
IN ⊗ 1

2
Qq(β)

)
χ

]
h∈N×

g \{g}

T(1) = χ
T

IN ⊗ ∑
h∈Ñg\{g}

πghπghTgh

χ

T(2) =

[(
IN ⊗ 1

2
(−πgh −πgh)Tgh

)
χ

]
h∈Ñg\{g}

T(3) = [(IN ⊗Tgh)]
d
h∈Ñg\{g}

X(1) =

{
χT
(

IN ⊗He
{

∑h∈N⋆
g
πghXg

})
χ, if g ∈ N⋆

g

0, otherwise

X(2) =

{
[(IN ⊗Xg)χ]h∈Ñg\{g} , if g ∈ N⋆

g

0, otherwise

X(3) =

{
[(IN ⊗Xg)χ]h∈N×

g \{g} , if g ∈ N⋆
g

0, otherwise

χ =
[

IN·nx 0 0 0 0
]
∈ RN·nx×N·nχ

nχ = 2nx +nw +nz +nu.

Proof: From the property of (8) that ∑p∈Nρ
ϖgp =

1, it can be referred (16) to the following control-
topology-dependent H∞ leader-following consensus:

0 > Ξ = ∑
p∈Nρ

ϖgpΞp (19)

where

Ξp =


He{IN ⊗PpA}+

(
IN ⊗P×

g
)

+He{(Lg +Mg)⊗PpBΓtFp}
+
(
IN ⊗PpDDT Pp

)
+
(
IN ⊗ ε

2Inx

)
+(IN ⊗CTC)

(∗)

(IN ⊗ET Pp) −γ2IN·nw

 .
In addition, from the property of (8) that ϖgp ∈
[0,1], it can be referred (19) to the following control-
topology-dependent H∞ leader-following consensus:

0 > Ξp (20)

where its Schur complement can be represented by

Ξp =


Ξ11,p (∗) (∗) (∗)

(IN ⊗ET Pp) −γ2IN·nw 0 0
(IN ⊗ εInx) 0 −IN·nx 0
(IN ⊗C) 0 0 −IN·nz


Ξ11,p = IN ⊗

(
He{PpA}+PpDDT Pp

)
+
(
IN⊗P×

g
)

+He{(Lg +Mg)⊗PpBΓtFp} .

Next, let us perform the congruence transformation
on (20) by diag(IN ⊗ P̄p, IN·nw , IN·nx , IN·nz) and its
transpose, which leads to

0 >


Ξ̄11,p (∗) (∗) (∗)

(IN ⊗ET ) −γ2IN·nw 0 0
(IN ⊗ εP̄p) 0 −IN·nx 0
(IN ⊗CP̄p) 0 0 −IN·nz

 (21)

where

Ξ̄11,p = IN ⊗
(
He{AP̄p}+DDT )+ (IN ⊗ P̄pP×

g P̄p
)

+He{(Lg +Mg)⊗BΓt F̄p}
P̄p = P−1

p , F̄p = FpP̄p.

Especially, to deal with the non-convexity emerged
from the multiplication time-varying transition rates
and topology-dependent conditional probability,
based on (1), the following equality is definitely
necessary

P̄pP×
g P̄p = ∑

h∈Nφ\{g}
πgh(t)

(
∑

q∈Nρ

ϖhqP̄pPqP̄p

− ∑
q∈Nρ

ϖgqP̄pPqP̄p

)
. (22)

Moreover, Lemma 2.1 allows that

−P̄pPqP̄p ≤ β
2P−1

q −2βP̄p. (23)

Based on (23) and (18) ensuring P̄pPqP̄p ≤ Qpq, (22)
can be bounded by

IN ⊗ P̄pP×
g P̄p ≤ ∑

h∈Nφ\{g}
πgh(t)(IN ⊗Qq(β)) (24)

where

Qq(β) = ∑
q∈Nρ

ϖhqQpq + ∑
q∈Nρ

ϖgqβ
2P̄q −2βP̄p.

Thus, by combining (24) and recalling Γt = R+∆tS,
(21) can be ensured by

0 >


Ω11,∆ (∗) (∗) (∗)

(IN ⊗ET ) −γ2IN·nw 0 0
(IN ⊗ εP̄p) 0 −IN·nx 0
(IN ⊗CP̄p) 0 0 −IN·nz

 (25)
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where

Ω11,∆ = IN ⊗
(
He{AP̄p}+DDT )

+He{(Lg +Mg)⊗BRF̄p}
+He{(Lg +Mg)⊗B∆tSF̄p}

+

 ∑
h∈Nφ\{g}

πgh(t)(IN ⊗Qq(β))

 .

Under the help of Lemma 2.2 and the usage of χ =[
IN·nx 0 0 0 0

]
, (25) is equivalent to

0 > Ω+χ
T

 ∑
h∈Nφ\{g}

πgh(t)(IN ⊗Qq(β))

χ (26)

where

Ω =


Ω11 (∗) (∗) (∗) (∗)

(IN ⊗ET ) −γ2IN·nw 0 0 0
(IN ⊗ εP̄p) 0 −IN·nx 0 0
(IN ⊗CP̄p) 0 0 −IN·nz 0
(IN ⊗SF̄p) 0 0 0 −αgIN·nu


Ω11 = IN ⊗

(
He{AP̄p}+DDT )

+He{(Lg +Mg)⊗BRF̄p}
+αg ((Lg +Mg)⊗B)((Lg +Mg)⊗B)T .

Next, let us denote some useful matrices as follows:

ζ1(t) =
[
πgh(t)

]
h∈Ñg\{g}, ζ2(t) =

[
πgh(t)

]
h∈N×

g \{g}

Φ
T (t) =

[
I |
(
ζ1(t)⊗χ

)T |
(
ζ2(t)⊗χ

)T ]
.

Based on Nφ = N⋆
g + Ñg +N×

g , (26) is rewritten by

0 > Ω+χ
T

 ∑
h∈N⋆

g\{g}
πgh(IN ⊗Qq(β))

+ ∑
h∈Ñg

⋃
N×

g \{g}
πgh(t)(IN ⊗Qq(β))

χ

= Ω(1)+He
{(

ζ1(t)⊗χ
)T

Ω(2)

}
+He

{(
ζ2(t)⊗χ

)T
Ω(3)

}
. (27)

Further, it can be referred from (26) that 0 > T(3) en-
suring 0 > Tgh for all h ∈ Ñg \ {g}. Then, it follows
from (3) that

0 ≤ ∑
h∈Ñg\{g}

(πgh(t)−πgh)(πgh(t)−πgh)χ
T (IN ⊗Tgh

)
χ

= T(1)+He
{(

ζ1(t)⊗χ
)TT(2)

}
+
(
ζ1(t)⊗χ

)TT(3)
(
ζ1(t)⊗χ

)
. (28)

Especially, if g ∈ N⋆
g, (4) leads to

0 =

 ∑
h∈N⋆

g

πgh + ∑
h∈Ñg\{g}

πgh(t)+ ∑
h∈Ñ+

g \{g}
πgh(t)


×χ

T He
{(

IN ⊗Xg
)}

χ

= X(1)+He
{(

ζ1(t)⊗χ
)TX(2)

}
+He

{(
ζ2(t)⊗χ

)TX(3)

}
. (29)

Hence, according to the S-procedure and the defini-
tion of Φ(t), combining (27) with (28) and (29) re-
sults in

0 > Φ
T (t)

 Ω(1)+T(1)+X(1) (∗) (∗)
Ω(2)+T(2)+X(2) T(3) 0

Ω(3)+X(3) 0 0

Φ(t)

which directly leads to (17).

4 NUMERICAL EXAMPLE

Let us consider the multi-agent system featuring three
followers and one leader, as discussed in (He et al.,
2020):

A =

 −3 0 1
0 0 0
0 0 −1

 , B =

 0
1
0

 , E =

 1.0
0.1
1.0


C =

[
0.2 0.8 1.0

]
, D =

 0.2 0
0.1 0.1
0.1 0

 . (30)

Fig. 1 shows the directed graph of the multi-agent
system (30) with the nonhomogeneous Markov net-
work topology. As shown in Fig. 1, one can es-
tablish the network-topology-dependent leader ad-
jacency matrices Mφt and the network-topology-
dependent Laplacian matrices Lφt as follows, for
Nφ = {1,2,3,4}:

M1 = diag(1,1,1), M2 = diag(1,1,0)
M3 = diag(1,0,1), M4 = diag(1,0,1)

L1 =

 0 0 0
0 0 0
0 0 0

 , L2 =

 0 0 0
−1 1 0
0 −1 1


L3 =

 0 0 0
0 1 −1
0 0 0

 , L4 =

 0 0 0
−1 1 0
0 0 0

 .
The actuator fault level is given by (Γ1,Γ

1
=

(0.8,1.0). Further, the bounds of πgh(t) ∈ [πgh,πgh]
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and condition probability ϖgp are:

[
πgh
]

g,h∈Nφ
=

 −2.0 0.1 × ×
× × 0.1 0.1

0.2 × −2.0 ×
0.1 × × ×


[
πgh
]

g,h∈Nφ
=

 −1.0 0.5 × ×
× × 0.6 0.8

0.9 × −1.0 ×
0.8 × × ×


[
ϖgp
]

g∈Nφ,p∈Nρ
=

 0.5 0.2 0.1 0.2
0.2 0.5 0.1 0.2
0.1 0.2 0.5 0.2
0.2 0.2 0.1 0.5


where “×” denotes the entirely unknown transition
rate. Based one the availability of transition rates
πgh(t), one can obtain the following network topol-
ogy sets in Table 1. By applying Theorem 3.1, Ta-

Figure 1: Network-topology-dependent digraphs for g ∈
Nφ = {1,2,3,4}.

Table 1: Network topology mode subsets for each network
topology mode g.

g Network topology mode subsets

1 N⋆
1 = /0, Ñ1 = {1,2}, N×

1 = {3,4}
2 N⋆

2 = /0, Ñ2 = {3,4}, N×
2 = {1,2}

3 N⋆
3 = /0, Ñ3 = {1,3}, N×

3 = {2,4}
4 N⋆

4 = /0, Ñ4 = {1}, N×
4 = {2,3,4}

Table 2: Comparison of H∞ performance levels.

Theorem 3.1 (He et al., 2020, Theorem 2)
γ 1.4068 1.5139

ble 2 displays the comparison between the minimum
H∞ performance level γ obtained by (He et al., 2020,
Theorem 2) and Theorem 1. As shown in Table 2,
the reliable H∞ control synthesis condition outlined
in Theorem 3.1 attains better performance compared
to (He et al., 2020, Theorem 2). Especially, differ-
ent from (He et al., 2020, Theorem 2), Theorem 3.1

even opens up the possibility to deal with the appear-
ance of actuator faults. Then, for β = 1.0 and ε = 0.5,
the asynchronous control gains are determined as fol-
lows:

F1 =
[
−2.1250 −12.2710 −11.0770

]
F2 =

[
−2.1250 −11.7660 −10.5670

]
F3 =

[
−2.0630 −11.4580 −10.2930

]
F4 =

[
−2.2540 −12.8940 −11.6260

]
(31)

where f (xi
t) =

[
sin(xi

1,t) sin(xi
2,t)
]T . Based on (31),

Figs. 2-(a), (b), and (c) demonstrate the state re-
sponses of (30) with wt ≡ 0, where x0

0 = [0.2 −
0.1 0.1]T , x1

0 = [0.2 − 0.3 0.2]T , x2
0 = [0.1 −

0.3 − 0.2]T , and x3
0 = [−0.1 0.1 − 0.1]T . More-

over, Figs. 3-(a), (b), and (c) display the error system
of three followers. Thus, as illustrated in Fig. 2 and
Fig. 3, the leader-following consensus is successfully
achieved, even in the presence of asynchronous con-
trol topologies and actuator faults. In addition, for

Figure 2: State response of (30) with wt ≡ 0.

Figure 3: Error tracking of (30) with wt ≡ 0.

x0
0 = x1

0 = x2
0 = x3

0 = 0, Figs. 4-(a), (b), and (c) demon-
strate the error responses x̄i

t = xi
t − x0

t of (30) with
w1

t = 1,w2
t =−1,w3

t = 2, for t ∈ [0,3); w1
t =−1,w2

t =
1,w3

t = −2, for t ∈ [3,6); and w1
t = w2

t = w3
t = 0,

otherwise. Fig. 4 illustrates the state trajectories
of each agent, highlighting their achievement of ro-
bust H∞ leader-following consensus. Furthermore,
Figs. 5-(a), (b), and (c) display the error system of
three followers in this case, Fig. 5-(d) demonstrates
the control input applied to each follower, Fig. 5-(e)
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Figure 4: State response of (30) with wt ̸= 0.

Figure 5: (a), (b), (c): Error tracking of (30) with wt ̸=
0; (d): the control input of (30); (e): the real value of
Ji

t =
∫ t

0 ∥zi
τ∥2dτ/

∫ t
0 ∥wi

τ∥2dτ; (f): mode evolution of net-
work topology and control topology.

shows the value of Ji
t =

∫ t
0 ∥zi

τ∥2dτ/
∫ t

0 ∥wi
τ∥2dτ for

each follower, and Fig. 5-(f) displays the evolution
of the generated topologies for both the system net-
work and control input. As depicted in Fig. 5, the
error responses of a group of agents are approaching
to zero despite the occurrence of asynchronous con-
trol topologies, actuator faults, and non-zero distur-
bances. Additionally, Fig. 5-(e) reveals that the actual
H∞ performance levels are lower than those derived
using Theorem 3.1.

5 CONCLUDING REMARKS

This paper tackles the challenge of ensuring re-
liable and asynchronous leader-following consen-
sus in multi-agent systems with nonhomogeneous
Markov network topologies. To simplifies transition
rate-dependent and conditional probability-dependent
consensus conditions into a finite set of solvable lin-
ear matrix inequalities, the proposed method i) intro-
duces an asynchronous control-topology-dependent
Lyapunov function, ii) develops an innovative relax-
ation technique distinct from exiting ones, which is
based on entirely unknown transition rates, and iii)
addresses the non-convexity arising from multiple
varying-time parameters. Looking ahead, our future
research will explore control strategies for leaderless

consensus in nonlinear multi-agent systems, particu-
larly in the context of denial-of-service attacks.
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